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UNIT CONVERSION

Data listed in this report are defined in the inch-pound system of units.
A list of these units and the factors for their conversion to International
System of units (SI) are provided below.

Abbreviations of units are defined in the conversion table below or where
they first appear in the text. Symbols are defined where they first appear in
the text.

Multiply inch-pound unit

foot (ft)
inch (in)
pound (lb)
slug
slug per cubic foot (slug/ft 3 )

slug per foot second
(slug/s ft)

pound per cubic foot (lb/ft 3 )

pound per square foot (lb/ft2 )
square foot per second (ft 2 /s)
pound per square .inch (lb/in2 )
pound per cubic inch (lb/in3 )
pound per inch (lb/in)
pound second per square foot

(lb s/ft2 )

foot per square second (ft/s2 )
cubic foot per second (ft 3 /s)
degr~e Fahrenheit (oF)

Symbol

0.3048
0.02540
4.448

14.59
515.4

47.88

157.1
47.88

0.09290
6,895

271,400
175.1

47.88

0.3048
0.02832

°c (oF-32) /1.8

SYMBOLS AND UNITS

Explanation

To obtain SI unit

meter (m)
meter (m)
newton (N)
kilogram (kg)
kilogram per cubic meter

(kg/m3 )
newton per meter second

(N/m2 )
newton per cubic meter (N/m3 )

pascal (Pa)
square meter per second (m2 /s)
pascal (Pa)
newton per cubic meter (N/m3 )
newton per meter (N/m)
pascal second (Pa s)

meter per square second (m/s 2 )
cubic meter per second (m3 /s)
degree Celsius (oC)

E
F

Total area of a section
Total cross-section area at the cross-section number-i

Area of a subsection i
width of opening
width of channel upstream of opening
Chezy resistance coefficient
Depth
Brink depth
Critical depth
Normal depth
Diameter or height of a culvert
Depth in overflow section
Pa~ticle size that is larger than p percent of the bed

material
Specific energy
Force

vi

ft2

ft2

ft2

ft
ft

ftl/2/ s
ft
ft
ft
ft
ft
ft
ft

ft
lb
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Symbol

1m

Is
M
m
n
p

p

Pc
Q

q
R
Re
r
S
Se
Sf
Sg
So
T
t

v
Vc
v
W

Explanation

Horizontal force
Resultant force
Drag force
Water-pressure force
Froude number
Vertical force'
Shear force
Darcy-Weisbach friction factor

Acceleration of gravity
Total head
Hydraulic (piezometric) head
Head 'loss due to local causes
Head loss,due to boundary friction

Head loss due to any cause

Tail-water elevation
Velocity head

Acceleration
Conveyance
Total conveyance at cross-section number i
Effective roughness height of boundary
Expansion or contraction loss coefficient

Conveyance at subsection i
Local loss coefficient
Distance along channel or length of structure
Length scale for Reynolds number or Prandtl's mixing

length
The meander length of a channel reach

The straight length of a channel reach

Mass
Channel contraction ratio
Manning's roughness factor
Wetted perimeter of channel or height of weir

Pressure
Pressure at the center of pressure

Discharge
Discharge per unit width
Hydraulic radius
Reynolds number
Radius of curvature
Slope
Slope of energy grade line
Friction slope
Specific gravity of fluid
Slope of bed
Top width of the channel
Time
Shear velocity

Average or mean velocity
Critical velocity
Local velocity
width

vii

lb
lb
lb
lb

lb
lb

ft/s 2

ft
ft
ft
ft

ft
ft
ft

ft/s 2

ft3/ s
ft3/ s

ft

ft
ft

ft

ft
slug

ft
lb/ft2

lb/ft 2

ft 3 /s
ft3/ s

ft

ft

ft
5

ft/s

ft/s
ft/s
ft/s
ft



Svmbol

Wo
wt
x
y

Yr
Z

z
a
y
~E

~h

e
1C

Il
u
P
't

'to

Explaoatioo

width of overflow section
Weight of water
Horizontal coordinate direction
Vertical coordinate direction
Depth to center of pressure
Elevation
Distance f"rom datum to culvert invert
Kinetic energy coefficient or Cariolis coefficient
Specific weight of the fluid
Energy loss
Change in water-surface elevation
Slope angle of bed or angle of V-notch weir
von Karman constant
Dynamic viscosity
Kinematic viscosity
Density of the fluid
Shear stress
Shear stress at the bed

viii

llnit.

ft
lb
ft
ft
ft
ft
ft

lb/ft 3
ft
ft

lb s/ft 2 , slug/s ft
ft2/ s

slugs/ft 3

lb/ft2

lb/ft 2
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BASIC HYDRAULIC PRINCIPLES OF OPEN-CHANNEL FLOW

by Harvey E. Jobson and David C. Froehlich

ABSTRACT

The three basic principles of open-channel-flow analysis--the conserva
tion of mass, energy, and momentum--are derived, explained, and applied to
solve problems of open-channel flow. These principles are introduced at a
level that can be comprehended by a person with an understanding of the prin
ciples of physics and mechanics equivalent to that presented in the.first
college level course of the subject. The reader is assumed to have a working
knowledge of algebra and plane geometry as well as some knowledge of calculus.

Once the principles have been derived, a number of example applications
are presented that illustrate the computation of flow through culverts and
bridges, and over structures, such as dams and weirs.

Because resistance to flow is a major obstacle to the successful appli
cation of the energy principle to open-channel flow, procedures are outlined
for the rational selection of flow-resistance coefficients. The principle of
specific energy is shown to be useful in the prediction of water-surface
profiles both in the qualitative and quantitative sense.

INTRODUCTION

Most of the principles and concepts presented in a beginning level
college course in fluid mechanics are presented herein, but their application
is focused on open-channel hydraulics. Some concepts that are unique to open
channels--for example, specific energy and channel roughness--are developed in
somewhat more detail here than would be expected in an introductory college
course.

It is assumed that the reader .is familiar with the physical principles
of mechanics, at least to the level covered by a beginning college physics
book. The reader also is assumed to have a working knowledge of algebra and
trigonometry and to comprehend simple derivatives and integrations.

The emphasis of this text is on teaching the application of the theory
of hydraulics to solving practical problems and not on the standard techniques
used in problem solutions. The final equations developed in this text are
frequently used as the starting point in other chapters of Book 3 of the
Techniques of Water-Resources Investigations of the U.S. Geological Survey.

Manuscript approved for publication November 17, 1988.
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PART I - BASIC PRINCIPLES OF HYDRAULICS FOR AN IDEAL FLUID

Lesson 1 - Fluid Properties

All quantities used in this report can be defined in terms of three
basic units (length (foot), time (second), and mass (slug». Another quantity
that is commonly used is force (pound), but the units of this quantity are
defined in terms of mass and acceleration.

The weight on earth (force) of a mass of one slug is defined to be 32.2
pounds (lb). Therefore, the units of pounds force are equivalent to th~ units
of slug feet per second squared (slug ft/s 2 ) or

Force = F = 32.2 lb = Mg = (1 slug) 32.2 ft/s 2 ,

where the mass of the body is M, and g is the acceleration of gravity (3'2.2

ft/s 2 ) .

Because fluid does not have a definite form and specific particles of
fluid are difficult to identify, it is customary to work with the weight' or
mass of fluid per unit volume. The mass of a fluid per unit volume is defined
as its density (p):

Density p
Mass of fluid (slugs)

Volume of fluid (ft 3 )

The specific (unit) weight of a fluid y is defined as:

Specific weight y
Weight of fluid (lb)

Volume of fluid (ft 3 )

The specific gravity of a fluid is defined as the ratio of the density
of the fluid to the density of water at standard conditions (1.94 slugs/ft 3 )-
that is,

Specific Gravity S = density of fluid (slugs/ft 3 )

g density of water (slugs/ft 3 )

Because it is a ratio, specific gravity is unitless. By multiplying both the
numerator and the denominator of the expression for the specific gravity by g,
it is seen that the specific gravity also is equal to the ratio of specific
weights,

slug ft)
s2

Sg
Yf (lb/ft 3 )

Yw (lb/ ft 3)

in which the subscripts f and w refer to the fluid and water, respectively. A
fluid is a substance that can flow. Specifically, this means that it continu
ally deforms as long as a shearing stress is applied and that the internal
shear stress is a function of the rate of deformation rather than the amount
of deformation as in a solid. A Newtonian fluid is a substance in which the
internal shear stress is determined as

2
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in which ~ is the shear stress (lb/ft2 ), av is the

that occurs over a small distance ay (ft), and the

( 1-1)

change in velocity (ft/s)

d
. . . s lb

ynamlc VlSCOSlty ~ ----2- or
ft

•
slug

is a specific fluid property, which is a measure of its resistance to
s ft
deformation (shear or flow). Table 1-1 contains some tabulated viscosities of
fluids and gases. The kinematic viscosity V is defined as

Figure 1-1 shows a free body diagram of an: isolated block of fluid of
height y, width dx, and thickness of 1 foot. Figure ~-1 is called a free-body
diagram. A free-body diagram is a cutaway view of the fluid or object in
which the effect of any surfac~ that is cut is replaced by the forces exerted
on that surface. For example, the bottom surfac~ could exert a shear force
(~dx(l» on the fluid and a pressure force (pdx(l». These are the only
forces the water beneath could exert on the block of fluid. The fluid is at
rest, therefore, all shear stresses (~) are zero' (see~ equation 1-1) ..

•

•

•

•

v

1_

V

WI

I
---r

I- dx-l

~ slug/s ft

p slug/ft 3

,

Figufe l-l.--Free-body diagram of
fluid element.

•

•

•

•

The pressure (p) at the bottom of the block in figure 1-1 can be com-
- puted as follows. Because the sides are vertical and the shear stress is

zero, the weight (wt) is balanced by the pressure at the bottom times the area
of the bottom of the block or

wt pdx (1),

but the weight is

wt yVolume y ydx(l)
or

yydx (1) pdx(l) ;
therefore

p = y y, (1-2)

which shows that in a fluid at rest, the pressure increases linearly with
depth below the surface.

