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* PREFACE

Optimal Control of Hydrosystems is a book that addresses the mathematical
modeling of the optimal operation of hydrosystems. Optimization problems are
characterized or mathematically formulated to include an objective function that is
optimized (maximized or minimized) subject to a set of constraints which are
algebraic equations and/or inequalities. Optimal control problems are optimization
problems in which part or all of the constraints are differential equations. In
particular these systems are modeled in the framework of a certain type of
optimization problem referred to as discrete-time optimal control problems. These
types of optimization problems are unique in that the physics (laws of motion) of
the problem are described through differential equations that simulate the physical
behavior of the problem. The main theoretical approaches to solve optimal control
problem are calculus of variations, the maximum/or minimum principle, which
may be regarded as a special application of calculus of variation, dynamic
programming approaches and mathematical programming (nonlinear
programming). The methods to solve these types of problems include the combined
use of (a) the hydraulic simulation of the physical process and (b) operation research
techniques such as nonlinear programming and differential dynamic programming.
The methods to solve these types of hydrosystems problems have never been
presented in one book, but instead have only been presented in various locations in
the literature.

The term hydrosystems was originally coined by V. T. Chow to collectively
describe the technical areas of hydrology, hydraulics, and water resources.
Hydrosystem has also been a term used for reference to types of water projects
including groundwater systems, surface water storage systems, water distribution
systems, flood control systems, drainage systems, etc. Hydrosystems as used in this

book, actually applies to both definitions. Specifically the types of hydrosystems in




this book include river-reservoir :;ystems, groundwater systems, bay and estuary
systems, and water distribution systems. Operation for reservoir systems include
both the long-term operation for water supply, sediment control, and freshwater
inflow to bays and estuaries and short term operation for flood control and
sediment control.

The book is divided into three major parts: Principles and Methodologies for
Optimal Control Using Mathematical Programming Approach, Mathematical
Programming Application, and Differential Dynamic Programming Application.
The first part on Principles and Methodologies for Optimal Control has chapters that
introduce hydrosystems control problems as discrete-time optimal control problem,
introduce system and optimal control concepts, and nonlinear programming
concepts. The second part of the book has four chapters that apply the optimal
control concepts using mathematical programming to develop models and solution
algorithms for groundwater systems operation, real-time operation of river-
reservoir system for flood control, water distribution systems operation, and
reservoir operation for optimizing freshwater inflows to bays and estuaries. The
third part of the book has chapters on optimal control using differential dynamic
programming, reservoir operation for water supply, groundwater systems
operation, and reservoir operation for sediment control in rivers and reservoirs.

This book is written at an advanced level for those with some background in
operations research, hydraulics, and water resources engineering. Both graduate
students and practicing engineers will find this book to be a valuable reference book
and text. The book can be used in graduate level water resources engineering
courses. Intentionally this book is not a review of the literature but instead is an
introduction to the concepts of optimal control theory and its applications to
various types of hydrosystems using mathematical programming techniques and

differential dynamic programming. A major focus is to illustrate how hydraulic




simulators can be interfaced with:optimizers in an optimal control framework to
solve realistic, large-scale hydrosystems operation problems that are optimal control
problems.

Much of the work presented in this book is based upon the research work of
my former Ph.D. students. In particular Chapter 4 is based upon the research efforts
of Dr. Nisai Wanahule; Chapter 5 is based upon the research efforts of Dr. Olcay
Unver; Chapter 6 is based upon the research efforts of Dr. Lehar Brion; Chapter 7 is
based upon the research efforts of Dr. Yixing Bao; and Chapter 11 is based upon the
present research efforts of Mr. Carlos Carriaga at Arizona State University. Dr. Leon
Lasdon, a friend and former colleague at the University of Texas at Austin, over the
years, has been rather influential in teaching me and my former graduate students
at the University of Texas many of the concepts presented in this book, particularly
those related to the optimal control concepts using mathematical programming. I
also need to thank Dr. Lasdon for his willingness to provide us versions of his
GRG2 code and his friendly advice on its use over the years. Other former graduate
students of mine at Texas also have helped in the development of many of our
concepts in solving the optimal control problems for hydrosystems including Dr. M.
John Cullinane, Dr. Ning Duan, Dr. Joong-Hoon Kim, Dr. Kevin Lansey, Dr. Jungi
Matsumato, Dr. Chang-Kang Taur and Dr. Yeou-Koung Tung.

This book is intended to be a contribution toward the eventual goal of better

engineering and management practice in the hydrosystems field.

Larry W. Mays
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CHAPTER 1 - INTRODUCTION

1.1 Optimization of Hydrosystems

Many problems for the operation of hydrosystems can be formulated
in a general optimization framework in terms of state (or dependent)

variables (x) and control (or independent) variables (u)

Minimize f (x, u) (1.1.1)
subject to process simulation equations

G(x,u)=0 (1.1.2)

and additional constraints for operation on the dependent (u) and

independent (x) variables
wswx, u)<w (1.1.3)

The process simulation equations for hydrosystems applications basically
consist of the governing physical equations (1.1.2) that simulate a physical
process such as conservation of mass, energy and momentum. These
equations are typically large in number, sparse and nonlinear in terms of the
state and control variables. In most hydrosystem applications, these
governing equations are ordinary or partial differential equations.
Conceptually, the simplest approach is to have the optimizer directly solve
the above optimization problem by embedding finite differences or finite
element equation(for the governing process equations. Unfortunately, many

of the real-world problems cannot be solved in this manner as a result of




their size and nonlinearity. The existing nonlinear programming (NLP) codes

cannot solve such large, sparse problems.

An alternative apprdach is to use the appropriate process simulator to
solve the constraints process simulation equations (1.1.2) each time the
constraints need to be evaluated for the optimizer. The major advantage of
such an approach is the reduced size of problem seer’fC by the nonlinear
optimizer so that only a small subset of the complete set fcbnstraint equations
is evaluated by the optimizer. The basic idea is that the optimizer [6;1_}'1?395 7

the following reduced problem :
Minimize F(u) = f(x(u), u) (1.1.4)
subject to w < w(x(u)) < w (1.1.5)
as opposed to the much larger problem defined by equations (1.1.1) - (1.1.3).

The class of problems that are being considered in this book essentially
have differential equations as part of the constraint set (process simulation
equation) making them more complex than the standard type of optimization
problem. These optimization problems are referred to herein as optimal
control problems. Examples of hydrosystem optimal control problems are
presented in sections 1.2 - 1.7. Each of these are nonlinear programming
problem§that can be solved by interfacing the appropriate simulator
(simulation model) with the optimizer to solve a reduced nonlinear
programming problem. Application to systems such as groundwater systems
(1.1.1), river-reservoir systems (1.1.2) for flood control, reservoir systems
(1.1.3) for water supply, water distribution systems (1.1.4) operation, and

estuary systems (1.1.5) for salinity control.
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1.2  Groundwater Management Systems

The general groundwater management problem (GGMP) can be

expressed mathematically as follows :
Objective
Optimize Z = f(h, q) (1.2.1)

where h and q are vectors of heads and pumpages (or recharge), respectively.
The objective function may be either maximization (e.g., sum of heads) or
minimization (e.g., minimize pumpage), and can be a linear or nonlinear
function. Also, it may be nonseparable or contain only terms of pumpages or

heads.
Constraints

a. The general groundwater flow constraints represent a system of
equations governing ground-water flow which are finite

difference or simulator equations when q is unknown.

G(h,q) =0 (1.2.2)

b. The upper (g) and lower (9) bounds on pumpages physically may
or may not exist. Unlike pumpage, the lower bound on heads (h)
can be viewed as the bottom elevation of the aquifer while the
upper head bound (h) can be viewed as ground surface

elevations for the unconfined cells.

I\
ol

=q (1.2.3).

ha

(1.2.4)

=
I
-
I
=




c In addition to constraint Egs. (1.2.2) - (1.2.4), other constraints
may be iricluded to impose restrictions such as water demands,

operating rules, budgetary limitations, etc.

w(h,u)<0 (1.2.5)
D
Both head, h, and pumpage (or recharge) q are vectors of decision
variables which have maximum dimensions equal tQ_,_th?__vPrQEh?Ct“Qf“ the\NOM;

number of active nodes within the aquifer boundary and time steps. Fixed
pumpages or recharges are considered to be constants. By convention,
available pumpages have a positive value and the elements of q have a
negative value where there is available recharge. Usually the number of
variable pumpages and/or recharges (fhereafter the terms pumpages that
refer to q will imply both pumpages and/or recharges) is small and results in

"‘r W

a much smaller dimension of q and h.

1.3 Real-Time Operation of River-Reservoir Systems for Flood Control

The optimization problem for the real time operation of

multireservoir systems under flooding conditions can be stated as follows:
Objective
Minimize Z = f (h, Q) (1.3.1)

where h and Q are the vectors of water surface elevations and discharges,
respectively. The objective is defined by minimizing: (a) the total flood
damages; (b) deviations from target levels; (c) water surface elevations in the

flood areas; or (d) spills from reservoirs or maximizing storage in reservoirs.

4
WA’
s
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Constraints

Hydraulic constraints are defined by the Saint-Venant equations
for one-dimensional gradually varied unsteady flow and other
relationships such as upstream, downstream, and internal
boundary conditions and initial conditions that describe the flow

in the different components of a river-reservoir system,
Gh,Qn=0 (1.3.2)

where h is the matrix of water surface elevations; Q is the matrix
of discharges; and r is the matrix of gate settings for spillway
structures, all given in matrix form to consider the time and

space dimensions of the problem.

Bounds on discharges defined by minimum and maximum

allowable reservoir releases and flow rates at specified locations,
0<0Q<Q (1.3.3)

Bars above and below a variable denote the upper and lower

bounds, respectively, for that variable.

Bounds on elevations defined by minimum and maximum
allowable water surface elevations at specified locations

(including reservoir levels).

h<h<h (1.3.4)

|—1(0




d. Physical and operational bounds on spillway gate operations.
0<r<r<r<1 (1.3.5)
& Other constraints such as operating rules, target storages, storage

capacities, etc.
W() <0 (1.3.6)

The constraints of the model can be divided into two groups: the hydraulic
constraints (Egs. 1.3.2) and the operational constraints (Egs. 1.3.3. - 1.3.6). The
hydraulic constraints are equality constraints consisting of the equations that
describe the flow in the system. These are: (a) the Saint-Venant equations for
all computational reaches féxcept internal boundary reache§) (b) relationships
to describe the upstream a;nd downstream conditions for the extremities; and
(c) internal boundary conditions which describe the flow that cannot be
described by the Saint-Venant equations such as critical flow resulting from

flow over a spillway or waterfall.

The operational constraints are basically greater-than or less-than type
constraints that define the variable bounds, operational targets, structural
limitations, and capacities. Options for an operator to set or limit the limits of
certain variables are also classified under this category. Bound constraints are
used to impose operational or optimization-related requirements.
Nonnegativity constraints on discharges are not used because discharges are
allowed to take negative values in order to be able to realistically represent
the reverse flow phenomena (backwater effects) due to a rising lake or large
tributaries into a lake or tidal condition. Nonnegativity of water surface

elevations are »§‘ always satisfied since the system hydraulics are solved
)2




implicitly by the simulation model, DWOPER. The lower limits on
elevations and discharges can be used to indirectly impose water quality
considerations, minimum- required reservoir releases, and other policy
requirements. The upper bound qg,beﬂ’h/ ) on elevations and discharges can
be used to set the maximum all;;\;é.gle levels ( values beyond are either
catastrophic or physically impossible) such as the overtopping elevations for
major structures, spillway capacities, etc. Damaging elevations and/or
discharges must be given to the model through the constraints, as the

objective functions do not have any terms to control them.

The third model variable, gate opening, can be allowed to vary between
zero and one, which corresponds to zero and one hundred percent opening of
the available total spillway gate areas, respectively. The bounds on gate
settings are intended primarily to reflect the limitations on gate operations as
well as to enable the operator to prescribe any portion(s) of the operation for
any reservoir(s). Operational constraints other than bounds can be imposed
for various purposes. The maximum allowable rates of change of gate
openings, for instance, for a given reservoir, can be specified through this
formulation, as a time-dependent constraint. This particular formulation
may be very useful, especially for cases where sharp changes in gate
operations, that is, sudden openings and closures, are not desirable or
physically impossible. It is handled by setting an upper bound to the change in
the percentage of gate opening from one time step to the next. This constraint
can also be used to model another aspect of gate operations for very short
time intervals, that is, the gradual settings that have to be followed when
opening or closing a gate. For this case, the gate cannot be opened (or closed)

by more than a certain percentage during a given time interval.

/=] &



14  Reservoir System Operation for Water Supply

Reservoir system operation is for the purposes: to meet water supply
demand; recreation demands; maintain minimum flow levels for navigation
and environmental concerns; provide flood protection, power production,
and flood control. The mathematical formulation of the reservoir system

operation problem can be stated in general form as follows :

Objective S = e
A Y eleages
- ' s T = inflowe
Maximize Benefits = Max Zf (St, Ug, t) T ‘ (1.4.1)
0 ) '
Constraints
a) The system equations which are the conservation of mass

equations for the reservoirs and river reaches are
G(St+1,St, U, It, Lp =0 t=0,....,T-1 (1.4.2)

where Sit,1, St are the vectors of reservoir storages at the
beginning of time period t+1 and t respectively; Ut is the vector
of the reservoir releases for M reservoirs during time t; It is the

vector of hydrologic inputs (such as inflow to reservoirs); and Lt

is the vector of reservoir losses.
b) The bound constraints on reservoir releases, Uy, are

U<U,<U t=1,....,T (1.4.3)

t t

where U and ﬁt are lower and upper bounds on the reservoir

releases.

| ~17




c) The bound constraints on reservoir storages are

deterministically defined as

$<5,s5, Tk AR | (1.4.4)

t

where S and §ot are the lower and upper bounds on storage or

d) The bound constraints on reservoir storage could be defined in

probabilistic form as storage reliability constraints as

P[S,2S ] s ar= Tk P (1.4.5)
and
P[S,<S | saf™ t=1,....,T (1.4.6)

where P [ ] denotes the probability and a™" and a?* represent
the minimum and maximum reliability or tolerance levels on

storage, respectively.

e) Other reservoir operational constraints are expressed as

w(S;, Up =0 (1.4.7)

1.5 Water Distribution System Operation

The optimization problem for water distribution system operation can
be stated in terms of the nodal pressure heads, H, pipe flows, Q , tank water
surface elevations, E, and pump operating times, D. The objective is to

minimize energy costs

/- 14




Objective

Minimize energy costs = f (H,Q,D)  (1.5.1)

Constraints
a. Conservation of flow and energy constraints
GH,Q D,E)=0
b. Pump operation constraints

w(E)=0

c Nodal pressure head bounds

H<H<H

d. Bounds on pump operating times
D<D<D

e. Bounds on tank water surface elevation
E<E<E

1.6 Freshwater Inflows to Bays and Estuaries

(1.5.2)

(1.5.3)

(1.54)

(1.5.5)

(1.5.6)

The overall optimization model can be stated in the following general

nonlinear programming format using an objective to minimize freshwater

inflows or to maximize harvest.

/S
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Objective

Optimize z =f(Q, s, H) (1.6.1)

The general mathematical model can consider the following objective

functions:

(@)

(b)

(©

Constraints

minimize the sum of freshwater inflows into the bay and

estuary over an operational time frame, such as a year;

maximize the harvest over an operational time frame, such as a

year; and,

multiobjective to minimize freshwater inflows and maximize

the harvest over an operational time frame, such as a year.

Hydrodynamic transport equations that relate salinity, s, at a

given point in an estuary to inflow, Q,
G(Q,s)=0 (1.6.2)

where Q is the independent variable (control variable) as a
function of time and s is the dependent variable (state variable)

as a function of time and location;
Regression equations that relate inflow to fish harvest

| =16



C. Constraints that define limitations on freshwater inflows due to

upstream demands and water uses, and historical ranges

Q<0<Q (1.6.4)
d. constraints that define limitations on salinity.
s<s<s (1.6.5)

1.8 General Problem Formulation

Each of the above optimization problems in Sections 1.2 - 1.7 can be

written in the following general form:
Objective

Optimize z = f (x, u)

Constraints
Xt+41= 8 (xt, uy, t) t= 0, sfs
< <x
Xt < Xt < xt t=0,

e
IA
<
IA
=1

(1.8.1)

| (1.8.2)
pop & (1.8.3)
v £=1 (1.8.4)

where x; is a column vector of dependent (state) variables at time t; u, is the

column vector of independent (control) variables at time t; x; and u; are

column vectors of lower bounds; and X, and U, are column vectors of upper

bounds. The objective function is assumed to be continuously differentiable

in (x¢ uy). Time t can take only a finite number of discrete values.

I~177




The above optimization pfoblem defined by equations (1.8.1) - (1.8.4) is
a discrete-time optimal control problem. Note that in each of the different
hydro- systems problems in sections 1.2 - 1.7 there is a set of hydraulic process
(simulation) equations G () = 0. These process simulation equations define
the physics of the problem, that is, the governing physical equations that
simulate the physical process. These are the conservation of mass,

conservation of energy, and/or conservation of momentum.

Groundwater Management

In the case of the groundwater management model, equation 1.2.2,
G(h,q) = 0 is the set of general groundwater flow equations. For nonsteady
state groundwater flow the governing physical equations for two-

dimensional flow are

0 och ch =

3 (Todx,) =830+ W =12 185)
where Tij is the transmissivity vector; h is the hydraulic head; W is the
volume flux per unit area; S is the storage coefficient; x;, x; are Cartesian
coordinates; and t is time. The above partial differential equations can be

written in a finite difference form
G (ht+1, htl qt+1) =0 t=0,...,T-1 (1.8.6)

letting the volume flux to be replaced by the pumpage or recharge q.

Alternatively equation (1.8.6) can be written as

ht+1 =g (ht, qi+1, P =0 500, 0-1 (1.8.7)
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which is in the form of equation (1.8.2). In this case the state variable is the

hydraulic head, h;, and the control variable is the pumpage or recharge q;.

The finite difference cell map for an aquifer is shown in Figure 1.8.1.

Real-Time Operation of River-Reservoir System for Flood Control

In the case for the real-time operation of river-reservoir systems for
flood control, the set of governing physical equations, G(h,Q,r) = 0 are the

Saint-Venant equations for one-dimensional unsteady flow,

Continuity:
o0Q 9JA+A)
- . R (1.8.7)
\
Momentum: K. P
3Q  ABQ’/A) oh /
5%+ o - A(a—x+5f+se)—ﬁwvx+WfB=O (1.8.8)

where

x = longitudinal distance along the channel or river
= time
A = cross-sectional area of flow

A = cross-sectional area of off-channel dead storage (contributes to

continuity, but not momentum)
q = lateral inflow per unit length along the channel

h = water surface elevation

1=19
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Cell map used for the digital computer model of the Edwards (Balcones fault zone) aquiler (after Klemt et al., 1979).
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vy = velocity of lateral flow in the direction of channel flow
S¢ = friction slope

Se = eddy loss slope

B = width of the channel at the water surface

W¢ = wind shear force

B = momentum correction factor

g = acceleration due to gravity.

The above set of partial differential equations can be expressed
respectively in general form with the continuity and momentum,

respectively as
Gc (hy, hyq, Qp Qe Tre1) = 0 (1.8.9)
GM (hy, hyyq, Qp Qte1, Tes1) =0 (1.8.10)
or respectively as
hiy1 =8¢ (hy Qp Qe Tre1) (1.8.11)

Q1= &M (htr Qp Qt+1, Te1) (1.8.12)

The state variables in this problem are the water surface elevations, h, and the

discharge, Q. The control variable is the gate setting (spillway operation), r.
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Reservoir System Operation for Water Supply

v/

5K : :

The system equations basically describe the dynamics of a reservoir
system which is a configuration of reservoir whose coordinated operation is a
function of hydrologic condition and/or institutional requirements. The

dynamics of a particular reservoir j is represented by the conservation of mass

ds,
It
—=1 -U -L,

at gt gt gt (1.8.13)
The dynamics of the reservoir system can be described in a vector differential

equation form as :

S, = F{St, t) +BU, + (I, (1.8.14)

where St is an ng - dimensional state vector including all reservoir storage
variables; Ut is the ny - dimensional vector of controllable releases; It is the nj
- dimensional vector of hydrologic inputs; F(St, t) is an ng - dimensional time
varying nonlinear function with storage dependant term as shown in the
above dynamic equation for a single reservoir; B and C are ng * ny and ng *
ny - dimensional permutation matrices associating and each control and

input vector element with the pertinent differential equation.

The state vector describes the storage in the various reservoirs and
other system elements such as river reaches throughout the system as a
function of time. At a particular time tk when the state vector is known and
for a known or specified set of inputs It and release Ut over the time interval
t < [tk, T], then the state trajectory {St, t < [t, T]} can be computed by integrating
the above equation. A state vector summarizes the knowledge or information

from the system history prior to time tk. This information is necessary to

/- 2%




compute (predict) the reservoir system's future resource to input and output
. sequences. The purpose of reservoir operation control model is to identify

control scheduler (reservoir releases) which generate optimum (desirable)

state trajectories (storage).

. Freshwater Inflows to Bays and Estuaries
In the case of the optimization of freshwater inflow to estuaries the
® governing physical equations (1.6.2), G(Q, s) = 0 for a two-dimensional (plan)
formulation (see Figure 1.8.2) are the vertical-mean equations of momentum, i
continuity, and salinity mass budget given respectively as |
" d—“—-gvmﬁle}Vpdzd“ o
- D p
i =f . = (1.8.13)
dh
G FRVrR=D (1.8.14)
o _
ds_9p 3 2y o
dt ~ ox "*dx ' dy Y dy (1.8.15)
&® where d/dt =0 /ot + ue V and all vectors are referred to the plane coordinates
9 'f,//(j ,',vj/' 0')\';/ Ljk
Here
o
u=ui +vj vertical-mean current
& D = h(t) total depth, a function of position (x,y)
T T horizontal stress at surface and bottom
s vertical-mean salinity
o

‘ E Ey horizontal "dispersion" coefficients




® Typical computation cell

Tidal generated velocities

Tidal
amplitude

LE. 2
Figure 22 Conceptual Illustration of Discretization of a Bay

for Depth-Averaged Two-Dimensional Flow
° (Modified from: TDWR, 1980)
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and density p and salinity s are related by an equation of state p = po + Ls. The
tidal-mean equations are exactly the same, except that the dependent variables
h, u, s are now tidal-mean quantities (as well as vertical means) and the
dispersion terms absorb the effective flux due to time correlation in s and u.
The finite difference grid for the Lavaca-Tres Palacio Esturary along the Gulf

of Mexico in Texas is shown in Figure 1.8.3.
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. CHAPTER 2
SYSTEMS THEORY AND OPTIMAL CONTROL

22 Concepts of Systems

2.2.1 Concept of the State

In the "classical" system theory, the output is directly related to the

input through a transfer function, ¢. y = cukpd

w=inp U,}'
y=¢u ' (2.2.1)

Differential equations are often used for the purpose of describing the transfer
function. For a system to be amenable to state variable modeling analysis it
must be lumped) This means that it must evolve in only one dimension

such as time or space and be describable by ordinary differential or difference

” equations. Water resource systems are usually (distributed’'and properly

. described by partial differential equations with respect to time and space.
divided into several subsystems such that each individual subsystem is
treated as a lumped system. It is possible, in many cases, to obtain a good
apé?&irﬁation to distributed system behavior by using linked lumped
systems.

In the so called "modern" system theory, the system structure is given
explicit representation as a vector x, where x = (x, . . .’xn) and the state /:’, 2 ;:i;ﬁg‘,‘
variables xj . .., xp, are a function of time. The state of the system at any given -
time t1, is given by the value of state variables x1(t1), xa(t1) , . . . , xn(t1) which
constitutes the state vector, x(t1). This is the fundamental concept of state

e ———————

variable modelmg. In hydrosystems, the state variables are usually expressed
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water or the amount of prescribéd pollutants contained in various parts of the
system. The input and output variables commonly correspond to volume or
mass flow rates, which may be expressed as rainfall intensity or the rate of
discharge of pollutant. The state of the system is a measure of the level of
activity in each of its components and can be thought of as the interface
between the past and the future of the system'’s time history.

Formally, the state vector may be defined as the minimum number of
variables needed so that if the state at time t1, x(t1) is known and the input
from time t1 to some later time tp, u(t), t1< t< tp is also known, then the state,
x(t2), is completely determined from this information. Sometimes the state
variable methodology is also called "state space" analysis.

Comparison between the "classical" and "modern" approaches to
dynamic systems modeling, shown in Figure 2.2.1, may be visualized in
vector space mappings. If an "input space" for the input vector, u, and an
"output space" for the output vector, y, are defined in the same way as the
state space has been defined, the transfer function is seen as a mapping from
the input space directly to the output space, Figure (2.2.1a). In the "modern"
approach, Figure (2.2.1b), the input space is first related to the state space
through the so-called "state equation" which is a differential or difference
equation. Then the state space, and in some cases the input space, are related
to the output space through the so-called "output-equation" which is
algebraic.

Descriptions of continuous-time and discrete-time deterministic state
variable models are given in the following two sections. Where vector-
matrix operations are used, the notation employed is that a lower case letter,

a, is a scalar; an underlined lower case letter, a, is a vector; and an upper case

letter, A, is a matrix.
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1 2.2.2 Continuous-Time Deterministic State Variable Model

A deterministic model is one in which a given input always produced=
¢ the same output. The continuous-time deterministic state variable model is
mathematically formulated by means of two equations: the state equation
and the output equation. The state equation is a set of ordinary, first-order
® differential equations, one for each state variable, which is written in vector-
matrix form to simplify the notation. The state equation describes the change
® equation is a set of algebraic equations, one for each output variable relating
the output to the state of the system and in some cases to the inputs. The
output equation is also commonly written in vector-matrix form. For the
® ‘ most general case, the state and output equations may be expressed as in

equations (2.2.2a) and (2.2.2b), respectively:

:,L.\f :”; = ‘X(t) = g[X(t), u(t), t:' (2223)
. 3 2.
f".»‘:‘.';tf /c/'“,-f = h ’ ’
Gyt 4 y(t) = h[x(t), u(t), t] (2.2.2b)
[x,(1)] O [x®] [¥,(0)] [u,(t)]
o X ,(t) x,(1) y (1) u,(t)
x(1) =]’ ;ox(t) = ; ym) = | yu(y) = |
a [ X (1) [ X a(t)) Ly ()] [ u (1) ]
and
d[x, (1) . d t d
x,(t) = oL d’t : s Xy(t) = ——[xdzt( 4 » X,(t) = ———[xd"t(t)]
° The functions, g [ ], in equation (2.2.2a), and h [ ] in equation (2.2.2b) are
. nonlinear and time-variant. They are nonlinear because products or powers
®

2~4




of the variables may occur, and time-variant because the time, t, is included as
an explicit variable.

For practical purpos.es, this model is usually simplified to the form
shown in the following equations, which is the basic continuous-time,

deterministic, state variable model
GEIEREUC, Sl vaaple madst

x(t) = Ax(t) + Bu(t) (2.2.3)

y(t) = Cx(t) + Du(t) (2.2.4)

where A, B, C, and D are the matrices:

[a, 8, .. a,] [b,, by, .. by,
a,a, ..4a, by by by,
A= x B= :
_anl an2 ann_J _bnl bn2 bnpj
- - = n
€, Cpp e ©y d,d,,...d,
- g dyd,..d,,
C= ’ : D=
_Crl Cr2" 'Cm_ _drl dr2" .drp_

The system representation given the the above equations is shown
schematically in Figure (2.2.2). From Figure (2.2.2), it may be seen that the
time rate of change of the state of the system, x(t), is formed as the sum of
the modified inputs, Bu(t), and the modified current state, Ax(t). The matrix
A is the most important of the four system matrices because it represents the
proportion of the current system state, x(t), which contributes to changing that
state. This state feedback has a major role in determining the future behavior.

of the system. The elements of matrix B are scalars and represent the
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proportion of the value of each of the input variables that affects each of the
state variables.

The rate of change of the state, x(t), is continuously integrated with
the current state to produce the new state. The outputs, y(t), are formed by
summing the new state which has been scaled by matrix C with a direct
contribution from the modified input, Du(t). The elements of C and D are
scalars which represent the proportions of each of the state and the input
variables which produce the outputs, respectively.

The behavior of water resources systems often changes with time. For
example, as the urbanization proceeds the proportion of the urbanized
watershed area which is impervious increases causing the relationship
between storm rainfall and Tunoff changes. This time-variant behavior can
be incorporated into state variable models by making some of the elements in
the matrices A, B, C, and D functions of time. Non-linear response occurs
when changes in the system's inputs do not produce linearly proportional
changes in the system's outputs. These effects may be accounted for in state
variable models, by formulating some of the elements in the four system

matrices A, B, C, and D as functions of the current system state.

2.2.3 Discrete-Time Deterministic State Variable Model

Although the nature of water resources systems operate continuously
in time, the data are often collected and analyzed using discrete-time
intervals, especially when a digital computer is involved in the data storage
and analysis. For this situation, it is advantageous to formulate a discrete-
time version of the deterministic state variable model. To do this, the time

horizon is divided into K intervals or stages, k = 1, 2, ..., K; of length At. Time




intervals, At, are not necessarily equal. The state, x(t + At) may be related to

the state, x(t), at time, t by using Taylor's expansion:

2

: e
X (t +At) = x(1) + (A) X (1) + =~ X(1) +. .. (2.2.5)

. dIx] 5 .
where  X(1) = “a If the terms of order of (At)4 and higher are

neglected, equation (2.2.5) may be written as:

x(t+ A0 = x(8) + X(1) o At @26) ( fo.
and the output equation is h,“(
\ :‘!’o te V/J’A!-:J-I;»
y(t) = Cx(t) + Du(t) Q27n./

Equations (2.2.6) and (2.2.7) form the basic discrete-time, deterministic, state

variable model. In the situation when the time intervals are equal and set to

one unit of time, then t = kAt where k is the state index. The state equation
(2.2.6) and output equation (2.2.7) can then be expressed as equation (2.2.8) and
(2.2.9), respectively, by substituting Ax(t) + Bu(t) in equation (2.2.3) for x(t).

x(k+1) = (A+ID)x(k) + Bu(k) (2.2.8)

y(k) = Cx(k) + Du(k) (2.2.9)
where I is an identity matrix of rank n.

In the discrete time model, the input and output variables
corresponding to the volume or mass of flow across the system boundaries in
the unit time interval instead of being volume or mass flow rate as they are
in the continous-time model.