3



Table l-l.--Mechanical properties of SQme fluids

[ft 3 , cubic fQ~t; Ib/ft 3 , PQunds per cubic fQQt; s Ib, secQnd times pQund;
of, degrees Fahrenheit]

(A) SQme prQperties Qf air at atmQspheric pressure

Temperature
of

o
40
80

120

Density
slug/ft 3

p

0.00268
.00247
.00228
.00215

Specific weight
Ib/ft 3

y

0.0862
.0794
.0735
.0684

Kinematic visCQsity
ft2/ s

v

12.6 x 10-5

14.6 x 10-5

16.9 x 10-5

18.9 x 10-5

(B) Mechanical prQperties Qf water at atmQspheric pressure

Temperature
of

32
40
50
60
70
80
90

100
120

Density Specific weight Dynamic visCQsity
slug/ft 3 Ib/ft 3 s Ib/ft2

P y Il

1. 94 62.4 3.75 x 10-5

1. 94 62.4 3.24 x 10-5

1. 94 62.4 2.74 x 10-5

1. 94 62.4 2.36 x 10-5

1. 94 62.3 2.04 x 10-5

1. 93 62.2 1. 80 x 10- 5

1. 93 62.1 1. 59 x 10-5

1. 93 62.0 1. 42 x 10-5

1.92 61. 7 1.17 x 10-5

4
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Table l-i.--Mechanical ~ro~erties of some fluids--continued

(C) Specific gravity and kinematic viscosity of certain liquids
(Kinematic viscosity = tabular value x 10-5 )

•

•

•

•

Temperature
of

40
60
80

100

Temperature
of

40
60
80

100

Medium
Carbon tetrachloride lubricating oil

Kinematic Kinematic
Specific viscosity Specific viscosity
gravity ft2/ s gravity ft2/ s

Sg V Sg v

1. 621 0.810 0.905 477
1. 595 .700 .896 188
1. 569 .607 .888 94
1. 542 .530 .882 49.2

Medium fuel oil Regular gasoline
Kinematic Kinematic

Specific viscosity Specific viscosity
gravity ft2/ s gravity ft2/ s

Sg V Sg V

0.865 6.55 0.738 0.810
.858 4.75 .728 .730
.851 3.65 .719 ' .660
.843 2.78 .710 .600

• (D) Specific gravity and kinematic viscosity of some
other liquids

•

•

•

i.

Liquid and temperature

Turpentine at 68 of
Linseed oil at 86 of
Ethyl alcohol at 68 of
Benzene at 68 of
Glycerin at 68 of
Castor oil at 68 of
Light machinery oil at 62 of

5

Specific
gravity

Sg

0.862
.925
.789
.879

1. 2 62
.960
.907

Kinematic
viscosity

ft2/ s
v

1. 86
38.6
1. 65
0.802

711
1,110

147



PROBLEMS

1. Compute your mass in slugs.

2. The density of alcohol is 1.53 slugs/ft 3 . Calculate its specific weight
and specific gravity.

6
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•
3. A stream gager falls in the river and gets his boots full of water. He

manages to get to shore but his boots are still full of water. What is
the maximum pressure inside his boots when he stands up? His boots are 3
feet high.

•

•

•

•

3 II

•
4. The inside of a pipe, which has an inside diameter of 6 inches, is coated

with heavy oil. A 2-lb cylinder 6 inches long and 5.98 inches in diame
ter falls through the vertical pipe at a rate of 0.15 ft/s. Calculate
the dynamic viscosity of the oil.

~6in=l

•

•

•

•

T
6 in

1

7



Lesson 2 - Forces on Submerged Objects

Only fiuids at rest will be dealt with in this lesson so no tangential
(shear) forces are exerted, and hence all forces are normal to the free body
surfaces in question. Consider the force on a vertical rectangular gate as
illustrated in figure 2-1. As seen from equation 1-2, the pressure increases
with increasing distance below the water surface; hence, the force (dF) on a
narrow strip of the gate of height dy and width W is computed as

dF = P dA = yy W dy.

Wata, surfaea

v,

Figure 2-1.--Pressure prism for
vertical rectangular
gate.

a,. YO ----

The total force on the vertical surface may be computed as the sum of
all of the differential force values (dF on fig. 2-1). Hence, the total hori
zontal force on the surface is

F (2-1)

Another technique to compute the force is based on the fact that the
force is equal to the volume of the pressure prism defined by the solid abcdef
in figure 2-1. The force on any submerged surface is equal to the volume of
the pressure prism. The pressure prism is the solid with a base equal to the
area of the surface in contact between the gate and the water and with a
height equal to the pressure on the surface. It is often easier to visualize
the pressure prism and compute its volume than to integrate an expression such
as the equation for dF. For example, the pressure prism in figure 2-1 is a
solid of triangular shape and width W. The area of the base is the area of
the triangle with one side equal to D and the other side equal to yo. For
complex shapes it is usually possible to break up the pressure prism into
simpler geometric shapes and compute the volume of each simple shape. The
total force is then the sum of the volumes.

A third way to visualize the force on a surface is that it is equal to
pressure at the centroid of the wetted area (called the center of pressure,
Cp , see fig. 2-1) times that area. The total force on an object can always be
correctly computed using this approach also. On figure 2-1 the wetted area is

8
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•
a rectangle (bcfe), which has its centroid at D/2 feet below the surface. The
force is therefore

Example:

F Pc A (-yD/2) (DW).

•
As an example, the horizontal and vertical components of the force of

the water on the 4-foot wide gate shown in figure 2-2 will be computed. The
pressure prism for the horizontal force is shown on the figure with a height
defined by abc d a and a base of 4 feet by 8 feet.

•

•
Figure 2-2.--Pressure prism for a

submerged gate 4 feet
wide .

•

•

....
N

9 ...............................--'---'

Solution:

The volume of the pressure prism may be obtained by breaking it into a
triangle with sides of 81lb/ft2 and 8 feet and a rectangle with sides of
41lb/ft2 and 8 feet. The total horizontal force, FH, of the water on the
vertical plane c d x 4 feet is then computed as the sum of these two volumes.

The fluid force on this plane is the same as the horizontal component of the
force of the water on the gate because there are no shear stresses when the
fluid is at rest.

•
Jti (8) (4) + 41 (8) (4)
2

2561 = 15,974 lb.

•

•

The vertical force of the water, Fv, on the plane d e x 4 feet is
computed from the volume of the pressure prism defined by the points d e f g d
and the 4-foot width.

Fv = 121 (7) (4) = 3361 = 20,966 lb.

This force supports the weight of the water in the volume c dec x 4 feet;
the balance being the force exerted on the gate. The vertical force of the
water on the gate is therefore

Fv = [121 (7) (4)] - [( 8 / 2 )1 (7) (4) ]

9

13,978 lb.



The vertical component of force on any area is equal to the weight of
that volume of fluid that would extend vertically from the area to the free
surface. As a result of this, the buoyant force on any object is equal to the
weight of the water displaced.

The total resultant force is

FR = ~Fv2 + FH2 = 340.2y= 21,226 lb.

Another way to compute the resultant force is to draw the pressure prism
as shown in figure 2-3. This time the force on the surface b c will be com
puted directly and it should be the resultant force on the gate. As before,
it is natural to break the pressure prism into a triangle with sides 8ylb/ft 2

and 10.63 feet and a rectangle with sides of 4ylb/ft2 and 10.63 feet. Notice
one side is 10.63 feet long in this case rather than 8 feet long when looking
at only the horizontal component. The volume of the pressure prism is

FR = ~ (10.63)4 + 4y (10.63)4 340.2y= 21,226 lb,

which is the same result as obtained above.

Figure 2-3.--Pressure prism to compute
the total force of the
water on a 4-foot wide
gate.

4 feelt----)

Forces not only have a magnitude and direction but a line of action as
well. The line of action is the location where a single resultant force must
be applied to have the same effect on a body as the distributed forces it
replaces. For example, the center of gravity of a solid body is the point
where a single force must be applied to the body to counter its weight without
causing a torque (or moment) on the body.

Consider the line of action of the resultant pressure force on the
surface in figure 2-1. The resultant force F must act at a point such that
its moment (or torque) about any point is equal to the sum of the moments of
each small force dF. Sum the moments about the line b-e and set them equal to
F times Yr to determine the distance of the line of action of the resultant
force below the water surface (Yr).

10



Notice the line of action is through .the center of gravity of the pressure
prism abcdef. This will always be the case. Complex pressure prisms can
usually be subdivided into simpler shapes for which the center of gravity can
be easily determined. The resultant line of action is then obtained by
summing the moments of each subvolume about a convenient reference point.

•

•

•

F Yr

from which

Yr = 2/3 D. (2-3)

•

•

Example:

Compute the location of the resultant force of the water on the gate
shown in figure 2-3.

Solution:

The location of the force due the rectangular part of the pressure prism
(FR1) in figure 2-3 is located 5.32 feet from the top of the gate. The resul-

tant force, FR2' due to the triangular part of the pressure prism is located
7.09 feet from the top of the gate. The total resultant force is located by
summing moments.

•
or

FR(Y) FR1 (5.32) + FR2 (7.09)

•

•

•

•

•

170.1y(5.32) + 170.1Y(7.09)
Y = = 6.20 feet,

340.21

so the resultant force is located 6.20 feet from the top of the gate, which is
between FR1 and FR2 as would be expected.

11



PROBLEMS

1. Determine the total horizontal water-pressure force on a I-foot wide
section of the dam shown below. If this distributed pressure were
replaced by a single resultant hydrostatic force, at what distance below
the water surface y would it be considered to act7

12



•

•

•

2. Determine the magnitude and location of the resultant water-pressure
force acting on a 1-foot wide section of the gate shown below.

Water surface

5 ft

10 It Gate

•

•

•

•

•

•

•

•
13



3. Compute both the horizontal and vertical hydrostatic forces acting on a
I-foot wide section of the sloping rectangular gate shown below.

14
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•

•

•

•

•

•

•

•

•

•

4. compute the net horizontal force acting on a I-foot wide section of the
gate separating two tanks as shown below. The specific gravity of the
oil in the right-hand tank is 0.750.

15



5. The quarter cylinder is 10 feet long. Calculate the horizontal and
vertical components of the forces acting on the cylinder.

Water lurface

8 It

1

16
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•
Lesson 3 - Similitude and Dimensional Analysis

Similitude

•

Many approximations are made in analyzing any but the simplest of flow
problems. And for complex situations it is usually desirable to test the
validity of the computations before large investments in hydraulic structures
are made. In many cases this validity is first checked by use of physical
models of proposed s,tructures. It costs very little to build and test a model
of a structure in comparison to the cost of building a prototype, which may
not function as desLred. On the other hand, analytical computations are cheap
in comparison to bu~ldini and testing a scale model, so models are only built
where the validity of the' computations are in doubt.

•
Although the tJasic 'theory for interpretation of model results is quite

simple, it is seldom poss;ible to design and operate a flow model from theory
alone. In general, :only by use of experience, judgement, and patience can
correct prototype behavidr be predicted from model results. Similarity of
flows between the model and prototype requires that certain laws of similitude
be·satisfied. I

•

•

There are man~ types of similarity, all of which must be obtained if
complete similarity is to. exist between fluid phenomena. The first of these
is geometric simila~ity, ~hich states that model and prototype must have the
same shape and, thereforel, that the ratios between corresponding lengths in
the model and prototyPe a're the same. In the model and prototype of figure
3-1, for example, ge~metric simila~ity exists if

I

It follows that th~ requirements for geometric similarity are met if the
ratio of all linear dimensions in the model are the same as in the prototype.

Figure 3-1.--Flow through constriction,
model, and prototype.

Model

Prototype
l~
Bp bp

_UJL.----l..__
Vp-'"

•

•

• Corollaries of geometric similarity are that corresponding areas vary
with the squares of their linear dimensions,

•
Am = (lm)2
Ap Ip

and that volumes vary with the cubes of their linear dimensions.

•
17



Consider now the flows through the model and prototype, figure 3-1. If
the ratio of corresponding velocities and accelerations are the same through
out the flow, the two flows are said to possess kinematic similarity. For
kinematically similar flows, the streamline patterns will be similar in shape.