At first the input instruction to the system is divided into several
stages with total number N. The time interval between two adjacent stages is

not necessarily equal. Once the initial state of the system, x (tp), and initial

2-8
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‘ input to the system, u (t,), are given equations (2.2.6) and (2.2.7) may be solved

. to obtain the state, x (t, + At), at the next stage and the output, y (t,), at the

current stage. Since the input at each stage is known,the process can be

performed recursively until the last stage is reached. The algorithm for

- solving the discrete-time model is illustrated as a flow diagram shown in
Figure 2.2.3. -
& 9 %0’ M
0]y 1Q2-
¢ 2.24 Applications of State Variable Model in Water Resources

State variable modeling has been applied to only a few water resource

systems. Fan et al. (1973) developed a model to find control strategies for

* biological waste treatment using a state variable model of a contineously
stirred tank reactor. Young and Beck (1974) formulated a state variable model
for dissolved oxygen and biochemical oxygen demand in a river. This model

o . was used to determine control schemes for sewage effluent discharges to
rivers. Erscheler et al. (1974) developed a control strategy for the operation of
the penstrock inlet gates in a hydroelectric power station based on a state

® variable model of the system. State variable approaches have also been used
to model the storm rainfall and runoff processes. Muzik (1974) used a state
variable approach to model overland flow. Duong et al. (1975) applied

L stochastic estimation theory to fit the parameters of a state variable rainfall-
runoff model. Maidment (1976) developed a stochastic state variable dynamic
programming model for reservoir operation. Tung and Mays (1978)

1 developed a kinematic wave model for sewer network flow routing based

upon the state variable approach. Tung and Mays (1981) developed a rainfall-

runoff model using the concepts of state variables modeling as described

® below.
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Because of the characteristics of a watershed, the system is inherently

non-linear. The linear reservoir storage-discharge relation,

S=kQ (2.2.10)
was modified by Prasad (1967) having the form

e A
$=KQ +K, 5 2.2.11)

where ki, k2, and n are assumed to be constants. Combining equation (2.2.10)

with equation (2.2.11) for the conservation of mass, the following differential

equation is obtained:

d* Lol
K, ?+NKIQN I ey
dt dt (2.2.12)
Equation (2.2.11) is rearranged to
d’ K -
2B R o
dt 2 t . K, (2.2.13)

The simulation diagram of equation (2.2.13) is illustrated in Figure 2.2.4. The

state variable formulation of equation the state equation in matrix form is

0 1 x,(t) 0
[—eo -cl] l:xz(t)]+[h:| i (2.2.14)

N-1 1

K
1
K—zNQ »and h == and the output equation in

2

written as follows:
x,(t)
X,(t)

1
where €0 = K, €

matrix form is

Q=01 0] [x‘(‘)]

x,(1) (2.2.15)

IR
TD f' .3 Definition of Optimal Control Problems
s
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. Optimization problems are typically thought of as problems with
g constraints that are algebraic equation and/or inequalities. ~Another
important class of optimi.zation problems are optimal control problems
which have constraints that are differential equations, f\fk)’ o o e *L'ﬁ erm.
. Optimal control problems can be stated as follows:
Given:

(1)  state equations;
* (2)  a set of boundary conditions on the state variables at the
initial time and the terminal time; and

3) a set of constraints on the state variables and control

® variables;
Determine the admissible control (values of the control variable) so that an
objective function (performance index) is optimized (minimized or
® ‘ maximized).
Mathematically the optimal control model in continuous form is to
optimize the objective function
b T
Optimize F(u) = '[0 f(x(1), u(t), t) dt 2.3.1)
subject to the state equations,
o x = g(x(1),u(t)) (2.32)
the set of boundary conditions
o x < x(t) <X (2.3.3)
u<u(t)<w (2.34)
and the set of constraints on x(t) and u(t)
e
. w (x(t), u(t)) =0 (2.3.5)
° 2-13



4

where u(t) is the control variable u = [uy, ..., um]T with low /and upper
bounds of u and U, respectively; and x(t) is the state variablé/r (X1, -+ -, Xn)
with lower and upper bounds of x of X, respectively.

The objective function f is a given continuous real-valued function
and the integral in equation (2.3.1) is interpreted as taking a control u(t) such
that u < u(t) < U ; solving the state equation to obtain the corresponding x(t);
then calculating fo as a function f time. The control variables and state

variables are related through the state equation which is expressed as a

differential equation in (2.3.2)

dx _
o = g(x(), u(®) (2.3.6)

for a continuous system and as

x(t+1) = g(x(t), u(t)) (2.3.7)
for a discrete system.
In many applications of control theory the objective function (or

performance index) has the form

Fu) = ¢ (x(T)) + j:f(x(t), u(t)) dt (2.3.8)
of

where T > 0 is fixed and ¢ (x(f)) is a given continuously differentiable function
that represents the terminal objective value at the final time T.

The optimal control problem in discrete form is to

T
Op“"‘*‘a* Fu) = 3 £ (x(1), u(t))
t=1

subject to the state equation in discrete form

x(t+1) = g(x(t), u(t))

2-14



25 Continuous Systems

2.5.1 No Terminal Constraints, Fixed Terminal Time

Consider the optimal control problem to minimize (or maximize) the

scalar performance index of the form of equation (2.3.8)

T
F) = o[x(T), T] + [ x(t), u), t]dt (2.5.1)
0

subject to the state equation (nonlinear differential equations)
x = g[ x(), u(t), t] 0<t<T (2.5.2)

with x(0). x(t) is an n-vector function determined by u(t) an m-vector

function.

The system differential equation (2.5.2) can be adjoined to the F(u)

using the multiplier function A(t)

T
Fu) = ¢[x(T), T] + | { x(0), v, t] + 1 Of g x®, u), t] - x}}dt (2.5.3)
: 0

A scalar function H referred to as the Hamiltonian is

H] x(®, u(®), M), t] = x®, u®), t] + 1 O x(t), u®), t] (2.5.4)

Integrating the last term on the right side of (2.5.3) by parts yields

F = ¢[ x(T), T] - AT(T) x(T) + lT(O) x(0) +

z T
| {H[x(t), u(®), t] + A () x(T)}dt (2.5.5)
0

2-L5




The variation in F (8F) due to variations in the control vector u(t) for fixed

timest=0andt="Tis

T
f[(%}- + % )5x + 3—{‘11511}& (2.5.6)
0

To determine the variation 8x(t) produced by a given du(t) would be difficult,
so the multiplier function A(t) can be selected to cause the coefficients of dx in

(2.5.6) to vanish

T )
__oH _ _of ,Tog
A - > ox  ox A ox (2.57)

with the boundary conditions

T )
A = IxXT) (2.5.8)

Equation (2.5.6) then becomes

T

— T

dF = A (t=0) 8x (t=0) + jg—fjau dt (2.5.9)
0

Thus AT(t=0) is the gradient of F with respect to variations in the initial
condition while holding u(t) constant and satisfying (2.5.1). For an

extremum, 8F must be zero for an arbitrary du(t) which occurs when

dH _
o 0 D<teT (2.5.10)

2-l6é




Equations (2.5.7), (2.5.8), and (2.5.10) are known as the Euler-Lagrange

equations in the calculus of variations.

The above functions A(t) are called influence functions on F of
variations in x(t) since tis arbitrary. The function g—I: are called impulse
response functions. Since each component of %% represents the variation in

F due to a unit impulse (Dirac function) in the corresponding component of

du at time t, while holding x(t=0) constant and satisfying (2.5.1).

Summarizing, to determine the control vector function u(t), solve the

following differential equations

x = glx,u,t) (2.5.11)
T T
: 93) of
A =-(a—x A - (a—x) (2.5.12)
where u(t) is determined by
o) z
oH _ (% of ) _
S —(au)l+ (au) =0 (2.5.13)

Boundary conditions for (2.5.11) and (2.5.12) are
x(0) given (2.5.14)

and

A(T) = (g—i)T (2.5.15)

so that multistage system optimal control problems are two-point boundary

value problems.

=l




The first integral of the boundary-value problem exists if f and g are not

explicit functions of t since

H

N K .
Ht+Hx5<+Hu1'1+7Lg

. T
H + Hju + (Hx + A )8 (2.5.16)

where H, represents the partial derivative of H with respect to t holding x and

& T
u constant. According to equation (2.5.7), A = -H_ so that (HX + A ) = 0,

then

H=H i
¢ ¥ HE (2.5.17)

If f and g (hence H) are not explicit functions of t and u(t) then H = O or His a

constant on the optimal trajectory. For F to be a local minimum then 3—13 =0

and the second-order expression for 8F, holding that x - g = 0, must be non-

negative for all values (infinitesimal) of du so that

2
SF = l[angiaxJ

- ox>
t=T
- :
PH H
T 2 dxdu
1 J' T T aX I:SX}
+ = &x , du dt 2 0 (2.5.18)
. 5 [ ] aZH _QZI_‘I du
duodx 32
L i
where 3(x-g) = 0 or
og og :
4 @0 = 26x + sobu Sx(t=0) = 0 (2.5.19)




The above equation (2.5.19) expresses dx(t) in terms of du(t) in a some what

complicated fashion.

Consider the motion of a conservative system from timet=0tot =T

such that
b
F = j f(x, u) dt (2.5.20)
0

has a stationary value where f = E, (x, u) - E; (x) such that E, is the kinetic

energy of the system and Ep is the potential energy of the system; x is the

generalized coordinate vector defining the state of the system, and u = x is

the generalized velocity vector. The Hamiltonian is then
H=f+Alu (2.5.21)

and the Euler-Lagrange equations are

o s

i = -3_1)3 - % (2.5.22)
T

= 'g_f = E?Tfl + A (2.5.23)

Combining the above two vector equations

d _af_) o _
dt (ax = 0 (2.5.24)
which happens to be Lagrange's equation of motion for a conservative
system. If f is not an explicit function of time, the first integral of the motion
is H = constant:

o aEk
H = - Y= E -E_- el i constant (2.5.25)
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where f = E, - Ep. E, is a homgeneous quadratic form in u, which is the

velocity vector so that

aEk
e ZEk (2.5.26)

From equation ( ? )
H = E; - Ep -2E, = constant

so that

-H = Ek+Ep = constant (2.5:27)

which says that the kinetic energy plus the potential energy is constant during
motion. The above argument for the motion of conservative system is

referred to as Hamilton's principle in mechanics.
2.5.2 Function of State Variable Prescribed at a Fixed Terminal Time

Some hydrosystems problems may have constraining functions of the

terminal state,
y[x(D), T] = 0 (2.5.28)

where yis ajvector (j < n-1iff=0,j<niff#0). Equation (2.5.28) is also

adjoined to the performance index (2.5.3) by a multiplier vector v (a j vector).

T
Fw) = o[ x(D] + vIy[x(D, T] + [ {£[x(t), uv, t]
0

- xT(t){g[x(t), u(®), t] - x} }dt (2.5.29)
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The development presented in section 2.5.1 applies here. Bryson and Ho

(1975) present the following necessary condition for F to have a stationary

value
x=g(x, u,t) (n differential equations) (2.5.30)
T T
A=- (%) A - (i) (n differential equations) (2.5.31)
ox ox

T T T
o
(gfl'll - (%) % + g—lfl) = 0 (m algebraic equations) (2.5.32)

Xy (t=0) given as )‘k (t=0)=0,k=1,...,n (n boundary conditions) (2.5.33)

T o
A = (%) + v sﬂx ) (n boundary condition) (2.5.34)
t=T

y[x(T), T] =0 (j side condition) (2.5.35)

The stationarity condition (2.5.32) determines the m-vector u(t). The 2n
differential equations (2.5.29) and (2.5.30) with the 2n boundary conditions
(2.5.33) and (2.5.34), from a two-point boundary value problem with j
parameters v to be found in (2.5.34) so that the j side condition (2.5.35) are

satisfied.




2.6 i i-reservoj r

The optimal control problem for multi-reservoir operation can be based
upon a deterministic optimal control algorithm to find an optimal release policy
for the future time periods (typically months) of operation using current storages
and forecasted or historical inflows and demands. Only decision (releases) for the
next time period are implemented, and the entire procedure is repeated in each
subsequent time period.

Mathematically the objective function for the multi-reservoir operation

problem for N reservoirs can be stated as follows:

cost Lunctum

T
Minimize Z=0[S (T+1)] + Y, G¢[S(t+1), I}(t)]

t=1 L Releases

(2.6.1)
where S(t) is the state variable sequence (reservoir storages) of N-vectors (N
reservoirs); R(t) is the decision variable sequences of M-vectors (M releases); ¢ [ ]
is the cost function of the terminal condition; G; [ ]is the cost function for each
stage t (time period) under consideration.

The basic constraints of the multi-reservoir problem consist of mass
balance constraints, minimum and maximum storage constraints, and

minimum and maximum release constraints. Mass balance is expressed as

S(t+1) = S() + AR®) + Q) - L) 2.62)

" Indi,
in which A is the rouﬁng matrix with N-rows and M-columns where a member
n,m is 1 if link m delivers water to node n or -1 if link m takes (releases) water
from node n or 0 if link m is not connected to node n; Q(t) is the inflow vector to
the reservoir; and L(t) is the reservoir loss vector.

Constraints on minimum and maximum reservoir storages (states) are

expressed as
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where S .. is the minimum storage and S, ,, is the maximum storage,

n

respectively. Constraints on minimum and maximum releases are expressed in a

similar manner as
Rmin < R(t) £ Rmax (2.6.4)

where R ... and R ... are the minimum and maximum releases, respectively.

X
Initial conditions of the reservoir system define the storage as
S(1)=§, (2.6.5)
The discrete maximum principle (Section 2.5) can be applied to the above
multi-reservoir operation problem (Mizyed, et al. 1992). To derive the
Hamiltonian function, H, the mass balance constraint (2.6.2) is combined with the

objective (2.6.1) using the Lagrange multiplier vector, A(t),

T T
H=0[S(T+1)]+ Y G[S(t+1), RB)] + 3, AT (1) [S(t) + A-R(t)

t=1 t=1
+Q(t) - L(t) - S(t + 1)] (2.6.6)
To include the state-variables constraints (2.6.3) a penalty function is added

to the objective function in order to minimize violations in these constraints.

Adding the penalty function, the objective function becomes 7

T
H =0 [S(T +1)] + ), GdS(t + 1), u(t)] + n(H) T Pn(t))

t=1 u’;.: )
[ M
+ 2 A (BISE) + A-R(t) + Q(t) - L(t) - S(t + 1)] L &
t=1 \\\1 ! 7’111 (267)
in which P is a diagonal weighting (penalty) matrix; and n(t) is the violation in
state variables (N-vectors), or pm——
n(t) = min[O,S(t + 1)L - Smin ] + Max[O,S(t + 1) - Stnax] (2.6.8)

The differential changes in H(dH) due to differential changes in R(t) as follows:
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T
o aGt T a¢ B T T aGT
dH —Z{ [aR N A (t)A] dR(t) [ 3BT 0 A (T) +2nT(T)P + e 1)}

AT +AT(t + 1) + 2nT (1P| dS(t + 1)

ds 1
T+1)+ 2 oS(t+1) (2.6.9)

T-1 [ mt
t=1

To determine the differential change dS(t) produced by a given dR(t) sequence so
that dH is determined in terms of R(t). The following multiplier sequence A(t),
(Bryson and Ho 1975)

T

A () s BT (t+1) +2nT (H)P

Tos(t+1) (2.6.10)

fort=1,23,.T-1,and

o9 S(T + 1))
oS(T + 1)

oGt

MI(T)P + ——0—
kel +aS(T+1) (2.6.11)

A (1) =

is introduced.

Equation (2.6.9) becomes

dH = i [ LETR xT(t)AJ dR(t)
e 30

(2.6.12)
For an extremum, dH must be zero for any arbitrary dR(t); so that (Bryson

and Ho 1975)

H _ 3G,

T -
3R() o3RG T+ ®A=0

An optimal solution for (2.6.7) should satisfy (2.6.2), (2.6.3), (2.6.5), (2.6.10), (2.6.11),
and (2.6.13).




SV 4 /
VU yaed o Setretly, (¢ mAhoreticad
. ‘ Mizyed,/et al. (1992) implemented the following conjugate gradiént ‘ L

& method to géive the reservoir operation problem.

1. Assume a set of penalty values for the matrix P. Starting with small

values.

B 2. Guess an initial decision vector R(t)(©).

3. Determine S(t)(®) from (2.6.3) and (2.6.2)
2 4. Determine At from and (2.6.10) and (2.6.11). Solve (2.6.11) for A(T), then

solve (2.6.10) backwards fromt=T-1tot=1.
5. Determine the gradient of H from (2.6.13), or

. OH _ G s Toa=g
dR(t) JR(t) (2.6.14)
At optimum, gi = 0 where i is the iteration number
e ' 6. Select a search direction D to be
Di=gi+“.g14Di'1 fori >2
g2 (2.6.15a)
L
Di=gi fori=1 (2.6.15b)
inwhich | Igl12=gl- g
i 7. Determine the step size § by one-dimensional search to minimize H
(u'), where u' is the revised decision vector, R - D. Details of the one-
dimensional search may be found in Hiew (1987).
. 8. The new estimate of u or ul * 1) js given by
R' =R - 8D} (2.6.16)
RO+D = Rmax R >Rp,, (2.6.17)
7 . R(*D=Rpin R <Rpp (2.6.18)
RO*D=R'  otherwise (2.6.19)
o 2-25
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9. Go to step 3 using this new estimate for R(t).
10. Continues until the gradient or & vanishes, set gi =0if R is equal to
Rmax °f Rpin-

11. Check the values of n , or the violations in the state variables. If the
violations are not permissible, then increase the penalty values (P) are
increased and the procedure is repeated. Continue increasing the
values of P until the procedure converges to a feasible solution. The
convergence to a feasible optimal solution is discussed in a later section.

Constraint (2.6.5), bounds on decision variables, is invoked at every

iteration of the conjugate gradient procedure. Bounds on states are handled
through penalty terms, (2.6.7). Pagurek and Woodside (1968) presented a slight
refinement of the above procedure for handling bounded control variables which
ensures that the method converges to the true optimum. Mizyed, Loffis, and
Fontane (1992) applied the above algorithm to the Mahaweli reservoir system in
Sir Lanka which includes 19 reservoirs and 35 release links. This application was

to minimize hydroelectric energy shortage with prespecified irrigation demand

constraints.
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CHAPTER 3
NONLINEAR OPTIMIZATION METHODS

Earlier hydrosystems applications of operations research techniques
relied mainly upon the use of linear and dynamic programming techniques.
The use of these techniques applied to solving hydrosystem problems has
been rather widespread in the literature. Linear programming codes are
widely available whereas dynamic programming requires a specific code for
each application. The use of nonlinear programming in solving
hydrosystems problems has not been as widespread even though most of the
problems requiring solutions are nonlinear problems. The recent
development of new nonlinear programming techniques and the availability
of nonlinear programming codes have attracted new applications of
nonlinear programming in hydrosystems. Unconstrained nonlinear
optimization procedures are described followed by descriptions of constrained

nonlinear optimization procedures.

3.1 Matrix Algebra for Nonlinear Programming

To explain the concepts of nonlinear programming, various techniques
of matrix algebra and numerical linear algebra are used. A brief introduction

to some of the concepts is provided in this secion.

A function of many variables f (x) at point x is also an important
concept. For a function that is continuous and continuously differentiable,
there is a vector of first partial derivatives called the gradient or gradient

vector

2-2




T
of of of of
Vi(x) = [——] ={s— = ..., (3.1.1)
ox (i)x1 axz axn)

where V is the vector of gradient operator (9/9xi,...,0/9xn)T. Geometrically, the
gradient vector at a given point represents the direction along which the
maximum rate of increase in function value would occur. For f(x) twice
continuously differentiable there exists a matrix of second partial derivatives

called the Hessian matrix or Hessian

[ 2 2 2
of o f of
2
X i)xlax:Z axlxrl
2 2
) df df 0 f
Hkx) =V f(x) =| ox ox P ox_0X
21 y 2 n
(3.1.2)
2
o f of
2
- axnax1 axn !

The Hessian is a square and symmetric matrix.

The concepts of convexity and concavity are used to establish whether a
local optimum, local minimum or local maximum, is also the global
optimum, which is the best among all solutions. In the univariate case, a

function f(x) is said to be convex over a region if for every xa and xp, X,#xy,
the following holds
fOx, + (1-0)x, | <Bf(x,)+ (1-0) f(x ), 0<0 <1 (3.1.3)

The function is strictly convex when the above relation holds with a less than

(<) sign.




Conversely, a function is concave over a region if for every x, and xp,

X,#X},, the following holds .
£[6x, + (1-0) x, | 2 6f (x,) + (1-0) f(x,), 0< 6 <1 (3.1.4)
The function is strictly concave when the above relation holds with a greater

than (>) sign.

Equations (3.1.4) and (3.1.5) are not convenient to use in testing for
convexity or concavity of a univariate function. Instead, it is easier to

examine the sign of its second derivative, d2 f(x)/ dx2 . From fundamental

2 2
calculus, if Cl—f< 0 then the function is concave and if -d—£>0 then the
function is convex.

The convexity and concavity of multivariable functions f (x) can also be
determined using the Hessian matrix. First, the definitions of positive

definite, negative definite and indefinite are used to identify the type of

Hessian, i.e.
Positive definite H: x Hx > 0 forall x#0
Negative definite H: x'Hx < 0 forall x#0
Indefinite H: xTHx < 0 for some x;
> 0 for other x
Positive semidefinite H: x'Hx = 0 for all x
Negative semidefinite H: x'Hx < 0 for all x




The basic rules for convexity and concavity of a multivariate function

f(x) with continuous second partial derivatives are:
(1) f(x) is concave, H(x) is negative semidefinite;
(2) f(x) is strictly concave, H(x) is negative definite;
(3) f(x) is convex, H(x) is positive semidefinite;
(4) f(x) is strictly convex, H(x) is positive definite.

To test the status of H(x) for strict convexity, two tests are available
(Edgar and Himmelblau, 1988). The first is that all diagonal elements of H(x)
must be positive and the determinants of all leading principal minors, det
{M;(H)}, and also of H(x), det (H) are positive (> 0) . Another test is that all
eigenvalues of H(x) are positive (> 0). For strict concavity all diagonal
elements must be negative and det (H) and det {M;(H)} >0ifiiseven (i =2, 4,
6, ...); det (H) and det {M; (H)} <0ifiisodd (i=1, 3,5, ...). The strict inequali-
ties > or < in these tests are replaced by 2 or-s, respectively, to test for convex-

ity and concavity.

Convex regions or sets are used to classify constraints. A convex region
exists if for any two points in the region, x; # xp, all points x = 6x, + (1-8) xp,
where 0 <6 <1, are on the line connecting x; and xy, are in the set. Figure 3.1.1

illustrates convex and nonconvex regions.

The convexity of a feasible region and the objective function in
nonlinear optimization has an extremely important implication with regard
to the type of optimal solution to be obtained. For linear programming

problems, the objective function and feasible region both are convex therefore
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the optimal solution is a global. On the other hand, the convexity of both the
objective function and feasible region in a nonlinear programming problem
cannot be ensured, the optimal solution achieved, therefore, cannot be

guaranteed to be global.

3.2  Unconstrained Nonlinear Programming

This section describes the basic concepts of unconstrained nonlinear
optimization including the necessary and sufficient conditions of a local
optimum. Further, unconstrained optimization techniques for univariate
and multivariate problems are described. = Understanding unconstrained
optimization procedures is important because these techniques are the
fundamental building blocks in many of the constrained nonlinear

optimization algorithms.
3.2.1 Basic Concepts

The problem of unconstrained minimization can be stated as

Minimize f () 3.2.1)

n
xeE

in which x is a vector of n decision variables x=(x;, x,, ..., xn)T defined over the

entire Euclidean space E".  Since the feasible region is infinitely extended

without bound, the optimization problem does not contain any constraints.

Assume that f(x) is a nonlinear function and twice differentiable; it
could be convex, concave, or a mixture of the two over E". In the one-

dimensional case, the objective function f(x) could behave as Figure 3.2.1(a)

consisting of peaks, valleys, and inflection points. The necessary conditions




for a solution to equation (3.2.1) at x* are (1) Vf(x*)=0 and (2) V2f (x*) = H(x*)
is semi-positive definite. The sufficient conditions for an unconstrained
minimum are (1) Vf(x*)=0 and (2) V2f (x*)=H(x*) is strictly positive definite.

~ 7
>

In theory, the solution to equation (4.4.1) can be obtained by solving

the following system of n nonlinear equations with n unknowns,
Vi(x*)=0 (3.2.2)

The approach has been viewed as indirect in the sense that it backs away from
the original problem of minimizing f(x). Furthermore, an iterative
numerical procedure is required to solve the system of nonlinear equations

which tends to be computationally inefficient.

By contrast, the preference is given to those solution procedures which

directly attack the problem of minimizing f(x). Direct solution methods,

during the course of iteration, generate a sequence of solution points in E"
that terminate or converge to a solution to equation (3.2.1). Such methods

can be characterized as search procedures.

In general, all search algorithms for unconstrained minimization

consist of two basic steps. The first step is to determine the search direction

—

along which the objective function value decreases. The second step is called
a line search ( or one dimensional search) to obtained the optimum solution
point along the search direction determined by the first step. Mathematically,

minimization for the line search can be stated as

Mén f x° + Bd) (3.2.3)

L




in which x? is the current solution point, d is the vector indicating the search
direction, and P is ascalar, -.o< B < e , representing the step size whose
optimal value is to be determined. There are many search algorithms whose

differences primarily lie in the way the search direction d is determined.

Due to the very nature of search algorithms, it is likely that different
starting solutions might converge to different local minima. Hence, there is
no guarantee of finding the global minimum by any search technique applied
to solve equation (3.2.1) unless the objective function is a convex function

n
over E".

In implementing search techniques, specification of convergence
criteria or stopping rules is an important element that affects the performance
of the algorithm and the accuracy of the solution. Several commonly used

stopping rules in an optimum seeking algorithm are

(a) I xk - x¥ 1] < B (3.2.4a)
| .
(b) TXIT <&, (3.2.4b)
© - 6K < ; (3.2.4¢)
f(Xk) . f(xk+1)|
d) ’ (3.2.4d)
f(xk) l < 84 ’

in which superscript 'k’ is the index for iteration, € represents the tolerance
Or accuracy requirement, I xllis the length of the vector x, and | x |is the

absolute value. The specification of the tolerance depends on the nature of
the problem and on the accuracy requirement. Too small a value of &

(corresponding to high accuracy requirement) could result in excessive
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iterations, wasting computer time. On the other hand, too large a value of €

could make the algorithm terminate prematurely at a non-optimal solution.

3.2.2 Unconstrained Optimization: One-Dimensional Search

The line search techniques for solving one-dimensional optimization
problems form the backbone of nonlinear programming algorithms. Multi-
dimensional problems are ultimately solved by executing a sequence of
successive line searches. One-dimensional search techniques can be classified
as curve fitting (approximation) techniques or as interval elimination
techniques. Interval elimination techniques for a one-dimensional search
essentially eliminate or delete a calculated portion of the range of the variable
from consideration in each successive iteration of the search for the optimum
of f (x). After a number of iterations when the remaining interval is
sufficiently small the search procedure terminates. These methods determine
the minimum value of a function over a closed interval [a,b] assuming that a
function is unimodal, i.e., it has only one minimum value in the interval

(Figure 3.2.1). Two interval elimination techniques commonly used are the

golden section method and the Fibonacci search method (Mays and Tung,

1992).
3.23 Unconstrained Optimization: Multivariable Methods

Unconstrained optimization problems can be stated in a general form
as

Minimizez =f (x) = f (xl, Xopeees xn) (3.2.5)

For maximization, the problem is to minimize -f (x). The solution of these




types of problems can be stated in an algorithm involving the following basic

steps or phases:

o 0.0 0
Step (0) Select an initial starting point x*~° = [xl, Kgpreni xn}.
k
Step (1) Determine a search direction, d .
: v gl -k, gk K k.,
Step (2) Find a new pointx =x" +f d where B is the step

size, a scalar, which minimizes f x* + Bk dk ).
Step (3) Check the convergence criteria such as equations

(3.2.4a-e) for termination, if not satisfied set

k = k+1 and return to step (1).

The various unconstrained multivariate' methods differ in the way the
search directions are determined. The recursive line search for an

unconstrained minimization problem is expressed in Step (2) above as

K = x4 g g (3.2.6)
Table 3.2.1 lists the equations for determining the search direction for
four basic groups of methods: descent methods, conjugate direction methods,
quasi-Newton methods and Newton's method. The simplest are the steepest
descent methods while the Newton methods are the most computationally

intensive.

In the steepest descent method the search direction is - V f (x). Vi(x)
points in the direction of the maximum rate of increase in objective function

value, therefore, a negative sign is associated with the gradient vector in

2-10



equation (4.4.6) because the problem is a minimization type. The recursive

line search equation for the steepest descent method is, then, reduced to

N (32.7)

Using Newton's method, the recursive equation for line search is

-1
X = XK H () V) (3.2.8)
Although Newton's method converges faster than most other algorithms,
the major disadvantage is that it requires inverting the Hessian matrix in

each iteration which is a computationally cumbersome task.

The conjugate direction methods and quasi-Newton's methods are
intermediate between the steepest descent and Newton's method. The
conjugate direction methods are motivated by the need to accelerate the
typically slow convergence of the steepest descent methods. Conjugate
direction methods, as can be seen in Table 3.2.1, define the search direction by
utilizing the gradient vector of the objective funciton of the current iteration
and the information on the gradient and search direction of the previous
iteration. The motivation of quasi-Newton methods is to avoid inverting the
Hessian matrix as required by Newton's method. These methods use
approximations to the inverse Hessian with a different form of
approximation for the different quasi-Newton methods. Detailed
descriptions and theoretical development can be found in textbooks such as
Luenberger (1984), Fletcher (1980), Dennis and Schnable (1983), and Gill,
Murray and Wright (1981) and Edgar and Himmelblau (1988).

3.3 Constrained Optimization: Optimality Conditions

3.3.1 Lagrange Multiplier

3-11




Consider the general nonlinear programming problem with the

nonlinear objective:

Minimize f(x) (3.3.1a)
subject to

g x)=0 i=1,.,m (3.3.1b)
and

XEXSX j=12,..n (3.3.10)

57977

in which equation (3.3.1c) is a bound constraint for the j-th decision
variable X, with X, and i}. being the lower and upper bounds, respectively.