In order to maintain geometric and kinematic similarity between the flow
pictures, the forces acting on the corresponding fluid masses must be related
by ratios similar to those above this similarity is known as dynamic
similarity. The forces that may exist in a fluid flow are those of pressure,
Fp, gravity, Fg , viscosity, Fv , elasticity, FE, and surface tension, FT. The
vector sum of all forces acting on a fluid mass must equal its mass times its
acceleration, which is the inertial force, Fl. Written in mathematical terms
for the prototype

(Fp + Fg + Fv + FE + FT = FI = MI)p ,

in which M = mass of the fluid parcel and I = acceleration of the fluid
parcel. Of course an identical equation can be written for a mass of fluid in
the model. For the ratio of accelerations (and therefore velocities) to be
similar between the model and prototype requires that the ratio of inertial
forces be similar, or

--+
(FI)m
--+

(FI)p

--+
Mm 1 m

--+
Mp I p

--+
(F p
--+

(F p

--+
+ F g

--+
+ F g

--+
+ F v +

--+
+ F v +

The ratio of the inertial forces will be constant if the ratio of the inertial
force to each component force is constant, so dividing the inertial force by
each component force one sees that dynamic and kinematic similarity can only
be achieved provided that

which states that the accelerations (FI) due to pressure forces (Fp) must be
similar in both the model and prototype and that

which states that the accelerations due to viscous forces must be similar,
etc.

Each of the forces is governed by relations between the dynamic and
kinematic properties of the flow and by physical properties of the fluid. For
example, the viscous force is given by the definition of viscosity (equation
1-1)

6v
(1-1)Fv 't A Jl- A

6y

or

Fv Jl ~ 12 Jl v1
1

18



where v = characteristic velocity and 1 = a characteristic length. Because
the ratios of all velocities and lengths in model and prototype are equal, it
theoretically makes no difference which length or velocity is used in the
equation. The generalized expressions for the forces are as follows

Pressure force, Fp pI2

• Inertial force, FI MI

•

Gravity force, Fg

Viscous force, Fv
6.v

J..L-A
6.y J..Lvl

•

Elastic force, FE = EA = E1 2

Surface tension force, FT = crl

in which p = pressure, M = mass, E = elasticity, and cr
per unit length.

surface tension force

names.

•

Each of the five force ratios, which are dimensionless numbers, have
These are as follows: I

!I. _ pv2 _
- - square of the Euler number

Fp 6.P

•
FI
-=
Fv

vpl--=
J..L

Reynolds number

Square of Froude number

•

•

•

•

pv
2

--E Square of the Mach number

FT _ plv2 _
- - Weber number
FT cr

Fortunately in most engineering problems for open-channel flow, the
compressibility and surface tension effects can be ignored so only the Froude,
Reynolds, and Euler numbers are important. The Euler number can be ignored
because if four of the five ratios are satisfied, the fifth is automatically
satisfied because the inertial force is the sum of the other forces.

In these ratios, v and 1 may be any velocity and length provided the
same quantities are used in both the model and prototype. In open-channel
flow, the depth of flow is commonly used for the length term and the mean
velocity for the velocity term.

19



Complete similarity is usually impossible to attain even when only the
Froude number and the Reynolds number are significant. For example, if in
figure 3-1 the prototype velocity and depth are 8 ft/s and 10 feet", respec
tively, can both the Reynolds number and Froude number be the same in the
model and the prototype? The Reynolds number for the prototype at 70 of is

~8-=..::x-=.1..:..0_x::.:....=.1.:...;:;,.94..:.. 6
- = 7.6 x 10

2.04 x 10-5

and the Froude number for the prototype is

8

..J32.2 x 10
0.45

If water is used as the fluid in model and prototype, then density and
viscosity are the same for both cases. If a depth of 0.5 was selected for the
model, the corresponding velocity for the Froude numbers to be the same would
be 1.8 ft/s. With a model depth of 0.5 foot, the velocity in the model would
have to be 158 ft/s to have the Reynolds number in both the model and proto
type to be equal.

From a practical viewpoint, equality of Reynolds numbers cannot be
achieved for model and prototype in open-channel flow so model studies are
limited to those cases for which the effect of viscosity can be neglected.
This is generally true for highly turbulent flows that occur when the model
Reynolds number is above 10 6 .

Froude number similarity can be easily achieved so the model approach is
ideal for rapidly varied flow problems where the gravity force dominates the
flow. The discharge coefficients for darns, culverts, and contracted openings
have all been defined by model studies and are assumed to apply to full scale
situations with an equal Froude number and geometric similarity.

Example:

Laboratory tests were conducted on a box culvert. It is known that
dynamic similarity will be achieved if the Froude number in both the labora
tory and field are equal. A 1/10 scale model is built and tested. Under test
conditions, 'the laboratory flow rate is measured as 1.0 ft 3 /s, the velocity at
the wingwall was 1.3 ft/s and it required 1.6 seconds for a water parcel to
move through the culvert. For the prototype culvert operating under similar
conditions, calculate the flow rate, the velocity at the wingwall, and the
time required for a water parcel to move through the culvert.

Solution:

Because the Froude number in the model and prototype must be equal

or

v ~f!£=v _flOm'.JT;;: m'JT

20
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•

•

•

So any velocity in the prototype will be 3.16 times the corresponding velocity
in the model, and the velocity at the wingwall will be 3.16 (1.3) = 4.11 ft/s
in the prototype ..

As will be shown later in the course, the discharge (Q) can always be
computed as the product of the velocity (V) times the flow area (A) and the
area is proportional to the product of two lengths so

.92. _~ _ ~ .!.e.:.
Qm - VmAm - Vm 1m2

or

( 10) 2Qp = Qm (3.16) :L = 316 Qm·

The discharge in the prototype under test conditions will be 316 ft 3 /s.

•
The time for a parcel of water to move

distance between the points 1 divided by the
it traverses the path between the points so

between
average

( 3.
1
16 )

t~o points. is the
veQocity of the water as

I
I,
I
1= 3.16

•

•

•

•

•

~.

The time for a parcel to pass through the prototype structure will be 3.16
(1.6) = 5.06 seconds.

pimensional Analysis

Most variables used in engineering are expressed in terms of three
dimensions. These basic dimensions are force (F), time (T), and length (L)
In this section the "brackets" mean "the dimensions of"

Example: the dimensions of pressure can be designated as

F
[p] = 2'

L

All rat~onal equations (those developed by basic laws of physics) must
balance in magnitude and must also be dimensionally homogeneous. That is, the
dimensions of the left side of a rational equation must be the same as the
dimensions on the right side and each term in the equation must have the same
dimension.

In 1915 Buckingham showed that the number of independent dimensionless
groups of variables (dimensionless parameters) needed to correlate the vari
ables in a given process is equal to the number of variables involved minus
the number of basic dimensions included in the variables.

Example: If it is known from experience or from experimental results
that the drag force £ of a fluid moving past a sphere is a function of the
velocity ~, mass density ~, viscosity U, and .the diameter U, then five vari
ables (F, V, p, ~, D) are involved and by inspecting the dimensions of each of
these variables it is seen that thIea basic dimensions (L, F, T) are involved.
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Thus, by the Buckingham theo~em one should be able to organize the five vari
ables into two basic groupings for correlating experimental results.

The key to successful application of dimensional analysis is to select
all necessary variables. Sometimes this can be done by looking at the appro
priate physical laws that govern the process. If the appropriate physical
laws are not available, a preliminary test can be run to gather all possible
significant data, combine the variables using dimensional analysis, and
discard those that do not have much impact. This may be done in advance by
examining physical evidence of other experiments.

Repeating - the key to practical use of dimensional analysis is to
select only those variables that are significant to the problem.

Once the variables are selected, there are numerous methods for combin
ing the variables such that each remaining parameter is dimensionless. A
process that is easy and reveals the process is outlined and applied below.

Keep in mind what the goal is to reduce the number of separate variables
involved in the problem to the smallest number of independent dimensionless
groups of variables (dimensionless parameters) .

Rules of the game:

1. Identify all significant variables a~sociated with the problem and
write the functional equation.

Z = f (V, D, X, Y)

2. Select a dimension (F, L, T) you wish to eliminate and a variable
that contains this dimension. Then by inspection combine the vari
able with all other variables that contain the dimension in such a
way that the new terms do not contain that dimension.

Then select another dimension and variable and repeat process above.

If all~ dimensions (F, L, T) are involved, the manipulation is
performed three times.

HINTS:

a. Get rid of F dimension first. If p is one of the variables, get
rid of the F first by combining p in an appropriate manner with
each variable that has the F dimension. (Remember Newton's law
that says force equals mass times acceleration so [F] = M L/T 2 in

FT2
which M is mass so [M] ~.) Use a power of p necessary to

cancel the force dimension. Combine p only with the variables that
contain F. The power of p may vary from term to term.

b. If velocity is one of the variables present, get rid of the T
dimension (as in a above) .

NOTE: If only one variable in the entire group of variables has
the T (time) dimension, it is usually advisable to add the
acceleration of gravity (g) to the list of significant vari
ables. (It is usually part of the driving mechanism for the
flow. )
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•

•

•

c. If depth is one of the variables, combine it with all terms that
have the L dimension, and eliminate all L dimensions.

d. ~ all terms are dimensionless, it is perfectly legal to take
terms to any power if it is convenient to do so. Remember each
term is dimensionless so it does not matter if it is raised to a
power and/or inverted.

Example:

Consider all fluid variables that might be significant in a general flow
situation in which pressure difference between two points in the flow field is
expected to be a function of V, D, p, ~, E, cr, and y.

E bulk modulus of elasticity, F/L2 , cr = surface tension F/L.

Solution:

Because the difference in pressure (~P) is the main variable of
interest, place it on the left side of the equation

~p = fl (V, D, p, ~, E, cr, ~

in which fl means ~ is a function of the variables in the parentheses.
Display each variable and its dimension.

[~P]
F

[V]
L

[D] [p]
FT2

L2
L

L4T•
[~]

FT
[E]

F [cr] F
[y]

F

L2 L2 L L3

•

•

•

•

•

l. Eliminate F dimension by dividing appropriate terms by some power of p
(p = M/L3 FT2 /L 4)

[~: ] f2 ( V, l:!. E cr
~)D, p' p' p'

[~: ] F L4 L2

L2FT2 T2

[~ ] FT L4 L2

L2FT2 T2

[} ] F L4 L2

L2 FT2 T2

[~J F L4 L3

LFT2 = T2

[tJ F L4 L
L3FT2 T2
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2. Eliminate T using some power of V

[:~J

[::2J
[~J

[p~2J

f 3 ( l!:.......L....Q......::L)D, pV' pv2' pv2' pv2

(dimensionless)

L2 T--= L
T L

(dimensionless)

[p~2J

[~J

L

1

L

3. Eliminate L using appropriate power of D

[:~J

[~J

[P~D ]

[~J

L

L

L

L

L

L

(dimensionless)

(dimensionless)

(dimensionless)

Rearranging and inverting as necessary

V
f4 (e:;o, V PV2D

~--J ~p / p E/p' (j
,

Euler Reynolds Mach Weber Froude
number number number number number

If it is known that all of the parameters are significant, ~p is a function
of all four terms.