In a constrained optimization problem, the feasible space is not
infinitely extended, unlike an unconstrained problem. As a result, the
solution that satisfies the optimality condition of the unconstrained
optimization problem does not guarantee to be feasible in constrained
problems. In other words, a local optimum for a constrained problem might
be located on the boundary or a corner of the feasible space at which
thegradient vector is not equal to zero. Therefore, modifications to the

optimality conditions for unconstrained problems must be made.

The most important theoretical results for nonlinear constrained
optimization are the Kuhn-Tucker conditions. These conditions must be
satisfied at any constrained optimum, local or global, of any linear and
nonlinear programming problems. They form the basis for the dex?elopmént

of many computational algorithms.

3=12
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Without losing generality, consider a nonlinear constrained problem
stated by equation (3.3.1) with no bounding constraints. Note that constraint
equations (3.3.1b) are all equality constraints. Under this condition, the
Lagrange multiplier method converts a constrained nonlinear programming
problem into an unconstrained one by developing an augmented objective

function, called the Lagrangian. For a minimization, the Lagrangian function

L (x, A) is defined as

L) =f)+A gXx) (3.3.2)

in which A is the vector of Lagrange multipliers and g(x) is a vector of

constraint equations. Algebraically, equation (3.3.2) can be written

m
I_{xl,..., Xoor 7‘1""' lm) = f(xl,..., Xp) + Z li 8, (Xrmeer xn) (3.3.3)
i=1

L (x, A) is the objective function, with m+n variables, that is to be minimized.
The necessary and sufficient conditions for x* to be the solution for mini-

mization are:

(1) f(x*) is convex and g (x*) is convex in the vicinity of x*

LY _of N, B_, _
@) A + 21" A " 0 j=1..,n (3.3.4a)
@)L g =0 i=1..,m (3.3.4b)
ar, " &i
4) li is unrestricted-in-sign i=1,.,m (3.3.40)

Solving equations (3.3.4a) and (3.3.4b) simultaneously provides the optimal

solution.
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Lagrange multipliers have an important interpretation in optimiza-
tion. For a given constraint, these multipliers indicate how much the
optimal objective function value will change for a differential change in the

right-hand side of the constraint. That is,

! of |

l' x=x*
illustrating that the Lagrange multiplier A; is the rate of change of the optimal
value of the original objective function with respect to a change in the value

of the right-hand side of the i-th constraint. The A;'s are called dual variables

or shadow prices.
3.3.2 Kuhn-Tucker Conditions

Equations (3.3.4a)-(3.3.4c) form the optimality conditions for an
optimization problem involving only equality constraints. The Lagrange
multipliers associated with the equality constraints are unrestricted-in-sign.
Using the Lagrange multiplier method, the optimality conditions for the

following generalized nonlinear programming problem can be derived.

Minimize f(x)

subject to
g x)=0 i=1,.,m
and
X SX.SX j=l,n
i
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In terms of the Lagrangian method, the above nonlinear minimization

problem can be written as -

_T
MinL=f) +A g0 +A x-x)+A (x-%) (3.3.5)
in which A, A, and A are vectors of Lagrange multipliers corresponding to

constraints g (x) =0, x-x £0, and x - X <0, respectively. The Kuhn-Tucker

conditions for the optimality of the above problem are

V,L=V f+1 V,g-A+X=0 (3.3.62)

g (x)=0 i=1,2,..,m (3.3.6b)
(x-x)=A(x-%X)=0 i=1,2,..,n (3.3.6¢)

2‘1 (5) 1) I ‘

A unrestricted-in-sign, A 20, A0 (3.3.6d)

3.4 Constrained Nonlinear Optimization: Generalized Reduced Gradient

(CRGY Method

3.4.1 Basic Concepts

Similar to the linear programming simplex method, the fundamental
idea of the generalized reduced gradient method is to express m (number of
constraint equations) of the variables, called basic variables, in terms of the
remaining n-m variables, called nonbasic variables. The decision variables

can then be partitioned into the basic variables, xg, and the nonbasic variables,

xN,
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T
X= (x.B, xN) 3.4.1)
Nonbasic variables not at'their bounds are called superbasic variables,

Murtaugh and Saunders (1978).

The optimization problem can now be restated in terms of the basic

and nonbasic variables
Minimize f (xB, XN ) (3.4.2a)
subject to
g (xB, xN) =0 (3.4.2b)
and
Xg < X5 < _B (3.4.2¢)
Xy < Xy < )_cN (3.4.2d)

The m basic variables in theory can be expressed in terms of the n-m

nonbasic variables as xg (xp). Assume that constraints g (x) =0 is

differentiable and the m by m basis matrix B can be obtained as
og (x)
B= oXg

which is nonsingular such that there exists a unique solution of xg (x)y).

Nonsingular means that the determinant of B # 0.

The objective called a reduced objective can be expressed in terms of

the nonbasic variables as

F (x) = £ (x5 (x ), x) (3.4.3)
The original nonlinear programming problem is transformed into the

following reduced problem
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Minimize F (xN) (3.4.4a)
subject to
Xy < Xy < )'(N (3.4.4b)

which can be solved by an unconstrained minimization technique with slight
modification to account for the bounds on nonbasic variables. Generalized
reduced gradient algorithms, therefore, solve the original problem (3.3.1) by
solving a sequence of reduced problems (3.4.4), using unconstrained

minimization algorithms.
3.42 General Algorithm and Basis Changes

Consider solving the reduced problem (3.4.4) starting from an initial

feasible point x0. To evaluate F (xy;) by equation (3.4.3), the values of the basic
variables xg must be known. Except for a very few cases, xg (x;) cannot be
determined in closed form; however, it can be computed for any xy; by an
iterative method which solves a system of m nonlinear equations with the -
same number of unknowns as equations. A procedure for solving the
reduced problem starting from the initial feasible solution xk=0 is

Step (0) Start with initial feasible solution x*=° and set x; = x*0

Step (1) Substitute x; into equation (3.4.2b) and determine the

\

corresponding values of xg by an iterative method

for solving m nonlinear equations g (x, (x;), x;) =0.

Step (2) Determine the search direction d¥ for the nonbasic

variables by a line search scheme.

Step (3) Choose a step size for the line search scheme, Bk such

a= 11




that

k k
xl=x +B d (34.5)

This is done by solving the one-dimensional search

problem
k k
Minimize F | X + Bd
k .
with x restricted so that x; + Bd satisfies the bounds

on xN. This one-dimensional search requires repeated

applications of Step (1) to evaluate F for the different

B values.
Step (4) Test the current point x* = (x]l;, x;) for optimality, if

not optimal, set k = k + 1 and return to Step (1).
Refer to Figure 3.4.1 the optimization problem can be stated as
Minimize f(x;,x,)
subject to
g, (xl, x2) 20
8, (X, X)) 20
X,%x,20

1772

The two inequality constraints can be converted to equality constraints using

slack variables X3 and X4
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The initial point A is on the curve g, (x;, X5, Xx3) = 0 where the only variable
that cannot be basic is x, which is at its lower bound of zero. The reduced
objective is F (x,, x4) which is the objective function f(x) evaluated on g, (x,,

Xz, X3) = 0.

For purposes of illustrating the basis changes, assume that the
algorithm moves along the curve g, (x;, X,, X3) = 0 as indicated by the arrow in

Figure 3.4.1 until the curve g; (x;, X5, X4) = 0 is reached. It should be kept in

mind that an algorithm could move interior from the initial point A,

releasing x4 from its lower bound of zero, but for the sake of illustration of
basis changes, the procedure here will stay on the curves. At the point B
where constraints g; and g, intersect, the slack variable x3 goes to zero.
Because xj is originally basic it must leave the basis and be replaced by one of
the nonbasics, x, or x4. Because x, is zero, x, becomes basic and the new
reduced objective is F, (x5, x4) with X3 and x4 at their lower bounds of zero.
Once again, assuming the algorithm moves along the curve g; (x;, x5, x4) = 0
towards the x, axis, F, is minimized at point C where x; becomes zero
(nonbasic) and x4 becomes basic. The procedure would then move along the

X, axis to point D which is obviously the minimum.

3.4.2 The Reduced Gradient
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Computation of the reduced gradient is required in the generalized
reduced gradient method in order to define the search direction. Consider the

simple problem

Minimize f ( X, xz)
subject to
5(%) =

The total derivative of the objective function is

of (x) af (x)

df (x) = (3.4.6)
™ dx,

and the total derivative of the constraint function is

dg (x) dg (x)
dg (x) = —de %dxfo (3.4.7)

The reduced gradients are Vf (x) and Vg (x) defined by the coefficients in the

total derivatives,

T
_[of _of
vico=[3E, axz] (3.4.8)
T
(dg dg
Vg(x) = _Wl' éx_z] (3.49)

Consider the basic (dependent) variable to be x; and the nonbasic

(independent) variable to be x,. Equation (3.4.7) can be used to solve for dx,
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og (x)/ox,

" ST (3.4.10)

dx

which is then substituted into equation (4.6.6) in order to eliminate dx;. The

resulting total derivative of the objective function f(x) can be expressed as

i
of(x)\(98(x)) (9g(x)) [ of(x)
i {—( 0 )( 0 ) ( x5 +( x5 ) s =
The reduced gradient is the expression in brackets { } and can be reduced to

ox
df ) 3 ) (M) o

= ’ (3.4.12)
B "y L2 )\

which is scalar because there is only one nonbasic variable x,.

The reduced gradient can be written in vector form for the multiple

variable case as

T -1
Ir 9F | [ of (x)] [af (x)] [ag (x):l [ag(x)jl
VNF =LaxN ] = axN - axB axB axN (34.13)
in which
BRI
- =B
ax | =L ox, | L oxy ox (3.4.14)

The Kuhn-Tucker multiplier vector = is defined by
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{af (x)]T[azz;(x)]'1 [ of (x)]T al o
axB axB = 'axB B =x (3.4.15)
Using these definitions the reduced gradient in equation (4.6.13) can be
expressed as
| ar | [t T[m}
VyF= {_ deJ =[ ox, J- | oxy (3.4.16)

3.44 Optimality Conditions for GRG Method

Consider the nonlinear programming problem

Minimize f (x)

subject to
g x)=0 i=1,.,m
X.<x. <X j=1,..,n

In terms of basic and nonbasic variables, the Lagrangian function for the

problem can be stated as
T T SR
L=fx)+A gx+A X-x)+A (x-%
T T T
= £ O x) + A 8 (xg x ) +Ag (x5 -Xp) + Ay (X -x)
=T .
+hg (xg-Xp) + Ay (x - %) (3.4.17)

in which Ay and A are vectors of Lagrange multipliers for nonbasic and basic

variables, respectively.




Based on equation (4.5.6), the Kuhn-Tucker conditions for optimality

in terms of the basic and nonbasic variables are

VL=V, f+l Va8-4 +7LB (3.4.18a)
v L=V, Tk V8- tA = (3.4.18b)
1,20 Ay 20 (3.4.18¢)
Ag20 Ay 20 (3.4.18d)
T _T
Ap (g -xp) =2, (x;-Xx) =0 (3.4.18e)
_T
Ay, (K - %) =R (X - %) =0 (3.4.180

If x; is strictly between its bounds then Ay = Ag = 0 by equation

(4.6.18e) so that from equation (4.6.18a),

-1
LA AT
dxg | | 9xp oxp (3.4.19)

In other words, when Xp <Xp < iB, the Kuhn-Tucker multiplier vector = is

B
the Lagrange multiplier vector for the equality constraints g(x)=0. Then from
equations (3.4.16) and (3.4.18b)

If Xy is strictly between its bounds, i.e., X SXe < iN, then LN = XN =0by

equation (3.4.18f) so that
oF 7 _ 0
[a"N] = (3.4.20)
If Xy is at its lower bound, s Xog = Kngr then l =0so
oF 7 _
[axN] =120 (3.4.21)
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If x,, is at its upper bound, x; =X, then A, = 0 so that

F :
[ai—N] =iy <0 (3.4.22)

The above three equations, equations (4.6.20) - (4.6.22), define the optimality
conditions for the reduced problem (4.6.4). The Kuhn-Tucker conditions for
the original problem may be viewed as the optimality conditions for the

reduced problem.

3.5 Constrained Nonlinear Optimization: Penalty Function Methods

The essential idea of penalty function methods is to transform
constrained nonlinear programming problems into a sequence of uncon-
strained optimization problems. The basic idea of these methods is to add
one or more functions of the constraints to the objective function and to
delete the constraints. Basic reasoning for such approaches is that the
unconstrained problems are much easier to solve. Using a penalty function a
constrained nonlinear programming problem is transformed to an
unconstrained problem.

Minimize f (x)
= Minimize L [f (x), g (x)

subject to g (x)
where L [f(x), g(x)] is a penalty function. Various forms of penalty functions
have been proposed which can be found elsewhere (McCormick, 1983; Gill,
Murray and Wright, 1981) The penalty function is minimized by stages for a
series of values of parameters associated with the penalty. In fact, the
Lagrangian function (described in Section 3.3.) is one form of penalty

function. For many of the penalty functions, the Hessian of the penalty

3- 24




function becomes increasingly ill-conditioned (i.e. the function value is
extremely sensitive to a small change in the parameter value) as the solution
approaches the optimum. This section briefly describes a penalty function

method called the augmented Lagrangian method.

The augmented Lagrangian method adds a quadratic penalty function

loss term to the Lagrangian function (equation 3.3.2), to obtain

i=1

L, A W=f00+ Y kg 0)+¥ o 0
i=1

= £60 + 1 g0 + Y g (35.1)

where ql‘)is a positive penalty parameter. Some desirable properties of
equatioh (3.5.1) are discussed by (Gill, Murray and Wright, 1981).

X 7
/ f

For ideal circumstances, x* can be computed by a single unconstrained
minimization of the differentiable function (equation 3.5.1). However, in
general, A* is not available until the solution has been determined. An
augmented Lagrangian method, therefore, must include a procedure for
estimating the Lagrange multipliers. Gill, Murray and Wright (1981) present
the following algorithm:

Step (0) Select initial estimates of the Lagrange multipliers Ak=0,
the penalty parameter v, an initial point x*=0. Set k = k+1

and set the maximum number of iterations as ]J.

Step (1) Check to see if xk satisfies optimality conditions or if k > J.

If so, terminate the algorithm.
Step (2) Minimize the augmented Lagrangian function,
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Minimize L, (x, A, y), in equation (3.5.1).

Procedures to consider unboundedness must be consid-

ered. The best solution is denoted as xk+1.

Step (3) Update the multiplier estimate by computing Il

Step (4) Increase the penalty parameter v if the constraint viola-
tions at x*! have not decreased sufficiently from those at

x.

Step (5) Set k = k+1 and return to Step (1).

Augmented Lagrangian methods can be applied to inequality
constraints. For the set of violated constraints, g(x) at x*, the augmented
Lagrangian function has discontinuous derivatives at the solution if any of
the constraints are active (Gill, Murray and Wright, 1981). Buys (1972) and
Rockafellar (1973a,b, 1974) presented the augmented Lagrangian function for

inequality-constrained problems

,
A
L Y gl if g0 <5
L, (4,9 =fx) + Z:’ = , (35.2)
L-Eli ifgi(x)>v

3.6 The Augmented Lagrangian Method

3.6.1 Introduction
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‘ Initially, a nonlinear programming problem with equality constraints
- will be discussed and later, another problem with inequality constraints will
be considered.
The nonlinear programming problem with equality constraints only
. can be stated as
Minimize f(x) (3.6.1)
° subject to cj(x) =0, i=1,2,..,m (3.6.2)
where x is a vector of n components and usually n 2 m. An optimal solution,
x*, can be obtained by solving the corresponding related set of n+m nonlinear
° equations,
VXL(X*JL*) = ci(x*) =0 (3.6.3)
VLA = VEG) - D, ARV () = 0 (3.6.4)
1

where A* is the m-dimensional Lagrange multiplier vector and is part of the
entire solution vector, besides the n-dimensional x* vector. (3.6.3) and (3.6.4)

are the first derivative vectors with respect to A and x, respectively, evaluated

®
at x* of the Lagrangian function
Lox ) = £60 - D, A, () (3.6.5)
° i
In the classical sense (3.6.3) and (3.6.4) comprise the first-order necessary
conditions for x* to be at least a local minimum of f (x). If the Lagrangian
® function (3.6.5) does not contain a saddle point, however, the solution
obtained may not yield a minimum point (Lasdon, 1970).
Rewriting (3.6.1)-(3.6.3) in an exterior penalty type form
® 1 i
& P(x, 6, 0) = f(x) +512 o[¢™-8], i=12.,m
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T
=00 + 2 [c-0] S[c(x)-6] (3.6.6)

where 6 is an m-dimensional parameter vector and S is an m x m diagonal
matrix whose elements are the penalty weights oj > 0. The solution procedure
to the unconstrained minimization problem (3.6.6) involves the variation of
ci and 6 in such a way that x(c, ) = x*. When 6 = 0 the second term in
(3.6.6) is sometimes called the penalty term. At each iteration, when x
becomes infeasible this penalty term is added to f (x) and ¢ is increased for the
next iteration. Convergence is guaranteed by letting ©; approach infinity.
When these penalty weights are allowed to grow without bound, an ill-
conditioned matrix may arise even before x gets close to x*. An attractive
feature of the augmented Lagrangian method is that o; need not approach
infinity and may, in fact, be held constant. Instead, 0 is varied, such that 6 —

6%, an optimum parameter vector, while satisfying the condition

Gi”O'i = 7»;, i=1,2,...,m (3.6.7)

If oj is sufficiently large each iteration needs to update only 6;. Further
increase in oj is only required when the rate of convergence of x(6, 6) — x* is
small. A satisfactory value of oj is usually obtained near the early steps of
calculation and can be held constant throughout the remaining iterations
(Powell, 1978). The augmented Lagrangian function, formed from the
Lagrangian function (3.6.5) augmented by the penalty term defined earlier,
would then be

L,(x,2 0 =f(x)- z?»ici(X) +%Z°i[ Ci(X)] 2
i i

= f(x)-ATex) + ;c(x)TS ox) (3.6.8)

By letting
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AR,

A,
0, =—, i=1,2,...,m (3.6.9)
O.
1
and expanding (3.6.6) we get
i A
2 i i
P(x,8,0) = f () ++ Zi“ci ) - 2ci(x);—i +=
1
A2
~f @+ 10 (W12 I 1141 X
1 1 1 i
2
%
_ 1y
=L, 2,0+ Z = (3:6.10)
1

Since the second term of the right-hand side of (3.6.10) is not a function of x;j,
we can say that x(8, 6) = x(A, o) for any ¢ as long as (3.6.9) holds. For a well-
scaled problem, a single scalar value, say r, can replace all oj's in S such that S
= rI As such, considerable reduction in the number of unknowns can be
realized.

Now, consider the nonlinear programming problem with inequality
constraints only

Minimize f (x) (3.6.11)

subject to h.(x) 2 0, i=1,2,... m' (3.6.12)
The constraint set (3.6.12) can be modified in the form of (3.6.2) by adding

slack variable z;

h, (x) - z =0 220, i=,2,...,m’ (3.6.13)

The set (x, z) forms the new feasible space. The new augmented Lagrangian

function would be (3.6.11) plus
Dtz =2 wIhe-z1+3 D6 hw-z1 (3610
1 1 1
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where i=1, 2, . . . m'. The slack variable zj can be eliminated from the
calculations by performing minimization on the function over z (Powell,

1978). Since only (3.6.14) depends on z, by the first order necessary conditions

are

H
z*= hi(x)-—, z, 20

O.
1

H
= max 0, hl(X) '_G_ (3.6.15)
i

(3.6.14) is transformed into
r

1 2 3
iz too 0= [wh() +o ci[hi(x)] Jifh() <G

1 { l
u? M
ifh () 2 —o (3.6.16)

_‘
O'

Nli—l

3

or

( 12
: - 2
Z t(x, 1, ©) = —; Z c, 41 min[ 0, h,(x) - u./c, ] J? % Z /o, (3.6.17)
1 1 1

When the equality constraints (3.6.2) and inequality constraints (3.6.12) occur
concurrently in a nonlinear programming problem, the augmented

Lagrangian function becomes

m m
L A(x, AN 0) = f(x)- Z kici(x) + % Z{ oi[ ci(x) ]2

—

m' m'
+ 1Yo {minl 0, 0 - u./oh 126 Ge1s)
=1 =l

p—

3.6.2 Optimality Results of the Lagrange Multipliers
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Some important duality results will be discussed in this section,
showing the optimum choice of the A and p (or 6) parameters which are
determined by the maxirniéation problem in terms of these parameters.

The first order necessary condition for x* to be a local minimum of La(x, A, 6)

is that VL vanishes at x*. Deriving VL from the function in (3.6.8) produces

VL,(x,1,0) = VE(x)- Z AV + X, 6eve ) (3.6.19)
1 1

On the other hand, the first order necessary condition for x* to be a local
minimum of the original problem (3.6.1)-(3.6.2) is that it had to satisfy (3.6.3)
and (3.6.4). It follows, then, that VLA (x*, A*, 6*) = 0.

The next and final step would be to prove that V2L A(x*, A%, ©) is
positive definite, i.e., the second order sufficiency condition of the theorem

should hold. By taking the derivative of (3.6.19) with respect to x we obtain

V2L A A, 0) = V2L(x, A, 0) + Z ol ci(x)Vzci(x) + Vci(X)Vci(x)T] (3.6.20)

where V2 is the second derivative of (3.6.5). At the optimum point x*, the

matrix (3.6.20) becomes

V2L A A%, 0) = VZL(x*, A*, 0) + Z cchi(x*)Vci(x*)T (3.6.21)
1

Let y be a unit vector orthogonal to Vc (x*) then the matrix V2L* or \%
2LA(x*, A*, ©) is positive definite since

T % T
y VL y =y VD*y+oly Vo) ] (3.6.22)

If V2L* is not a positive definite matrix and thus yVe(x*) # 0, then ¢ has to be
sufficiently large, say ¢ > ¢’ > 0 such that the second term on the right hand
side of (3.6.21) dominates the negative first term. If this is pursued, V2L* is

positive and the theorem is proved.
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The augmented Lagrangian function comprising f (x) plus (3.6.16) or
(3.6.17) is discontinuous in its derivatives. A remedy to this problem would

be to partition the function into two parts such that

I {il hi(x) < ""1/ o, } (3.6.23)
1. = {il h.(x) <1/ o} (3.6.24)

where I is a general index set, i=1,2,..., m',andI =1_. U IL;. The augmented

Lagrangian function considering inequality constraints only would be
w | ho0 + 2o he T, ifie I
L. (x,po =fkx+
. =1 | -l12/c ifiel (3.6.25
2 Hi /G * 6.25)
If the second order conditions on problem (3.6.11)-(3.6.12) are satisfied and p =

p*, then there exists a ¢' > 0 such that for all o 2 ¢', x* is a local minimum of

La(x, i, 0). Consider the first order derivatives of (3.6.25) which are

.
VL, W+ ), Gh(Vh(x), if ie 1.
i=1

VL,(x, 1, 0) =
Vi (x), ifiel, (3.6.26)
where
ml
VLG, W = VE) - 2, wVhi(x), p 20, foriel. (3.6.27)

i=1
The first order necessary conditions for x* minimize LA(x, u*, 6) can be
proved to hold in both sides of the partition. For i € I., it follows from
(3.6.16) that zi* = 0 or hj(x*) = 0 and thus (3.6.26) gives VLA(x*, pu*, o) = VL(x*,
K*) = 0. Fori e I, the necessary conditions for unconstrained minimization

of f (x) implies that Vf (x*) = 0 and so does La(x*, p*, o).
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‘ Using the Kuhn-Tucker conditions and Theorem 1, V2L A (x*, u*, 0) is
positive definite in either of the two cases discussed above. Thus the theorem
is proved. (Note that the derivatives of the function are undefined at hij(x) =
ni/oi.) Further details on dual theorems of the function can be found in

¢ Fletcher (1975) and Rockafellar (1973).

3.6.3 Updating Formula and Convergence
e The following discussion is based on the form of the Augmented
Lagrangian function for inequality constraints given in (3.6.25). For the case

with equality constraints, however, it can also be implied from (3.6.25) when i

* € 1.. The general form for the updating formula for multipliers is
k+1 k k
prD _ ) A ) (3.6.28)
o . where the superscripts stand for iteration number. The second term of the

equation is continuously modified such that p(k+1) — p* The first order

necessary conditions at optimum for the original problem (3.6.11)-(3.6.12)

L gives
VL(x*, u*) = Vf (x*)- z wi‘Vhi(x*) =0 (3.6.29)
i

bt hi(x") =0, pn; 20 (3.6.30)
The first derivatives of (3.6.25) are defined as

VE®- ), [1-ch() ] Vh(x), if ie L.
i

s VL A(x, K, 0) =
Vi (%), ifiel, (3.6.31)
When i € I, , the complementary slackness conditions, pj hi(x*) = 0, give p;*
° = 0. Since pk+1) - u*, substituting p;* = 0 in (3.6.28) for p(k+1) implies
‘ A® = -y forie 1, (3.6.32)
L I
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When i € I., we can equate (3.6.29) and (3.6.31), cancel similar terms and

obtain p;* = i - 6j hi(x). By using (3.6.28) again, the implication becomes

AR = -oh(x), foriel. (3.6.33)

Equations (3.6.32) and (3.6.33) are the simplest updating formulas
which do not require any derivatives. Either updating formula represents a
steepest ascent towards the maximum of the dual function of (3.6.26) with a

linear rate of convergence.

3.8 Solution of Discrete Optimal Control Problem

3.8.1 Discrete Optimal Control Problem

Consider the following discrete optimal control problem

min z = min f (x,u) (3.8.1)
subject to

x 1= 8(x vy t) t=0,...,T-1 (3.8.2)

s T t=0,...,T (3.8.3)

Lsu, SR, TR, | (3.8.4)

where x; is the column vector of state variable at time t; u; is the column

vector of control variables at time t; it and ﬁt are column vectors of upper

bounds; and X and u, are column vectors of lower bounds. f and g are
t

assumed continuously differentiable in (x, ut) for each t. the time, t, can only

take on finite number of discrete values, t =0, 1, ..., T. Equation (3.8.2)
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represent the process or simulator equation and equations (3.8.3) and (3.8.4)
represents the bound constraints on the state and control variables,

respectively.

The structure of the Jacobian of (3.8.2) is shown in Figure (3.8.1).

Nonzero elements are only in the unit submatrices and in the submatrices

Ho,...,Ht-1; Ko,...,KT-1, where

og
t = axl ] (38.5)
og

3.8.2 Reduced Obijective Problem

Considering a given u, the system of equation (3.8.2) may be solved for
a unique x, x(u). This function x(u) can then be used to eliminate u in the

objective (3.8.1)to yield a new function
F(u) = f (x(u), u) (3.8.7)

By the implicit function theorem ( ), x(u) is continuously differentiable,
so that F is a differentiable function of u, referred to as the reduced objective

function.

Solving the process simulation equations (3.8.2) for a particular set of
control variables, u, each time these equations need to be evaluated, the

reduced optimization problem takes the form
Min f (x(u), u) = Min F(u) (3.8.8)

subject
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< <X
. Xt SX (ut) SX t (389)
& us<u <u (3.8.10)
gk t 5
State (or dependent) variables and the control (or independent)
g variables are implicitly related through the simulator. In essence the
simulator equations are used to express the states in terms the controls
yielding a much smaller optimization problem. The reduced gradient g—i
. where F(u) = f (x(u), u) is required to solve the reduced problem. In order to
determine the reduced gradient the following procedure can be used.
® Step 1 Use the appropriate simulation model solve the simulator

(process) equations. ‘

Step 2 Solve the following set of linear equations

¢ e

° or
_of
8 = |
° for the row vector Lagrange of multiplier (). This equation is derived from |
the general reduced gradient equation ( ? ).
Step 3 Evaluate the reduced gradient
@
| oF _of %
o In the above two equations all elements of % and 5—3 are evaluated at
. some model solution u for which the g—i is evaluated. Because the simulator
o 3-26



d
equations (3.8.2) have a sequential form, glg;is block lower triangular with

square nonsingular blocks. The large linear system (3.8.11) decomposes into T
smaller sequential systems, which are solved backwards in time. The

difference equation for the multipliers are

of
nTBT = g{; (3.8.13a)
_of agt+l
nB = -7
t ot axt t+1 th t=T-1,T2,:: .1 (3.8.13b)

In these equations the matrices Bt and a’t:l are evaluated using the control

and state variables obtained in step 1 when solving the simulator equations

and all vectors in (3.8.13 a and b) are row vectors. Then (3.8.13a) is solved for

n and (3.8.13b) is solved sequentially for . ;, Tp,, ..., T;. Equations (3.8.13a

and b) are derived from the general reduced gradient equation B = % The
components of the g—ﬁ are evaluated by
og
t t

t
The dynamic structure of the simulator equations could be of the form

g(xt,...xt_s,ut,...,u =D 3 PR o (3.8.15)

t-c

where g () is an m-vector of function, assumed differentiable, and s and c are

the maximum lags of x and u, respectively. For many application g has the

formg=-xt+h (xt, ceer X g Wy, Uy _C) = 0. The difference equations for the

Lagrange multipliers are

s




B = 9F
TT OX (3.8.16)
xB =25 . i 5B =TS w1 BAID
tt ox Tt SR E ey o
t 1=t+1
where
b = min (t+s, T) (3.8.18)
o8,
Tt a_xt (3.8.19)
og
B = =—
t axt (3.8.20)
og

5, is nonsingular if and only if all matrices B, are nonsingular. The

ox
components of g—i are evaluated using

OF _ o & _ 9%
= I - Z Ty 3o (3.8.21)
t t 1=t t
where
a =min (t-c, T) (3.8.22)

If the simulator equations are not simultaneous, each B ¢ 18 triangular so

(3.8.16) and (3.8.17) can be solved quickly.

3.8.3 GRG Algorithm to Solve Optimal Control Problem

Consider an optimal control problem of the form



T
Min z=Min Y, f (X,..,x ,u,...,u ) (3.8.23)
tim 1 t t-s" t t-c'
subject to
g &x,..,x ,u,...,u )=0 t=1,...,T (3.8.24)
t ¢ ts  t t-c
u <u <u e I (3.8.25)

For simplicity, bound constraints on the state variable have been suppressed.
The state and control lags, s' and c', for the objective function may differ from
s and c for the simulator equations. The vector of functions g and objective
functions f; may all be nonlinear and are assumed to be continuously
differentiable. The recursive equations (3.8.24) are assumed to have a unique

solution x,, ..., X for any set of control vectors Uy, ..., Up satisfying (3.8.24)

and for any initial conditions.