If viscosity is not significant, the Reynolds number can be eliminated.
If compressibility is not significant, the Mach number can be eliminated.
If surface tension is not significant, the Weber number can be eliminated.
If there is no free surface, the Froude number can be eliminated.
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PROBLEMS

1. A 1:2000 tidal model is operated to satisfy Froude's law. A velocity of
0.02 ft/s is observed in the model. What is the velocity at the corre
sponding point in the prototype? What length of time in the model corre
sponds to one day in the prototype?

2. An overflow spillway 1,600 feet long is designed to pass 120,000 ft 3 /s. A
1:20 model of the cross section of the structure is built in the labora
tory. It is assumed that the flow is two dimensional so only a 1-foot
section (rather than an BO-foot section) is built. Calculate the required
laboratory flow rate for the 1-foot section assuming that viscosity and
surface tension can be neglected. The pressure at a point in the model is
observed to be -1.0 psi (-0.067 atmosphere). How should this be inter
preted for the prototype?

25



3. Derive an expression for the drag force on a smooth object moving ..through
water if this force depends only upon the speed and size of object as well
as the density and viscosity of the water.

4. By dimensional analysis develop a discharge
relation for the discharge over a broad-crested
weir.
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Lesson 4 - The Energy Equation for an Ideal Fluid

Fluid flow may be either steady or unsteady .. Steady flow exists when
none of the variables in the flow problem change with time. If any of the
variables change with time, the condition of unsteady flow exists. The
following discussion deals with steady-flow problems.

Streamlines

A path line is the trace made by a single particle over a period of
time. A streamline is a curve that is tangent to the direction of velocity at
every point on the curve. For steady flow, a path line and a streamline are
identical.

Streamline pictures are both qualitative and quantitative in value. They
allow the flow to be visualized as well as regions of high and low velocity
and regions of high and low pressure to be located. They also allow the flow
to be visualized.

When streamlines are drawn for steady flow, they form a boundary across
which fluid particles do not pass. Thus, the space between the streamlines
becomes a tube or passageway called a streamtube. The flow in such a tube may
be treated as if it were isolated from the adjacent fluid. The use of the
streamtube concept broadens the application of fluid-flow principles; for
example, it allows treating apparently different problems such as flow in a
passageway and flow about an immersed object with the same laws.

The Continuity EQYation

The application of the principle of conservation of mass (matter can
neither be created nor destroyed) to a steady flow in a streamtube results in
the equation of continuity, which expresses the continuity of flow from
section to section of the streamtube. Consider the streamtube shown in figure
4-1 through which passes a steady flow of fluid. At section 1 the cross
sectional area is A1 and at section 2 the area is A2. If the mass of fluid

occupying position BB1 moves to position CC 1 in time dt, the conservation of
mass principle yields

where dS1 and dS2 are the displacement lengths at sections 1 and 2, respec
tively. Dividing by p dt because p is constant yields

however, dS1/dt and dS2/dt are the mean velocities of flow past sections 1 and
2, respectively; therefore,

( 4-1)

•

•

which is the equation of continuity. The product A x V is designated as the
flow rate, Q, and has units of cubic feet per second.
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The Energy Equation

The fundamental equation of motion for steady flow may be derived by
applying the principle of conservation of energy to individual fluid parcels,
At this point it will be assumed that an ideal fluid exists for which no
shearing stress occurs. In such a fluid there can be no frictional effects
between moving fluid layers or between these layers and the boundary walls,
and thus no cause for eddy formation or energy dissipation due to friction.
The assumption of an ideal fluid allows a fluid to be treated as an aggrega
tion of small particles that will support pressure fo~ces normal to their
faces but will slide over one another without resistance. Thus the motion of
these ideal fluid particles is analogous to the motion of a solid body on a
resistanceless plane; from this it may be concluded tbat unbalanced forces
existing on particles of an ideal fluid will result in the acceleration of
these particles according to Newton's Second Law.

Consider a l-lb parcel of fluid at Point A in figure 4-2. Compute the
amount of energy contalned by this parcel of fluid relative to some arbitrary
datum. The parcel contains energy of three types--kinetic, potential, and
pressure potential. The potential energy of the parcel (relative to the
datum)- is its weight times the distance above the datum or simply ZA foot
pound per pound. Notice the units of energy per pound are simply feet. In
hydraulics, the term for foot pound per pound is usually called head, or the
potential energy head of parcel A is ZA foot. The second form of energy is
called pressure potential. If 1 Ib of fluid at A was placed into a plastic
bag, this fluid could be lifted to the water surface without expending any
energy because the fluid is neutrally buoyant and for an ideal fluid there is
no resistance to motion. Because the parcel at A could exchange places with
the parcel at the water surface without the expenditure of energy, its effec
tive potential energy per pound is (ZA + YA) in which YA is also equal to the
pressure at point A divided by the unit weight (equation 1-2). This term is
called the pressure head. Notice that the effective potential energy for any
parcel of fluid (or streamline) at section A is the same and equal to the sum

Figure 4-2.--Flow of an ideal fluid
in an open channel.
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of the water depth plus the elevation of the bed above the datum. The sum of
these two terms is called the piezometric (or hydraulic) head and for open
channels its value is equal to the elevation of the water surface above the
datum.

The kinetic energy of a I-lb object moving at velocity VA is

•
Kinetic ene+gy

.Pound
KE/Vol
wt/Vol

pv2 _ v2 (ft/s)2
21 -2g ft/s 2 .

•

Notice the units of the kinetic energy per unit weight is also feet and the
term is called the velocity head.

The sum of all three energies (heads) is called the total head and is
often plotted pictorially as shown on figure 4-2. For an ideal fluid with no
resistance to motion, the total energy of a pound of fluid is constant at· all
points along the streamline. For steady flow, the total head (energy) at
section B, therefore, must be equal to that at section A or at any other
section. Expressed mathematically,

•
VB2
2g + YB + ZB = constant. (4-2)

•

•

•

•

•

•

Equation 4-2 is usually called the Bernoulli equation or simply the energy
equation. Almost all open-channel-flow problems are solved by the application
of equations 4-1 and 4-2; therefore, a complete understanding of these equa
tions is essential.

By assuming frictionless motion, the equations are considerably simpli
fied and more easily assimilated by the beginning student. In many cases,
these simplified equations allow solution of engineering problems to an
accuracy entirely adequate for practical purposes. In real situations where
friction is small, the frictionless assumption will give good results where
friction is large, it obviously will not.. The identification of these situa
tions is part of the art of fluid mechanics. However, as a general rule,
accelerative processes are efficient and involve very little loss of energy
while deceleration processes involve large losses of energy.

Example:

The discharge in the channel shown in figure 4-3 is 280 ft 3 /s. The
depth at section A is 5.0 feet and the width is 8.0 feet. At Section B the
width is 10.0 feet. Assuming ideal (frictionless) flow, compute the velocity
and depth at section B.

Solution:

The first step is to draw the total head line as shown on figure 4-3.
Because no energy is expended between sections A and B, the total head
(energy) line is horizontal. The streamline along the bed is one of an infi
nite number of streamlines that could be drawn for the flow between sections A
and B. Next, label the figure to show the kinetic, potential, and pressure
potential energy terms at each section for the streamline at the bottom. Next,
record the known values of each term of the energy equation on the figure and
compute the unknown values by use of equations 4-1 and/or 4-2.
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Figure 4-3.--Example problem of
flow down a ramp. ZA = 2.25 feel

I - ·Z;~l.Ofe;1___-.l __ ..Q!)~ ...1._

o ®
Q = 280 cubic feet per second

In this example the potential energies of a parcel on the bottom of the
channel at sections A and Bare 2.25 and 1.00 ft lb/lb, respectively, the
pressure potential energy of the parcel at A is 5.0 ft lb/lb, and the other
three terms are unknown. For an ideal fluid the velocity at all points in the
cross section are equal so VA = vA. It is easily seen that the continuity
equation can be used to determine the velocity at section A as

Q = 280 = VA(5) (8.0) = vA(5) (8)

or VA 7.0 ft/s so the velocity head (kinetic energy) at section A is seen to be

(7)2/2(32.2) = 0.761 ft lb/lb.

The total energy of a parcel of water passing section A on any streamline is
seen to be

0.761 + 5 + 2.25 = 8.011 ft lb/lb.

For frictionless flow, the total head is constant at all points along a
streamline, specifically the total energy of a parcel at cross-section B on
any ~treamline is equal to the total energy of a parcel at section A. The
total head is 8.011 feet so writing the energy equation from point A to B:

8.011

This one equation has two unknowns, vB and DB. However, the continuity equa
tion also applies at section B so that

Q = 280 = VB DB(10.0),

or solving for VB

VB vB
28
DB'

which can be combined with the energy equation to give

or

8.011 (28/DB)2/64.4 + DB + 1.0,

7.011
12.174

+ DB·
D2

B
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•
This is a cubic equation that may be solved by trial. In other words,
different values of DB are assumed until the right-hand side of the equation
is equal to 7.011. Below, the value of the tight-hand side is tabulated for
different depths.

DB(ft)
12.174

DB(ft)
12.174

D2 2 + D2
D2 2 + D2

10.0 10.12 2.0 5.043

• 8.0 8.19 1.8 5.557
7.0 7.248 1.5 6.911
6.75 7.017 1. 49 6.973

>* >*
6.74 7.008 1. 48 7.038
6.0 6.338 1. 30 8.503
4.0 4.761 1. 00 13.174

• Notice that a depth of either 6.743 or 1.484 feet satisfies the equation and
is possible for an ideal fluid. These are called alternate depths. Unless
some constriction downstream caused the water to back up, the flow would
accelerate as Shown on the figure and the smaller depth will occur. In this
case, the velocity at the section would be

•
and the velocity head is

280
10 (1. 484)

18.87 ft/s,

•
(18.87)2

64.4
5.527 ft lb/lb.

•

•

•

•

•

As can be seen, the total head at section B is

VB2
--- + DB + ZB = 5.527 + 1.484 + 1.0 = 8.011,
2g

the same as for section A so energy is conserved. A l-lb parcel of water
on the surface streamline contains 0.761 ft lb of kinetic energy and
2.25 + 5.0 = 7.25 ft lb of potential energy as it passes section A. As it
passes section B f it has only 1.0 + 1.484 = 2.484 ft lb of potential energy.
The difference 4.766 ft lb has been converted to kinetic energy so as it
passes section B it contains 0.761 + 4.766 = 5.527 ft lb of kinetic energy.
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PROBLEMS

1. 500 ft 3 /s of water flow in a rectangular open channel that is 20 feet wide
and 8 feet deep. After passing through a transition structure, the width
of the rectangular channel narrows to 15 feet and the bed raises as shown.
The velocity in the contracted section is found to be 6 ft/s.
(a) What is the water depth in the narrow channel?
(b) What are the velocity heads in each section?
(c) Draw and label the total and piezometric (water surface) head lines.
(d) How much does the bed elevation increase in the contracted section?