Bounds on the state variables may be dealt with by penalty or
Augmented Lagrangian methods, which required no basis changes, and
consequently simplify the algorithm. Penalty or Lagrangian methods may

not be as efficient as methods that deal with state bounds directly.

The algorithm presented by Mantell and Lasdon (1978) is stated as

follows

Step 0: Given are the initial control vector u() and all initial values of

lagged states and control variables, set k = 0.

Step 1:  Simulate the system with u = uk to determine all state variables and

the objective value F (uk).

Step 2: Compute VF (uk) from (3.8.17) and (3.8.21).

S=57 ‘




Step 4:

Step 5:

Check for convergence and stop if convergence criteria are satisfied,

otherwise go to step 4.

Compute the search direction dk using an unconstrained

minimization algorithm.

Perform a one dimensional search along dk to find Bk, the step size

that minimizes F (uk + Bdk) subject to B > 0 and
k

u < uk + Bd < uw. For each value of B in the search it is required

to simulate the system by solving the simulator equation (3.8.24),

compute the objective, and possibly compute the reduced gradient.
Set uk+1 = uk + gkdk

Replace k by k + 1 and return to step 3 (to step 2 if the reduced

gradient is not computed in the one dimensional search).
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FIGURE 3.1.1
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Table 4.4:1" Computation of Search Directions* L”ﬁuf ot Ty, (792

Search Direction

Definition of Terms

Steepest Descent

k
& = el )

Conjugate Gradient Methods
(1) Fletcher-Reeves

k+1 K
a =-Vf[xk+1}+a1 d

(2) Polak-Ribiere

k+1 k
& - velet) a,d

(3) 1-Step BEGS

Kkt k+1 K
a4 =-vf (xkﬂ} +a, [a4 S +aY

¢ J

~ VTf [XkHJ V§ [xk+1}

a = )
byl ve k]
0

d =-Vf (xo}

k+1
Ve[ Y
.=

2 o[ ve [
Y = v [ert] - we [

d =-Vf [xo}
fo 1
> (Sk+1)T Yk+1
T
R =_[1 " [YkHJ i ](Smlfvf( k1]
4 k+1T k+1 k )
WO Ry
T
+[¥) wele)
T

Quasi-Newton Methods ¥*

(1) Davidon-Fletcher-Powell DFP Method ( Variable Metric Method)

k+1 k+1
d" = G v 1]

T i
S s*(s9 " Y*(c* v

=G +
v (¢ &y

(2) Broyvden-Fletcher-Goldfarb-Shanno (BFGS) Method)
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= . T
Kkl Kk 1+(YkJ G Y Sk[sk)
G =G + T ) =
& = G e[ | ¥ s Jis¥) ¥*
T T
_ Y(s4 G*+G"s(y¥)
W ¢

(3) Brovden Family

G =(1-00G " +6G

BFGS

Newton Method

dk+1 =- H_1 [ka \%3 (ka

*Formulas for other search directions can be found in Luénberger (1984).
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CHAPTER 4
GROUNDWATER MANAGEMENT SYSTEMS
4.1 Problem Identification |

Aquifer simulation models have been used to examine the effects of
various groundwater management strategies. Use has primarily been of the
"case study” or "what if" type. The analyst specifies certain quantities and the
model predicts the technical and perhaps economic consequences of this
choice. The analyst evaluates these consequences and uses his judgement
and intuition to specify the next case.

Optimization methods have been used in groundwater management
for more than a decade with some success. Most uses focused on explicitly
combining simulation and optimization, resulting in so-called simulation-
management models. Gorelick [1983] reviewed these models and classified
hydraulic management models into two major approaches: embedding and
use of a unit response matrix or an "algebraic technological function" (ATF).
Embedding incorporates the equations of the simulation model(represented
as a set of difference equations) directly into the optimization problem to be
solved. This method has limited applications and is mostly used in ground-
water hydraulic management, since the optimization problem quickly
becomes too large to solve by available algorithms when a large scale aquifer,
especially unconfined, is considered. Previous work based on this approach
includes Aguado et al. [1974], Aguado and Remson [1980], Willis and
Newman [1977], Aguado et al. [1977], Remson and Gorelick [1980], and Willis
and Liu [1984].

The ATF approach generates a unit response matrix by solving the
simulation model several times, each with unit pumpage at a single

pumping node. Superposition is used to determine the total drawdowns.
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This yields a smaller optimization problem, but the method has two major
limitations. It is exact only for a confined aquifer but has good accuracy for an
unconfined aquifer with reiatively small drawdowns compared to the aquifer
thickness. A drawdown correction method may be used to improve accuracy
for an unconfined aquifer with larger drawdowns, but acceptable accuracy can
be guaranteed. In addition, the response matrix must be recomputed when
exogenous factors such as aquifer boundary conditions or potential well
locations change. An alternative is to treat these factors as decision variables
and constraints are included in the optimization problem. Work stemming
from this approach includes that by Maddock [1972, 1974], Maddock and
Haimes [1975], Morel-Seytoux [1975], Morel-Seytoux and Daly [1975], Morel-
Seytoux et al. [1980], Illangasakare and Morel-Seytoux [1982], Heidari [1982],
and Willis [1984].

Another approach has been to solve an optimal control problem by
interfacing a simulation with an optimizer. The simulator essentially solves
the simulator implicitly for the optimizer. Gorelick el al. [1984] applied this
method to an aquifer reclamation design to overcome the nonlinearities
incurred by the contaminant transport equations. In effect, the dynamic
Jacobian matrix, required by the projected Lagrangian method in solving the
optimization problem, was determined via forward or central finite
differencing, with the contaminant transport simulation used to provide the
function values needed in the differencing. This is closely related to the
approach described here. We use an analytic rather than differencing
approach for computing these same partial derivatives. The possibility of
doing this is mentioned in the above reference. However, the hydraulic

response was handled by the ATF method.




The work described here attempts to obtain the generality of the
hydraulic simulation-management model in combining simulation and
optimization to solve the 6ptima1 control problem. The overall problem is
viewed as one of discrete time optimal control where variables describing the
aquifer system are divided into the system state (head) and control
(pumpage). By expressing head as an implicit function of pumpage, the model
constraints are conceptually eliminated, yielding a smaller reduced problem
involving only the pumpage variables. Head bounds are incorporated into
the objective using an augmented Lagrangian algorithm as described in
Chapter 3. This requires the solution of a set of linear difference equations
backward in time and has major speed and accuracy advantages over finite

differencing.

4.2 Problem Formulation

4.2.1 Aquifer Model
For nonsteady state heterogeneous anisotropic groundwater flow in
saturated media the partial differential equation governing the two-

dimensional case is

9 (¢ oh)_goh
x, (Tii axi)‘s"ét_“"w i,j=1,2 42.1)

where Tjj = transmissivity tensor; h = hydraulic head; W = volume flux per
unit area; S = storage coefficient; x;, xj = Cartesian coordinates; and t = time.
For numerical solution using finite difference methods, the aquifer is divided

into T periods which need not be of equal length. For the finite difference




' grid shown in Figure 4.2.1. The discretization used here leads to the

following system of difference equations:

Ajjhij- 1,6 + Bijhij 4 1,6 + Gijhioje + Dighisg je
o = (Al] * Bl) + C‘) + Dl] + Fl) + Rii)hi,i,t + Fijhi,j,t-l
- Gjjt + RyRD;; =0 for all ij 25 PP 4.2.2)

In the above, h;j; = head at cell (i, j) at the end of time period t, q;; = pumpage

:' (if positive) or recharge (if negative), Ry = spring water constant, RD;; =
minimum head for spring water to occur, Fy; = a coefficient which depends on
storativity or specific yield, and Aj;, B; Cjj, Djj = coefficients which depend on

g the transmissivity for cells adjacent to (j,j). Coefficients A, B, C and D can be

expressed in terms of aquifer permeability as follows:

248y PX,
® ‘ A,;=(TH, ;Ax,_,+ TH, _,Ax;) =
(Ax,_,+Ax) (4.2.3)
= 24y PX, .
Bi,j=(THi,ijj+1+THi,j+1 j) 2
(Ax,,,+Ax) 4.24)
2Ax Py, ..
ili-1,j
o Ci,j=(THi,iij_1+THi_LiA ) 5
(Ay,_,+4y) (4.2.5)
D, =(TH ) 2Py
P = 3 18Y 5+ TH, Ay .
j i=7i i+1,j°7 4 (ij”"'AYi)z 4.2.6)
where
> PXi,]- = aquifer permeability between node (i,j) and (i, j+1);
. PY;; = aquifer permeability between node (i,j) and (i+1, j);
. 9-4
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TH; j = aquifer thickness for node (i,j) at time step t, and
Ax;, Ay; = the grid size of the cell (i, j).

The expressions (4.2;3) - (4.2.6) are valid for both artesian and water
table conditions, only the thickness terms are defined differently. For a cell
(i,j) with water table conditions, the thickness can be computed from,

TH,,=h,  —BOT,. 4.2.7)

and for artesian conditions

TH,, =TOP, .- BOT, , (4.2.8)
where TOP;; and BOT;; are the average elevations at the top and bottom of
the aquifer at cell (j, j), respectively. Similarly, the coefficient F is given as

B8, O A 00 4.2.9)
where S; ; is either the storage coefficient or the specific yield depending upon
the condition of the cell (i, j), and At is the time step increment. Under water
table conditions, the thickness terms defined in (4.2.7) will cause the system of
equations to be nonlinear in terms of the hydraulic head.

The alternating direction implicit (ADI) method to solve the system of
equations (4.2.2). The method involves iteratively solving the simultaneous
equations by first, for a given time increment, reducing a large set of the
equations down to a number of small sets. This is done by solving the node
equations using Gauss elimination of an individual column of the model
while all terms related to the node in adjacent columns are held constant.
The set of column equations is then implicit in the direction along the
column and explicit in the direction orthogonal to the column alignment.
The solution of the set of column equations is then a straight forward process
of back substitution.

After all column equations have been processed column by column,

attention is focused on solving the node equations again by Gauss
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elimination of an individual row while all items related to adjacent rows are
held constant. Finally, after all equations have been solved row by row, an
iteration has been complefed. The above process is repeated a sufficient
number of times to achieve convergence, and this completes the
computations for the given time step. The solution is said to converge if the
differences between row and column solutions is not greater than the
tolerance limit set forth. The computed heads are then used as the initial
conditions for the next time step. This total process is repeated for successive
time increments with unconditional stability regardless of the size of the time
increment. More details on how to rearrange the variables and equations cén
be found in Prickett and Lonnquist (1971).

The coefficients Aj;, By;, Cjj, and D;; are linear functions of the thickness
of cell (i, j) and the thickness of one of the adjacent cells. For artesian
conditions, this thickness is a known constant, so if cell (i, j) and its neighbors
are artesian, the (i, j) equation of (4.2.2) is linear for all t. For water table
conditions, the thickness of cell (i, j) is hjj; - BOTj;, where BOTj; is the average
elevation of the bottom of the aquifer at cell (i, j). Then (4.2.2) involves

products of heads and is nonlinear.

4.2.2 Constraints

Demand Schedule. It is assumed that the flow rates over specified time
periods from all wells must either equal specified values or lie within a
specified range. If w is the set of all cells with pumpage, the former restriction

is expressed as
2 9y =d, o T (4.2.10)

N (Geo

N—r

while the latter one is




'. d< 3 dqgsd, t=1....7T (4.2.10)

(i,jleow

where d, represents the lower bound on demand for time period t and d, is
the upper bound.
Flow Bounds. The flow bound constraints for recharge and pumpage

have the form .
GuE9n =9, G,j) eo (4.2.11)

where the barred quantities are specified limits on the pumpage or recharge. If

q is zero, this permits no recharge, while a positive lower limit forces
it

pumpage to at least to this level.The expression q.it represents pumpage
capacity if positive, while q =0and q < 0 provide for a limited recharge
ijt it

capability.
- ‘ Head Bounds : The head bounds are expressed as
hm <hg<h, G,jt) €S (4.2.13)
where S is a subset of cells and time periods where the head is to be
® controlled. Examples include reducing heads below specified levels in
dewatering problems, for maintaining heads above certain levels at springs in
acquifer management problems, or insuring that computed heads do not
® exceed the ground surface for water table conditions.
Groundwater Flow Equations. The difference equations (4.2.2) relating
the heads and the well flows in the aquifer are also constraints of the
& optimization. In the solution approach described in the next section, these
equations are used to solve for the heads given the well flows, eliminating
the heads and reducing the problem to one involving only the well flows as
* decision variables. Constraints of this reduction problem will be the demands

‘ (4.2.10) or (4.2.11), flow bounds (4.2.12) and head bounds (4.2.13).
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4.2.3 Objective Function

Any continuous fuhction of h and q can be used as an objective
function. However for demonstration purposes, two objective functions are
presented here. One is to maximize the sum of the heads at all pumping

nodes over all time periods, i.e.,

T
Maximize sumh = 3, > hy (4.2.14)

(i,jleo t=1
In conjunction with the demand constraints (3) or (4) this objective meets
demands while maintaining maximum acquifer potential. The second, used
in dewatering problems, is to minimize the pumpage,

i
Minimize sumq = 2, 2,Q; 4.2.15)

(i,jleo t=1

4.3 Problem Solution

4.3.1 Overview

The solution methods described here were designed to work with
existing aquifer simulation programs. This is a desirable feature in making
maximal use of existing technology, and any improvements or changes in the
simulation model are automatically incorporated into the optimization
scheme.

Aquifer simulators solve for heads and perhaps pollutant
concentrations given certain controllable variables. In the simulator used
here, the head is computed given the well flows. This allows the constraint
and objective function of any aquifer model problems to be viewed as

functions of only these controllable variables. Since there are relatively few

controllable variables, the resulting problem is easier to solve. The major




‘ remaining difficulty is to compute first partial derivatives of the objective and

. constant functions with respect to the controllable variables. These
derivatives can be compufed in significantly less time than is required to

perform a simulation. Once they are determined, several efficient nonlinear

® optimization routines are available to solve the problems. These ideas are

general and can be applied to any aquifer, modelling both water quantity and

quality.
®
4.3.2 The Reduced Problem
The system of nonlinear difference equations (2) can be solved for the heads
® . hjj¢ given well flows q;;; (and initial and boundary conditions). Let q be the
vector of all well flows in all time periods, and define h;;(q) as the heads
which satisfy these difference equations when the well flows have the values
® . given by q. For purposes of illustration, let the objective function be the sum
of the heads at the pumping nodes, hsum, given by (4.2.14). Since each head
h;jt is a function of q, hsum is a function of q also, expressed as hsum(q) :
® _ T
hsum (@)= 2, 2 hy(q) (43.1)
(i,jleo t=1
Similarly, the head bounds (4.2.13) are functions of q also, rewritten as
g 'hijts hiit @) <h ijt G,jt) €S (4.3.2)
Again, for purposes of illustration, let the demand constraints be equalities as
in (4.2.3). These involve only the well flows qijt and are rewritten here along
®
with the head bounds:
(iémq"‘ =l t=1,....,T . (433)
. 9,59 <q_ i) eo t=1,....,T (4.3.4)
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The problem of maximizing hsum, (4.3.1), subject to the head bounds (4.3.2),
demand constraints (4.3.3), and flow bounds (4.3.4) is called the reduced
problem. It involves onl)" the well flows, and is much smaller than the
original problem. Many head variables have been eliminated, as have the
aquifer model equations (4.2.2). However, the remaining heads h;;(q) for { G,
j) € oU{(G,jt)e S}in (4.3.1) and (4.3.2) are implicit, possibly nonlinear
functions of the well flows, q. The simulation model is used to solve for the
implicit function value. Optimization methods require values of the
objective and constraint functions and their derivatives with respect to each

well flow variable. We focus now on how these derivatives can be computed

efficiently.

4.3.3 Computing the Reduced Gradient

Consider the computation of the gradient of the head sum, Vhsum(q),
which is called a reduced gradient. The function hsum is an implicit function
of q through the groundwater simulation equations (4.2.2). However, the
time-staged structure of these equations leads to an efficient procedure for
computing Vhsum . Procedures of this type have been used to compute the
reduced gradients of objective functions defined in econometric models,
which are also systems of implicit nonlinear difference equations. Details are
given by Mantell and Lasdon [1978] and Norman et al. [1982]. To apply these
results to the problem at hand, some additional notation is needed.

Let h¢ be the vector of all heads at time t, with components hjjt, and

write the aquifer model difference equations (2) in vector form as

gh,h _,q)=0 2 IR (4.3.5)
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. Also defined are the following matrices of partial derivatives of the model
- equations with respect to current and lagged heads :
B,=dg,/oh, R T, 4.3.6)
Civ1,:=98, /00 t=1,..,T+ 4.3.7)
L

Finally, let m; be a row vector of Lagrange multipliers for the model equations
(4.3.5). Each m; has as many components as there are grid blocks in the aquifer

discretization. Then the procedure for computing Vhsum for a given vector

¢ of well flows q" is
Step 1
Solve the simulator equation (4.3.5) forward in time with q = q: p
® +
yielding heads ht fort=1,... T.
Step 2
° . Solve the following system of linear differgnce equations backwards in
time for the Lagrange multiplier vectors =,:
n.B, =0d(hsum) /oh, (4.3.8)
- p 7B, =d(hsum) / ahT ~ B Crary t=T1,T7T2..,1 (4.3.9)
In these equations, the matrices B; and Cy,; ¢ must be evaluated using the
well flows and heads obtained in step 1, and all vectors in (4.3.8) and (4.3.9) are
row vectors. Then (4.3.8) is solved for =, and (4.3.9) is solved sequentially for
e Ty_yTp_3~= T, . Equations (4.3.8) and (4.3.9) are derived from the general
reduced gradient equation nB =0f /dy in which n is a (row) vector of
° Lagrange multipliers, B is the basis matrix, f is the objective function, and y is
the vector of basic variables (see Ladson et al. [1978] or Lueberger for a
derivation). If all variables h; are basic and all q; nonbasic, the time staged
° structure of (4.3.5) implies a sequential structure for these Lagrange multiplief
. equations as well.
o 7-/2
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Step 3

Evaluate the components of Vhsum by

d(hsum) / 9q , =d(hsum) /3q —7,9g, / dq (4.3.10)

The most time consuming part of these computations (apart from the
groundwater simulation) is computing the partial derivative matrices B; and
Ci+1,¢ and solving the linear equations (4.3.8) and (4.3.9). For the difference
equations (4.2.2), the structure of the matrices By and Cy, ; is shown in Figure
4.3.1. By is a pentadiagonal matrix, while Cy, ; is diagonal, so the right-hand
side of (4.3.1%) is easy to compute. Cy,; ; is constant, and By is constant if the
entire aquifer is artisian. If some portion has water table conditions, some
elements of B, are linear functions of head. Hence, for the artesian aquifer,
the reduced problem is linear, so the reduced gradient of any problem
function (either hsum or one of the heads h;;(q)) is constant and need be
computed only once. Otherwise, the above computations must be performed
each time the well flows are changed.

In addition, since each well flow g;jy appears in only one simulator

equation (the one for block (i, j) in period t), 9g, / 9q  is the negative of a
unit vector and d(hsum ) / aq it is zero, so (4.3.10) becomes

d(hsum ) / 9q =T (4.3.11)

ijt

Summarizing , while (for water table conditions) the aquifer simulator
solves a system of nonlinear difference equations forward in time, yielding
the heads, the reduced gradient computation solves the linear system of
difference equations (4.3.8) and (4.3.9) backward in time, yielding the Lagrange

multipliers n;. Both systems contain the same number of equations and

involve matrices of the same form.
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The Lagrange multipliers m; are more than just an artifice which is
useful in computing the reduced gradient. When evaluated at an optimal
solution, they supply valuéble sensitivity information. For the problem of
maximizing hsum considered here, the optimal value of Tjj¢ is equal to the
change in the optimal hsum value caused by an additional thousand gallons
of water flowing out of cell (j, j) in period t. This applies whether or not there
is a well in cell (i, j). Hence, these multipliers could serve to show where new

wells should be located, either for pumping or recharge.

4.3.4 Satisfying The Head Bounds Using An Augmented Lagrangian Function

If a portion of the aquifer has water table conditions, the head bounds
(4.3.2) is nonlinear. These constraints involve the implicit functions h;;(q).
Computing the reduced gradient of each of these functions requires
performing steps 2 and 3, previously discussed. Hence, to compute reduced
gradients of all head bound constraints, N, * T systems of linear equations,
arising from (4.3.8) and (4.3.9), must be solved, where N}, is the number of
head bound constraints. Instead, an approach which computes only one
reduced gradient, requiring the solution of only T linear systems, was chosen.
This approach combines the head bounds and the objective into a penalty-like
function called an augmented Lagrangian. The procedure is well established
in nonlinear programming and is described by Rockfellar [1973], and Fletcher
[1975].

Let

C i (C[)=Inin{hijt (q) _hijt’_ﬁijt_hijt(q)} (4.3.12)
Then the head bounds are equivalent to the constraint that cijt(q) be

nonnegative. The appropriate augmented Lagrangian function is
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: y—— ; 2
L(q, 1, 6)=hsum (q) + %c (i,-t)ze s[mm(o,c it (q)- H i / o)]

-2 Y wp'/o @3
(ijt) €S

The parameters p;;; are Lagrange multipliers for the head bounds, while ¢ is a
positive penalty weight. Consider the Lagrangian problem

Maximize L(q, p, ©) (4.3.14)
subject to constraints (4.3.3) and (4.3.4)
where the maximization is over q and y, o are fixed. If a ¢ is larger than some
threshold value G and p is set equal to the optimal multipliers for the head
bounds, p*, then any optimal solution for this Lagrangian problem solves the
reduced problem (4.3.1) - (4.3.4). This suggests an algorithm (Figure 4.3.1) in
which the Lagrangian problem is solved, the parameters p and ¢ are adjusted
convergence is checked, and the steps are repeated. The multiplier update
rule used is

Hip =be ~0Cy 1 ey Shy /0 (43.15)

u‘i‘jt:O Cijt>“'ijt/c

Convergence is tested by checking if the maximum violation of the
head bounds is less than a user-supplied tolerance. In general, these
violations will be the largest at the start and will diminish as the algorithm
proceeds.

If the maximum bound violation has increased over its value at the
previous iteration, ¢ is replaced by 106 and p are not updated. If the current
largest bound violation is larger than 1/4 of its previous value, ¢ is replaced
by 106 and the pu are updated. Otherwise, ¢ is left at its current value when

the updating rule (4.3.15) is applied. The algorithm for the methodology is
outlined in Figure 4.3.2.

P
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4.3.5 Solution Using the Code GRG2

The Lagrangian problem (4.3.14) has a nonlinear objective L and linear
demand and flow bound Cénstraints. The reduced gradient of L is computed
using the previously discussed procedure. To solve the Lagrangian problem
(4.3.14), a program called GRG2, described by Ladson et al. [1978], can be used.
The algorithm used in this code is of the reduced gradient type, and such
methods are particularly effective for linearly constrained problems. GRG2
uses the T demand constraints to eliminate T dependent well flows in terms
of the remaining independent ones. These independent flows are varied by
the most efficient algorithm available, the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) quasi-Newton method [Fletcher, 1981]. This algorithm uses the
gradient of the augmented Lagrangian function to estimate the matrix of
second partial derivatives of this function and uses this matrix to compute an
efficient search direction. A one-dimensional search procedure using
quadratic interpolation is used to determine the distance to move along this
direction. The procedure is repeated until one of several stopping criteria,
described by Ladson et al. [1978] is met. Of course, if there are logical optima
distinct from the global optimum, GRG2 cannot guarantee convergence to the
global optimum.

The optimization-groundwater simulation system is referred to as
GWMAN. It contains GRG2, the generalized reduced gradient model by
Ladson et al. [1978], and GWSIM, a groundwater simulation model developed
by the Texas Water Development Board [1974]. GWSIM is a finite difference
simulation model which uses the alternating direction implicit method to

solve the finite difference equations.
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4.4 Application
Wanakule et al. (1985, 1986) developed a model (GWMAN) for

determining optimal pumping and recharge for large scale artesian and/or
non-artesian aquifers. The model methodology was closely related to the
approach used by Gorelick et al. (1984). The overall problem was viewed as
one of discrete time optimal control, where variables describing the aquifer
system were divided into system state (head) and control (pumpage). By
expressing head as an implicit function of pumpage, the model constraints
were conceptually eliminated, yielding a smaller reduced problem involving
only the pumpage variables. Head bounds were incorporated into the
objective using an augmented Lagrangian algorithm. The major contribution
of their work was an analytic scheme to compute the reduced gradient needed
for optimization. This requires the solution of a set of linear difference
equations backwards in time, and has major speed and accuracy advantages
over finite differencing.

The following paragraphs describe four groundwater management
problems used for comparison. g 4la

Problem 1 has a grid system configured as shown in Fig. 47 where the
grid size is 0.2 mi each side. The bottom elevation is at 150 ft while the
thickness in the water table and artesian portions are 100 ft and 50 ft,
respectively. Other physical properties are K, = 600 gal/day/ ft2, K =300
gal/day/ £t2,S, = 0.1,and S = 0.001. The problem requires maximizing the sum
of the heads at the pumping nodes over a period of 5 years, a surrogate
objective function for minimizing pumping cost, subject to 2,000 acre-ft/yr
demand constraints, lower head bounds at 200 ft and lower flow bound of 200

acre-ft/yr. The problem has 5 one year time intervals with four pumping

nodes for each interval.
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Problem 2 is the steady st;tqe'lgewatering example taken from Aguado et
al. (1977). The grid system (Fig. 1b) consists of 121 rectangular cells of 40 m by
10 m in size. The problem'.is to determine minimum total pumpage that will
maintain the water level in a rectangular evacuation area located in the
center of the homogeneous isotropic unconfined aquifer at 21 m. The bottom
of the aquifer elevation is at 0 m and surrounding constant head elevation is
at 36 m. The value of hydraulic conductivity is 10.81 m/d.

Problem 3 is a hypothetical example of a hydrocarbon recovery site
where the strategy is to create a containment depression near the center of the
hydrocarbon plume. The problem is to determine the optimal water
pumpage so that the hydrocarbon plume which is floating on the water layer
will be confined to the containment area. The finite difference scheme, setup
as shown in Fig. jl:;',chl’as a total of 1089 active cells whose dimensions are 180 ft
by 120 ft. The aquifer is isotropic nonhomogeneous with an average
hydraulic conductivity of about 100 gal/day/ ft2.

Problem 4 is a field application to the Barton Springs - Edwards aquifer
in Austin, Texas. It is a limestone aquifer where its main recharge openings
were created by steep-angle normal faulting across the stream beds. The
problem is set up to determine the optimal yields under long-term average
recharge conditions subject to maintaining the spring flows at 25 cfs (0.708 cu
m/sec). The finite difference grid system contains 330 active cells whose
dimensions are varied from 0.379 by 0.283 mi? to 0.95 by 1.51 mi?’ (Fig. Zg‘{l
The total aquifer area includes approximately 150 miZ. The hydraulic
conductivity values vary greatly from 0.1-2.0 ft/day in the outcrop area to 50-
1,150 ft/day in the eastern side of the aquifer or the confined zone where the

main underground flow channels are located. The groundwater flow
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generally is to the east in the outcrop area and then bends to the north toward

the Barton Springs.

: a— a
Table 4.4.1 compares the resultcbetween t-hthAX and/fhe Mac II. The

execution time on the Mac II is about 7 time slower while the objective values
at optimum obtained from VAX, in almost all cases, are better than those
from the Mac II. The improvement of objective values on the Mac II can be
achieved by tightening the convergence limit on the optimizer and/or
adjusting the magnitude of penalty weights and the initial estimates of
Lagrangian multipliers. This, off course, will increase the number of
simulation calls and execution time.

The results clearly indicate the potential for implementing GWMAN
on microcomputers. Even though it is slow in execution, the advantages in
accessibility and low cost computing time can compensate for slowness in

most medium size problems.
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4. 49¢\
TABLE/.—Comparison of Four Problem Results between the VAX and Mac Il
Computers.
® Problem 1 Problem 2 Problem 3 Problem 4
VAX Macll VAX Ml VAX Macll VAX Mac i
No. of simulationcalls 23 41 207 174 243 140 60 44
Exec. time (minutes) 2.13  18.72 3.45 28.52 224.60. 1217.28 2.48 17.08
. Objective values 4,490 4,490 105,769 105,765 171.99 172.57 35.826 42.%40
Pumpage values acre-ft/vr m3/day cu ft/day acre-ft/y=-
Pumpingnode No.1 1,400 1,400 13,947.0 13,950.0 0.000 0.000 1.673 1.390
2 200 200 13,658.0 13,655.0 0.000 0.000 1.677 2.688
3 200 200 8,246.7 8,235.2 0.000 0.000 1.720 2.957
4 200 200 8,327.9  8,335.3 0.000 0.000 2.134 2.607
o ‘ 5 1,400 1,400 8,711.3 8§,712.1 0.000 0.000 1.759 2.650
. 6 200 200 8,698.3 8,701.5 0.000 0.000 1.703 2.468
’ 7 200 200 8,286.2 8,287.0 10.029 C.000 1.746 2.368
8 200 200 8,284.7 8,284.8 16.141 15.781 1.791 1.833
9 1,400 1,400 13,805.0 13,802.0 16.141 16.141 1.723 2.454
10 200 200 13,804.0 13,802.0 2.523 4.675 1.726 2.316
h 11 200 200 0.000 5.898 2.560 3.104
12 200 200 16.141 16.141 1.788 2.176
13 1,400 1,400 16.141 16.141 2.067 2.195
14 200 200 16.141 16.141 3.396 3.384
15 200 200 1.970 12.576 3.396 3.266
16 200 200 16.141 16.141 2.047 2.177
17 1,400 1,400 16.141 16.141 2.920 2.809
5] 18 200 200 16.141 16.141
19 200 200 16.141 16.141
20 200 200 0.000 0.000
21 0.000 0.000
22 12.203 3.381
23 0.00C 1.131
. 24 0.000 0.000
4-23
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APPENDIX 4. A

L COMPUTATION OF BASIS MATRIX ELEMENTS

This Appendix presents the equations for computing elements of basis

matrix and a portion of the Jacobian matrix. Elements of the matrix are the

®
partial derivatives of the groundwater flow system of equations (4.2.2) with
respect to the state variable h. Each element is evaluated at the current point
o where h and q are known. The equations are divided into five groups
depending upon the aquifer conditions of a cell under consideration.
Investigation of equation (4.2.2) reveals that each row of the matrix should
. contain utmost six elements. Represent cells (i, j-1), (i, j+1), (-1, j), (i+1, j), G, j)
at time step t by small letters a, b, ¢, d, e, respectively,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>