Wate, surface

B fl

2. Water stands 9 feet deep in a large tank. A hole with an area of 0.1 ft 2

is punched in the side of the tank 5 feet above the bottom.
(a) Compute the discharge from the hole.
(b) Draw and label the total and piezometric head lines.
(c) What is the velocity of the water as it hits the ground?
~: If the hole is rounded as shown, the answers you compute for an

ideal fluid will be correct to within about 1 percent.

Water surface

T
9 It
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3. compute the discharge in the 20-foot wide rectangular channel shown
below. Draw and label the total head line and the water surface near the
gate.

Total head

10 It

_ 41t

•

4., Compute the discharge and
depth in the contracted
section for the indicated
rectangular channel.

Plan view

100 It _ v = 3 Itfs 50 ft

•

•

•

•

4ft

Elevation 100 ft~~~~~~~~.....__ ?

-. - - _._.; - Elevation 99.90 ft _ t~
- -:-~-=-=---~--=-~~-::~
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PART II - STEADY UNIFORM FLOW OF REAL FLUIDS IN OPEN CHANNELS

Lesson 5 - Velocity Profiles

General

In 1883 Osborne Reynolds demonstrated that there are two distinctly
different types of fluid flow. He injected a fine threadlike stream of
colored liquid at the entrance to a large glass tube through which water was
flowing. When the velocity of flow in the tube was small, this colored liquid
was visible as a straight line throughout the length of the tube, thus showing
that the particles of water moved in parallel straight lines. But, as the
velocity of the water was gradually increased by permitting a greater quantity
to flow through the tube, there was a point at which the flow abruptly
changed. It was then seen that, instead of a single straight line, the parti
cles of the colored liquid were flowing in a very irregular fashion and form
ing numerous vortices. In a short time the color was diffused uniformly
throughout the tube so that no streamlines could be distinguished. Later
observations have shown that in this type of flow the velocities and pressures
continuously fluctuate.

The first type of flow is known as laminar, streamline, or viscous flow.
The significance of these terms is that the fluid appears to move by the slid
ing of layers or laminations of infinitesimal thickness rela'tive to adjacent
layers, that the particles move in definite and observable paths or stream
lines, and it is also a flow that is characteristic of a viscous fluid or at
least a flow in which viscosity plays a significant part. For laminar flow,
the shear stress is determined from the equation

(1-1)

The second type of flow, where single water parcels,move about within
the flow in an erratic manner, is known as turbulent flow. The distinguishing
characteristic of turbulence is its irregularity. There is no definite
frequency (as in wave action) or any observable pattern (as in the case of
eddies) .

Large eddies, swirls, and irregular movements of large bodies of fluid,
which can be traced to obvious sources of disturbance, do not constitute
turbulence but may be described as a disturbed flow. By contrast, turbulent
flow commonly occurs in streams that appear to be very smoothly flowing and in
which there is no detectable source of disturbance. The fluctuations of
velocity and pressure are furthermore comparatively small and can often be
detected only by special means of observation.

Reynolds Number

Reynolds was able to generalize his results and predict whether the flow
would be laminar or turbulent by use of a dimensionless ratio later called the
Reynolds number. The Reynolds number is the ratio of inertial to viscous
forces in the flow

Re
vpl

Jl
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in which v = velocity of flow, p = density of fluid, I = a characteristic
length dimension (depth for open-channel flow, diameter for pipe flow),
~ = dynamic viscosity, and v = kinematic viscosity (~/p).

The concept of a critical Reynolds number delineating the regimes of
laminar and turbulent flow is indeed a useful one in promoting concise gener
alization of certain flow phenomena. Applying this concept to the flow of ~
fluid in cylindrical QiQes, it is possible to predict that the flow will
generally be laminar if Re<2,100 and turbulent if Re >4,000. However, it is to
be emphasized that the critical Reynolds number is very much a function of
boundary geometry. For flow between parallel walls (using mean velocity v,
and spacing I), Re =1,000; for flow in a wide open channel (using mean veloc
ity V and depth D), Re = 500; for flow about a sphere (using approach velocity
V and diameter d), Re =1. Also noteworthy is the fact that such critical
Reynolds numbers must be determined experimentally; because of the obscure
origins of turbulence, analytical methods for predicting critical Reynolds
numbers have yet to be developed.

Laminar Flow

Laminar flow only occurs in open channels when the depths are very
small. It is often assumed to occur in sheet flow or flow over the ground
after a rainfall. Consider the uniform flow of constant depth D over a very
wide plane surface as illustrated on figure 5-1. Assume a unit weight of y
for the fluid, that the slope is small, the flow is laminar, and a width of W
feet.

wI

Figure 5-l.--Sheet flow over a wide
inclined plane of width W.

Because the flow is uniform, the acceleration of the mass of fluid
enclosed by abcd is ze~o and the sum of all forces on it must equal zero.
Summation of forces in a direction parallel to the bottom gives

LFs = 0 = Fl + wt sin a - F2 - ~LW.

Because the flow is uniform, the pressure forces (Fl and F2) cancel and the
component of the weight parallel to the flow must be balanced by the shear
force. This gives an expression for shear stress in open-channel flow

yL(D - y) W sin a = ~LW

or

•

•

~ = Y (D - y) sin a,

which is valid in either laminar or turbulent flow.
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For laminar flow, the shear stress is given by equation 1-1 that when
substituted into equation 5-2 yields an expression for the variation of veloc-
ity with distance from the bed .

dV
't = JJ. dY = "( (D - y) sin e.

separating the variables and integrating one obtains an expression for the
velocity profile in laminar, open-channel flow

v = t sin eJ (D - y) dy = t sin e (DY - 1) + C

where c is a constant. Because the velocity must be zero at the bed (fluid
clings to a solid surface), the value of c is zero. Thus the velocity distri-.
bution in laminar, open-channel flow is given by the parabolic equation

v :l sin
JJ.

. ( _ Y:::..
y

2
)e Dy (Lamina r) . (5-3)

The discharge per unit width is obtained by integrating again

JD .., D3
q = v dy = t sin e "3 .

o
.(5-4 )

The mean velocity is found by dividing the unit discharge by the cross
sectional area (D (1»

Turbulent Flow

v g,
D

:l sin
JJ.

D2
e 3 (5-5)

The expression for the shear stress given by equation 5-2 results simply
from a force balance and so it is valid in either laminar or turbulent flow.
In turbulent flow, however, the random particle movement causes additional
momentum transfer (or apparent shear) so that the shear stress relation 1-1 is
not valid. Prandtl developed a theory based on momentum transfer and assumed
the shear stress in turbulent flow is given by

2 ( ~Vy) 2'tturb = P I u

in which I is the distance each parcel of fluid moves from its mean position
during each excursion. This excursion distance is called the mixing length.
Because a boundary limits the excursion length of parcels, the mixing length
should be small near the bed or the surface and increase with distance from
the boundary. An equation for mixing length that predicts a value of zero at
both the bed and the surface and a maximum at middepth is

I = l( y "1 - y /D,
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in which y is measured from the bed upward and K is a constant called the von
Karman kappa value. The turbulent shear stress equation with the above equa
tion for mixing length can be substituted into equation 5-2 to obtain the most
popular expression for velocity distribution in turbulent flow,

2 2 ( ~yV)2 __pK Y (1 - y/D) u Y (D - y) sin e.

Rearranging

where ~o = shear stress at the bed. Because the shear at the bed is equal to

y.D sin e (see equation 5-2), the term V~o/p has the dimensions of velocity and

is called the shear velocity or friction velocity, u* = ~~o/P. The above

expression can be integrated by separating the variables to give the Prandtl
von Karman universal velocity distribution.law in turbulent flow

• v In (y/Yo)
K

(5-6)

•

•

where Yo is a constant of integration physically equal to the value of y at
which the velocity (from equation 5-6) is zero. For points closer to the bed
than Yo, equation 5-6 is not valid because the flow is laminar, not turbulent.
In fact, equation 5-6 indicates that the velocity is negative for values of y
less than Yo.

The value of K is generally assumed to have a value of approximately
0.4.

The discharge per unit width of channel is found by integrating the
velocity given by equation 5-6 over the range Yo to D:

• from which

q fD v dy

Yo

u* fD- In
K

Yo
(~) dy ,

q = In (e~o) (5-7)

where e = 2.718 ... (the base of natural logarithms). The average velocity in
the vertical section of a channel is found by dividing q by D

•
u* (D)V = £!. = - In --

D K eyo
(5-8 )

•

•

It is easily seen by comparing equations 5-6 and 5-8 that v is equal to
V when y is equal to Die, or approximately 0.368 D. It is common practice to
take single velocity observations in shallow streams at 0.6 the depth measured
from the surface. This corresponds closely to 0.368 D in equation 5-8.
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When the channel boundary is smooth, the value of the constant Yo has
been found to equal y/9u*. Substituting this value into equation 5-6 yields

and converting to common logarithms

(
9YU*)v = 5.75 u*log --y-- (smooth surfaces) (5-9)

for the velocity distribution of turbulent flow over a smooth surface where Y
is the kinematic viscosity. The 5.75 is equal to ln 10/0.4 and
1n x = (log x)ln 10.

When the boundary is rough, the constant Yo has been found to be approx
imately equal to k/30 where k is the effective height of the irregularities
forming the surface. Substituting this expression for Yo yields the universal
velocity distribution for rough boundaries,

v = 5.75u*10g (3~Y) (rough surfaces), (5-10)

where k is the effective height of the irregularities forming the surface.

Example:

A velocity of 3.5 ft/s is measured at a distance of 1.6 reet above the
bottom of a wide open channel that is 4.0 feet deep. The channel slope is
8 = 0.0003 radian. Assuming a fully developed turbulent flow over a rough
surface, compute the velocity at a point 0.5 foot above the bed. See figure
5-2.

Water surface

Figure 5-2.~-Velocity distribution in
a fully developed, rough
turbulent flow.

Solution:

The velocity distribution in turbulent, rough flow is given by equation
5-10. To use this equation the value of shear velocity (u*) and the effective

height of the bed roughness k must be known. The shear velocity has been

defined as ~10/P where the bed shear stress 10 is given by equation 5-2 with
y = 0 so

10 = 62.4 (4.0 - 0.0) 0.0003 = 0.0749 lb/ft 2

and the shear velocity is

-'./0.0749
1. 94
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•
Because the velocity is given at one depth, k can be computed from equation
5-10 as follows:

3.5
30(1.6)

5.75 (0.1965) log k

•
giving

or

3.098
48

log k

• and

48-=
k

10 3 . 098 1,254

••

k = 0.0383 "ft.

With k and u* determined, equation 5-10 can be used to compute the velocity at

any depth. In particular at y = 0.5,

30 (0.5)
v = 5.75 (0.1965) log 0.0383 = 2.93 ft/s.

At Y 0.0383/30 0.00127 foot the velocity computed from equation 5-10 is

• u = 5.75 (0.1965) log (
.00127(30»)

.0383
= 0.0 ;

•

•

•

•

•

and for values of y less than 0.00127, equation 5-10 indicates a unreasonable
(negative) velocity.
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PROBLEMS

1. Water flows down an incline that slopes downward 1 foot for each 1,000
feet of horizontal distance. The water depth is 0.02 foot. What is the
unit discharge, the maximum velocity, the mean velocity, and the Reynolds
number? (Assume laminar flow and a water temperature of 60 of.)
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2. A wide channel carries a uniform flow at a depth of 5.0 feet on a slope of
0.0001. Compute the shear stress at the bed and the friction velocity.

3. The bottom for the channel in problem 2 is smooth and the water tempera
ture is 40 of. Compute and plot a curve showing the theoretical velocity
distribution. What is the mean velocity?

yft v

n nnnn141;

n {)?1

() 1

o ?

1 0

1 "i

1 A4

? n

~ ()

4 ()

"i ()
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4. Show that if velocity measurements in a deep natura.l stream are taken at
depths of O.2D and O.8D, then averaged where D is the total depth, the
result is nearly equivalent to substituting 0.368D in Equation 5-6.
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Lesson 6 - The Energy Equation Applied to Real Fluids

The total energy of a pound of water in an open channel can be expressed
as the sum of three forms of energy: the potential energy, the pressure
potential, and the kinetic energy. The potential energy per pound of fluid at
a section is represented as the distance of the channel bed above an arbitrary
datum. Because the units of the quantity of energy (foot pound per pound of
fluid) is feet, the energy term is commonly referred to as head and the poten
tial energy per pound of fluid is called the potential head. In figure 6-1
the potential head is shown as Zl at section 1 and Z2 at section 2.

The pressure potential is equal to the depth of flow (D1 and D2 on fig.
6-°1). The sum of the potential plus the pressure potential energies at a
cross section is called the piezometric or hydraulic head.

Figure 6-1.--Energy diagram for
open-channel flow.

Kinetic Energy

The kinetic energy per pound of fluid is called the velocity head and is
equal to v 2 /2g where v is the velocity of the fluid. For an ideal fluid, the
velocity of all parcels of fluid passing a section are the same so the veloc
ity head for any streamline or water parcel at a particular section is the
same. For a real fluid, the velocity varies over the cross section, small
near the boundaries and maximum near the surface and center of the cross
section. As a result, a parcel of fluid moving near the boundary-has less
kinetic energy (velocity head) than a parcel moving near midstream.

The average kinetic energy of all water parcels passing a section is
needed to apply the energy principle at a cross section. Because the kinetic
energy is proportional to the velocity squared, the average kinetic energy is
always greater than kinetic energy of a parcel moving at the average velocity
V. The average kinetic energy, per pound of fluid, can be computed from the
average velocity V, as

•
where a is defined as

kinetic energy
av2

2g

• a (6-1)
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in which A is the total cross-sectional area, ai is the area of a subsection
where the velocity is Vi, and a is called the kinetic energy coefficient or
the Coriolis coefficient (Chow, 1959, p. 27). Because the average of the
cubes of positive numbers will always be greater than the cube of the average,
the value of a will always exceed 1.0.

The value of a is determined by the var.iations of velocity in the cross
section with more uniform velocities yielding a closer to 1.0. Typical
values of the kinetic-energy coefficient, a, for open channels are given by
Chow (1959) as shown in table 6-1. For low velocities, the velocity head is
small, so a is frequently not considered in practical problems dealing with
regular channels.

Table 6.1--Kinetic energy correction coefficients for natural
channels.

Value of a
Channel type Minimum Average Maximum

Regular channels, flumes, spillways
Natural streams
Rivers under ice cover
River valleys, overflooded

1.10
1.15
1.20
1. 50

1.15
1. 30
1. 50
1. 75

1. 20
1. 50
2.00
2.00

The average energy per pound of real fluid is computed as the sum of the
piezometric head (D + Z) and the velocity head as av2/2g and is called the
total head, H, where

Energy Loss·

H
av2

2g
+ D + Z.

In an ideal fluid the total head at any point along the flow is constant
because no energy is expended in moving parcels of water from one section to
another. In a real fluid, however, energy must be expended in moving the
fluid parcels along streamlines so the total head must decrease as a parcel
moves downstream. The energy expended in moving the water from section 1 to
section 2 in figure 6-1 is indicated as h1 1 - 2 and is called the head loss.

Two modifications must be made in the Bernoulli (energy) equation
derived for an ideal fluid to make it applicable to real fluids. First, the
velocity head must be corrected for the nonuniform distribution of velocity by
use of the a coefficient and, second, the energy expenditure necessary to
move the water between sections must be accounted for. Therefore, the energy
equation for real fluids moving from section 1 to section 2 is written as

(6-2)
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Example:

Compute the discharge through the bridge constriction shown in figure 6-2.
The kinetic energy correction coefficients are 1.45 and 1.08 at sections 1 and
3, respectively, and all cross sections are rectangular. The head loss between
sections 1 and 2 is 0.25 foot due to boundary friction, and the head loss
between sections 2 and 3 is 0.35 foot because of entrance losses and boundary
friction. The bed at section 1 is 0.34 foot above the bed at section 3.

•
Figure 6-2.--Typical flow through

a bridge constriction.

(31

5.0 feet

___1-_
-Q

Section view6.5 feet

1
0.34 feet - ~ -, ,,;:E- 1
-T-----~ ---

III t21

•

-
Solution:

•

•

The first step, as always, is to roughly sketch the energy line and label
the known and unknown parts. As is seen in figure 6-2, the total energy expen
diture by a pound of water moving from section 1 to 3 is 0.25 + 0.35 = 0.60 ft
lb. Assuming the datum is at the channel bottom at section 3, the potential
energy at section 1 is seen to be 0.34 foot. Because both depths are given, the
total piezometric heads are known at both sections leaving only the two velocity
heads as unknowns. The continuity equation may be used to express each velocity
head in terms of the discharge and then the energy equation will contain only
one unknown, Q.

Apply the continuity equation

• Q
v3 = 5.0(40)

...2...
200

Then applying the energy equation

I-
I
I

I

( Q ) 2 1. 45 ( Q ) 2 1. 08 0 0 3
455 ~ + 6.5 + 0.34 = 200 64.4 + 5.0 + 0 + .25 + . 5,

,"

• 45



simplifying

giving

1.24 ~ (4.19 - 1.09) x 10-7 ,
64.4

Q2 = 4.00 x 10 6 or Q = 2,000 ft 3/s.

The relative size of the terms in the energy equation may be evaluated by
computing the size of the velocity heads. At gection 1 the velocity is

V1 .Q.. 4.39 and
U1V12

0.43 ft.
A1 2g

At section 3

V3 .Q...= 10.0 and U3V32
1. 68 ft.

A3 2g
,-
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PROBLEMS

1. The discharge over the spillway is
150 ft 3 /s per foot of width.

(a) Assuming a = 1.0, compute the
head loss between points A and
B and between points Band C.

(b) Accurately sketch and label the
total head line.

(c) Calculate the temperature rise
of the water passing from point

-A to C. (1 BTU will raise the
temperature of 1 lb of water 1
of and 1 BTU = 778 ft lb of

energy.o)

47
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(c) Accurately sketch and label the
total head line.

(a) Compute the discharge assuming all
at s are 1.0.

2. The measuring flume has rectangular
sections throughout and the head loss
between points A and B, hi, is

6h-6 II
Vb2

0.1 2g'hi

(b) The head loss between points Band
C is given by the same expression
as above except the coefficient,
0.1, is different. Compute the
coefficient for the expansion
loss.
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3. A flow.of 2.5 ft 3 /s/ft occurs in an infinitely long open channel with a
bottom slope of 10 ft/mi. The head loss per unit length is known to obey
the law:

v2
hi = 120 D'

By writing the energy equation between two points 1 mile apart, assuming
a = 1.0 and observing that the depth and velocity cannot increase indefi
nitely, compute the depth of flow.
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4. A flow of 50 ft 3 /s/ft exists in the river and the head loss per unit
length is g~ven by

hI

compute the water depth at point A assuming a 1.0.
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Lesson 7 - Flow Resistance

As indicated previously, real fluids differ from ideal fluids mainly
because of their resistance to movement, which results in an energy loss as
the water moves along the channel.' Accounting for this energy loss, or head
loss, is a major difficulty in hydraulic computations. Consider a flow in a
prismatic channel as illustrated in figure 7-1.

--------t-
"lV?/2g I hl-2

I
Figure 7-1.--Flow in a prismatic

open channel.

ZI_J l_
I. L I I

11) 121

Applying Newton's law to the water in this section of river, one obtains

IF = MI = F1 + wt So - F2 - PL ~o (7-1)

•
in which I = acceleration of the water mass, So = slope of bed (nearly equal
to sin e for small angles), P = perimeter of the wetted area. The components
of forces parallel to the bed are summed and set equal to the mass of water in
the section times its acceleration. The forces F1 and F2 are the forces
caused by the hydrostatic pressure at the ends of the section, wt is the
weight of the water.

•
The term PL ~o

through the channel.
in figure 7-1.

quantifies the resistance of the water to movement
It is the shearing force on the control volume pictured

•

The energy expended in overcoming friction when the control volume moves
downstream a distance of ds may be computed as the product of the resistance
force times the distance moved:

Energy Loss = PL ~o ds ft lb.

But the energy expended per pound of fluid in the control volume is the head
loss occurring over the distance ds and it is computed as the energy loss
divided by the weight of fluid so

•

•

hI
PL ~o ds

yLA
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where the hydraulic radius, R, is defined as the area divided by the wetted
perimeter and r = pg. The slope of the total energy line must be equal to the
head loss per unit length so

or rearranging

hl
-=
ds (:) 1

gR

Solving equation 7-2 for the shear stress, yields

~o = pg R Sf = Y R Sf

(7-2)

(7-3)

If the energy expenditure is due only to boundary friction, the slope of
the total energy line will be directly related to the boundary shear as
indicated in equation 7-3. This equation is valid for either uniform or
nonuniform flow as well as both steady and unsteady flow.

A special case occurs for steady uniform flow. In this case, equation
7-1 can be solved directly to obtain 7-3 by noting that force F1 is equal and
opposite to F2 and that the acceleration is zero. In this case,

wt So
~o = PL - = Y R So,

in which So is equal to Sf because the flow is uniform.

It has been observed in many experiments and in many different situa
tions that boundary shear is proportional to the square of the velocity for
turbulent flow. This empirical observation can be expressed as

(7-4)

by use of equation 7-2 because the density is constant.

As early as 1769, the French engineer Antoine Chezy ran extensive tests
on an earthen canal and the Seine River and concluded that

v = cfRS . (7-5)

Chezy apparently never had a course in dimensional analysis so he did not

worry about the fact that the dimensions of fRS and V are not the same. As a
result, he left out the gravity term. On the other hand, the concept of
gravitational acceleration was relatively new. At any rate, Chezy's equation
today is often written as

V (7-6)

in which C is called the Chezy resistance coefficient.
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After Chezy's formula became generally known, there was a lot of inter

est in developing formulas to predict the value of C. The most enduring of
the resulting empirical prediction formulas is usually attributed, wrongly
according to Henderson (1966, p. 96), to Robert Manning. After some modifica
tion, Manning's formula became

in which n is the Manning coefficient. According to Chow (1959, p. 98),
Manning developed his formula by combining seven formulas all based on Bazin's
data and verified it by 170 observations. Substituting equation 7-7 into
equation 7-5, the more common form of the Manning expression is

•
C - .l.:....i2. R1/6

- n ' (7-7 )

• v 1.49 R2/3 Sf1/2 .
n

(7-8 )

•
Combining the continuity equation with equation 7-8

Q = 1.49 AR2/3 Sf1/2 .
n

(7-9)

•

Notice that Manning was not too concerned about dimensional analysis
either. Equation 7-7 has the units ft/s on the left and ft 2 / 3 on the right;
thus, the units of n must be s/ft1 / 3 making n to appear to be a function ~f
time, which is not realistic. Assuming the 1.49 contains the square root of
the acceleration of gravity, Manning's n has the units of ft 1 / 6 . These units
are more logical because the resistance the resistance should increase as the
size of the roughness projections of the bed increase. Converting Manning's
equation to the SI system, the units of 1.49/n is converted to m1 / 3s from
ft 1 / 3s, so

• [1·
n
49 ftll3 sec]

or in the SI system

[
. 1m ] 113

3.28 ft

•

•

•

•

v = 1 R2/3 Sf1/2
n '

where the units of V are m/s and the units of R are meters. The numerical
value of n is considered to be the same in either system of units, and the
conversion is included in the formula.

The Manning (7-8) and Chezy (7-6) equations are the most common equa
tions used in the United States to describe resistance to flow in open
channels. Another expression developed for use in pipes is sometimes used in
open channels. This is the Darcy-Weisbach equation which can be written for
open channels as

(7-10 )

in which f is called the Darcy-Weisbach friction factor or simply the friction
factor.
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All three velocity equations, the Manning, the Chezy, and the Darcy
Weisbach, are based on the assumption that the shear stress is proportional to
the velocity squared and the energy dissipation is caused entirely by bounda~y

resistance.

Example:

Compute the depth of uniform flow in a trapezoidal channel with a 10
foot bottom width and side slopes of 1 vertical to 2 horizontal when the dis-
charge is 4,000 ft 3 /s. The channel slope is 0.002 and Manning's n = 0.013.

Solution:

Manning's equation relates discharge to area, hydraulic radius, and
friction slope

Discharge is given and the friction slope is equal to the bed slope because
the flow is uniform. The area and hydraulic radius can be expressed as func
tions of depth because the geometry is given. The area is computed as the
area of a rectangle 10 feet wide and 0 feet high plus two triangles 2 0 feet
wide at the top and 0 feet high so

A = 100 + 2(1/2 0 (20» = 100 + 20 2 .

The slope distance along the sides will be the square root of the sum of the
squares of the two other sides of the triangle so

P = 10 + 2 ~02 + (2D)2 = 10 + 2D ~.

Substituting these expressions into Manning's equation gives one complex equa
tion and one unknown that must be solved by trial. A solution may be obtained
by constructing a table as shown below in which values of depth are assumed
and discharges are computed from Manning's equation. The depth is selected as
the value that gives a discharge of 4,000 ft 3 /s. It is also convenient to
simplify Manning's equation as follows

Q
1.49 2/3 -fO:OO2 5.13 AR2 /3.0.013 AR

...JL ~ --L- B=AL.£ &.Q ~

6 132 36.83 3.58 2.34 1,585
8 208 45.78 4.54 2.74 2,925
9 252 50.25 5.02 2.93 3,784
9.1 256.6 50.70 5.06 2.95 3,878
9.2 261. 3 51.14 5.11 2.97 3,973

*< >*
9.3 266.0 51. 59 5.16 2.98 4,068

As can be determined by interpolation, a depth of 9.23 feet will deliver 4,000
ft 3 /s at uniform flow in the given channel.
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PROBLEMS

1. Explain .why a uniform flow cannot occur in either a frictionless or a
horizontal channel.

2. The figure shown is a cross section of a canal forming a portion of the
Colorado River Aqueduct that carries 1,600 ft 3 /s of water. The canal is
concrete lined with an n value of 0.014. What must be the grade of the
canal in feet per mile?

• 50.6 ft

•

e.

3. What would be the capacity of the canal of problem 2 if the grade were 1.2
ft/mi?

•

•

•
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4. If the flow in the canal of problem 2 was reduced to 800 ft 3 /s, what would
be the depth of water?

5. Compute the value of the Chezy C and the Darcy-Weisbach f for the canal of
problem 2.
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6. Construct a rating curve for the indicated channel. A rating curve

defines the relation of discharge to depth, or stage.

S; 0.0025

•

•

•

•

•

•

•

•

Waler surface

IT:-,oo",!
I- 50 ft -.j

n; 0.03
y A R

Qv

, II

5ft

5.1 ft

6ft

10 It

•
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Lesson 8 - Computations for Steady, Uniform Flow

Stream channels are rarely, if ever, uniform in nature. Contractions
and expansions of stream width and depth occur in random fashion as one
proceeds along the course of a stream channel. Despite these complexities,
the principles of hydraulics of steady, uniform flow can usually be applied
with only a few modifications to obtain satisfactory results.

The Geological Survey uses the Manning equation to determine discharges
in natural channels and the conveyance of the channel section, K, is defined
as

K (8-1)

So discharge in a channel may be expressed as

Q = VA = K {S , (8-2)

which is commonly referred to as the slope-conveyance method of computing
discharge.' The conveyance is a measure of the carrying capacity of the
channel section because it is directly proportional to the discharge, Q. The
slope S should be the slope of the energy grade line, Sf; but if the flow is
uniform, the slopes of the bed, water surface, and energy grade line are all
equal. In field applications the flow is assumed to be steady, which is
essentially true for the peak discharge of a flood wave moving down a channel.

The expression AR2 /3 is called the section factor for uniform flow.
From equations 8-1 and 8-2 it is seen that the section factor may be expressed
as

nQ

1. 49-{Sf
(8-3)

The right side of equation 8-3 contains the values of n, Q, and Sf, but the
left depends only on the geometry of the wetted area. Therefore, it shows
that for a given condition of n, Q, and Sf, there is only one possible depth
for maintaining a uniform flow. The single depth that can deliver a discharge
of Q given.a particular n value and slope is called the normal depth.

Equation 8-3 is very useful for the computation and analysis of uniform
flow. When the discharge, slope, and roughness are known, equation 8-3 gives
the section factor, AR2/3, from which the normal depth can be determined
either by trial-and-error computation or by use of design charts for regular
sections. If the values of n, Sf, and D are given, the discharge can be
computed directly from Manning's equation.
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PROBLEMS

1. Determine the conveyance, normal discharge, and velocity in channels
having the following sections for normal depth = 6 feet, n = 0.015, and
Sf = 0.0020.

(a) A rectangular section 20-feet wide.
(b) A triangular section with a bottom angle of 60 degrees.
(c) A trapezoidal section with a bottom width of 20 feet and side slopes

of 2 horizontal on 1 vertical.
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2. If the discharge in the channel of problem 1-C is 1,000 ft 3 /s, compute the
normal depth.

Depth
1. 49 -../Sf A 20D + 2D2 p 20 + 2D15= = R Q

n
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PART III - ADVANCED PRINCIPLES OF STEADY FLOW

Lesson 9 - Flow in Channel Sections with variable Roughness

The cross section of a channel may be composed of several distinct sub
sections with each subsection different in roughness from the others. For
example, an alluvial channel subject to seasonal floods generally consists of
a main channel and two side overbank channels. The overbank channels are
usually found to be rougher than the main channel; so the mean velocity in the
main channel is greater than the mean velocit~es in the overbank sections or
in the overbank flow region. For such compos;ite sections, the routine calcu
lation of hydraulic radius from the total area div~ded by the total wetted
perimeter and the direct application of Manning's equation will result in
large errors. This is because .such calculations imply that the effect of
boundary resistance is uniformly distributed :throu:ghout the flow cross sec
tion, which is clearly not the case. Furtherpore,i accurate estimation of the
effective value of n is virtually impossible because n for each subsection may
be very different.

For composite sections the Manning for~ula may be applied separately to
each subsection in determining the mean velocity f'or that subsection. Then
the discharges in each subsection can be computed and the total discharge is
the sum of the discharges in each subsection.

This logical (but not necessarily precise) method of treating such
problems is derived by assuming that the total se9tion is composed of parallel
channels separated by vertical boundaries ac~oss which there is no shear.
Because the water-surface elevation is gener~lly horizontal across a channel,
the slope of each of the subsections is identical.1 Writing Manning's equation
for each subsection and summing, it is seen that the slope can be factored out
because it is constant. Factoring out the stope indicates that the total
discharge is equal to the slope times the sum of ~he conveyances for each
subsection.

The general procedure for computing the discharge in a composite sec
tion, therefore, is to compute the conveyance for each subpart of the cross
section wherein the roughness and depth are approximately constant and to sum
the conveyances for each subsection to compute the total conveyance of the
composite section. The discharge is then equal to the composite conveyance
times ~he square root of the slope.

Figure 9-1 illustrates river cross section with overbank flow. The ques
tion naturally arises: how nonuniform must a section be before subdivision is
necessary? Probably the safest approach is to compute the discharge at a

Waler lurface

•

•

•

1

0 I

I.,----wo -----I
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Figure 9-1.--Cross section with
overbank flow.



number of depths both by subdividing the section and by considering it as a
single section. A plot of each of these discharges versus depth should indi
cate whether or not a subdivided section should be used. On the other hand,
the Geological Survey has developed some criteria based on wide experience.
In general, subdivide the cross section if

D
2->d-

or

Wo
5->

d - ( 9-1)

where the symbols are defined on figure 9-1. Davidian (1984) presents a more
detailed discussion of subdivision considerations.

In applying the energy equation to a stream cross section that has been
subdivided, the kinetic-energy correction coefficient is determined using

a ( 6-1)

in which Vi is the velocity in each subsection of area ai and V is the average
velocity for the entire cross section, A. Equation 6-1 is somewhat inconve
nient when working with a subdivided section because the velocity in each sub
section is not normally computed. Computing the velocity as the discharge
divided by the area where the discharge is computed as the conveyance times
the square root of the slope (equation 8-2), one obtains

and

V
K -{Sf

A

(9-2)

(9-3)

in which K is the total conveyance of the section.

Substituting equations 9-2 and 9-3 into equation 6-1 yields an equation
for a in terms of the areas and conveyances of each subsection. These values
are usually computed instead of the velocity; and the slope, being constant,
cancels out of the equation giving

a

N

L ki 3 i a i 2

i=l
(9-4)

where N is the total number of subsections. Notice that a can be computed
without knowing the stream slope. It depends only on the depth, geometry, and
roughness as used to determine the conveyance.
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Example:

Given the channel information shown below, compute the kinetic energy
correction coefficient, a, and the slope for a discharge of 2,600 ft 3 /s

Area Perimeter

~ ft -ll-

1 Right overbank 162.5 37.1 0.060
2 Main channel 390.0 45.7 0.035
3 Left overbank 108.3 26.0 0.070

Total 660.8

Solution:

Applying equation 9-4 to a three-section channel,

It is convenient to construct a table as follows:

• B....fi.

1 Right 4.38
2 Main 8.53
3 Left 4.17
Total•

k ft 3 /s

10,803
69,334
5,968

K = 86,105

0.047xl0 9

2.191xl0 9

0.018x10 9

2.257x10 9

(
2,600 ) 2 _
86,105 - 0.000912 ft/ft•

•

•

•

•

Q

2.257x10 9

(86,105)3/(660.8)2

K .[Sf = 2,600 ft3/ s

2.257x10 9 = 1.54
1.462x10 9

86,105.[Sf
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. PROBLEMS

1. A flood occurs in the channel shown below. The roughness of the main
channel (B) is 0.015, but dense bush exists on the right flood plain so
that n = 0.12, and a field of corn exists on the left so that n = 0.06.
The slope of the water surface and the bed is known to be 0.00031. Compute
the conveyance, discharge, and velocity by applying Manning's equation to
the total section (n = (0.06 + 0.015 + 0.12)/3). Compute the conveyance,
discharge, and velocity in each subsection. What is the flood discharge?

500 ft

Elevation 910 It -

Elevation 905 ft -

I·
n = 0.06

A

500 ft

Water surface

B
c

·1
- Elevation 909 It

1.- ---' - Elevation 900 It

I- 200ft-l
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2. compute the velocity head coefficient, a, for the flow in problem 1.
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Lesson 10 - The Momentum Principle

The impulse-momentum principle provides a third basic tool for the solu
tion of fluid-flow problems. Sometimes its application leads to the solution
of problems that cannot be solved by the energy and continuity principles
alone, but more often all three tools must be used together.

Consider the steady flow of water, Q, with velocity, V1, into a black
box. For steady flow, continuity requires that a steady flow of Q must exit
the box with a velocity V2. While passing through the box, individual water
parcels are accelerated (or decelerated) from V1 to V2. Newton's law says
that the acceleration of a mass requires a force, that is,

-+
F MI

-+
!:1v

M
!:1t

where M is the mass being accelerated. In this case, it is the mass of water
in the box

M =.p Vol,

in which Vol is the volume of' water in the box. The value of !:1t must be the
time required for a water pa~cel to pass through the box so

!:1t
Vol

Q

combining the equations and allowing for several forces

(10-1)

Because forces and velocities are vector quantities (containing a magnitude
and direction), equation 10-1 is a vector equation. This means it can be
applied in the three coordinate directions using only components of the
velocities and forces. If V2 is larger than VI, the parcels are accelerated
and the force on the parcels is in the positive direction.

Equation 10-1 is valid and preclse, no matter what the fluid, as long as
all forces, including shearing forces, are considered.

Interesting hydraulic problems seldom occur for which water is flowing
into and out of a black box. On the other hand, most problems can be analyzed
using the black box principle when a control surface is constructed around an
element of the flow. Within the control surface or control volume, the
internal pressures and shearing forces existing at the surfaces of adjacent
elements cancel. Only the forces acting on the control surface must be
considered.

Example:

A 2-foot by 2-foot rectangular pier is to be placed in a horizontal
rectangular channel 8-feet wide. Laboratory tests indicate that the drag
force, Fd, on the pier can be computed as
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in which Af is the frontal area and VI is the approach velocity. A flow of

240 ft 3 /s exists in the channel for which the normal depth is 5 feet. As will
be shown later, normal depth will exist downstream of the pier and the flow
constriction at the pier will increase the water depth upstream of the pier.
Compute the depth upstream of the pier by use of the momentum principle.
Ignore the shearing force along the bed and the weight component of the water
in the control volume.

Solution:

The most difficult part of momentum problems is usually selecting the
control volume. In this case, the control volume is shown in figure 10-1 by
dashed lines in which the line a-b is along, but just above the bed, b-c is
just far enough downstream of the pier to be outside the very local distur
bances, c-d is above the pier, and d-a is upstream of the pier just far enough
to be outside the very localized effects of the flow around the pier. Along
each boundary of the control volume, forces on the boundary due to water pres
sure or structural members must be accounted for. Along boundary a-b three
forces are present: the water pressure force Fp , the shear force of the bed
on the water F~, and the drag force of the pier on t~e water Fd. The pressure
force on the bottom is balanced by the weight of the water in the control
volume and acts vertically. Because we are only interested in the horizontal
components of the forces, these two forces can be neglected. It is assumed
that the shearing force of the bed on the water F~ is small enough to be
ignored. Along lines b-c and d-a the hydrostatic pressure force of the water
on the control volume must be accounted for. No forces occur along line c-d.

ero...ection

•

•

•

•

•

"'1"_-- 8 teet ---+-i'I
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The problem gives the value of the drag force as

and the hydrostatic forces F1 and F2 are easily determined from equation 2-1
or

for which

and

01 2
62.4 (8) 2 249.6 0.1 2

(2-1)

52
F2 = 62.4 (8) ~ = 6,240 lb.

Likewise, the velocities v1 and V2 are computed from the continuity equation
as

240/8 01

and

V2 = 240/8(5) = 6.0 ft/s.

The momentum equation (equation 10-1) can now be applied as

LF = 249.6012 - 4.2 0lV12 - 6,240 = 240(1.94) (6.0 - 30/D1),

where forces and velocities to the right are positive. The direction of the
forces is the reaction of the force on the water in the control volume. For
example, the pier is assumed to push upstream on the water in the control
volume.

Substituting for the value of V1 in terms of D1

249.6 01 2 - 3,780/01 - 6,240 = 2,793.6 - 13,968/D1,

simplifying

249.6 01 2 + 10,188/01 = 9,033,

from which the depth D1 can be obtained by trial and error as follows:

D1(ft)

5.0
5.2
5.3

5.4

249.6 D1 2 + 10,188/01

8,277.6
8,708.4
8,933.5

>1 5.34 it I
9,165.0

68



•

•

•

•

•

PROBLEMS

1. The passage is 4-feet wide normal to the paper. The flow rate is 120
ft 3 /s. What will be the horizontal force exerted.by the water on the
structure?

Water surface

5 It

•

•

•

•

•

•

2. The flow rate passing over the
thin, sharp-crested weir in a
channel I-foot wide is 3.5
ft 3 /s. Calculate the magnitude
and direction of the force
exerted by the water on the weir
plate. Is the indicated down
stream depth reasonable?

69
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3. Water flows in a horizontal open channel at a depth of 2 feet the flow
rate is 40 ft 3 /s/ft of width. Calculate the depth just downstream from
the hydraulic jump and the head loss across the jump.

Water surface

20 ft/s- 2 ft
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Lesson 11 - Specific Energy

Specific energy is' defined as the energy per pound of water at any
section of a channel measured w~th respect to the channel bottom. Consider,
for example, the energy of two rivers of the same size and slope but one is 10
feet above sea level and one is 5,000 feet above sea level. Both rivers have
the same velocity, assuming they have equivalent roughness, even though the
total energy (measured relative to sea level) of the river at 5,000 feet
elevation is much greater than the river at lower elevation. Likewise, the
total energy of flow in a cross section measured relative to some datum below
the bottom of the channel is not a very good measure of the energy available
for movement in the channel. By contrast, specific energy is determined
directly from the energy equation but excluding the potential energy term, Z,
that is

which indicates that the specific energy is equal to the sum of the depth of
water and the velocity head. Because the velocity is equal to the discharge
divided by the area, equation 11-1 may also be written as

•

•

•

•

• E

av2
D + 2'g' (11-1)

(11-2)

•

•

It is seen that, for a given channel section and discharge, the specific
energy in a channel section is a function of the depth of flow only.

When the depth of flow is plotted against the specific energy for a
given cross section and discharge, the specific energy curve (fig. 11-1) is
obtained. This curve has two limbs: CA and CB. The limb CA approaches the
horizontal axis asymptotically toward the right. The limb CB approaches the
line OF as it extends upward and to the right. The line OF passes through the
origin and is at an angle of 45°. At any point on the specific energy curve,
the ordinate represents the depth and the abscissa represents the specific
energy, which is equal to the sum of the depth, D, and the velocity head,
av2 /2g.

Figure 11-1.--Specific energy curve.

•

•

•

T

Waler surface
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B

•
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The curve shows that, for any specific energy greater than the minimum
value, there are two possible depths, a low depth, Dl, and a high depth, D2.
These two depths are called alternate depths. At point C, the specific energy
is a minimum. It will be proven later that this condition of minimum specific
energy corresponds to a critical state of flow. At the critical state the two
alternate depths become one, which is known as the critical depth, Dc. When
the depth of flow is greater than the critical depth, the velocity of flow is
less than the critical velocity for the given discharge, and hence, the flow
is subcritical. When the depth of flow is less than the critical depth, the
flow is supercritical. Hence, D1, is the depth of a supercritical flow, and
D2 is the depth of a subcritical flow.

The critical state of flow is defined as the state of flow at which the
specific energy is a minimum for a given discharge. A theoretical criterion
for critical flow may be developed from this definition as follows:

Assuming a to be 1 and differentiating equation 11-2 with respect to
depth

dE
dO

v2
1 -

g(A!T) (11-3)

because the discharge is constant and the change of area with respect to depth
(dA!dO) is equal to the top width. The quantity A!T is recognized as the

hydraulic depth and the quantity _~ is defined as the Froude number, Fro
" gD

Rearranging equation 11-3 and recognizing that the rate of change of specific
energy with respect to depth is zero at critical depth, it follows that:

v 2
~

2g
~
2

(11-4)

Thus at the critical state of flow, the velocity head is equal to one-half the
hydraulic depth. Equation 11-4 may be also written as

1 F r , (11-5)

which means the Froude number, Fr , is equal to 1 at critical flow. Finally,
at critical flow, equation 11-5 may also be written as

Vc = ..JgDc , (11-6)

which is the velocity of a small gravity wave. In other words, at critical
velocity the channel velocity is precisely equal to the velocity of a small
gravity wave. For stream velocities equal to or greater than critical,
gravity waves do not propagate upstream.

For rectangular channels, the ratio of area to top width is constant and
equal to the depth therefore, equations 11-4, 11-5, and 11-6 can all have the
hydraulic depth replaced by the channel depth Dc. Also, in a rectangular
channel, the discharge per unit width, q, is equal to the velocity times the
depth. Therefore, equation 11-6 could be rewritten as

q ,J gDc 3 or Dc = 3..Jq2/ g
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Of great significance is the fact that critical depth is dependent upon flow
rate only the many other variables of open-channel flow are not relevant to
the computation of this important parameter. Equation 11-7 also suggests the
use of critical depth as a means of flow measurement if critical flow can be
created or identified in a channel, the depth may be measured and the flow
rate determined from equation 11-7. This is the basis for designing "critical
depth flumes" (Kilpatrick and Schneider, 1983).

•

• a
Combining equations 11-1 and 11-6, for a rectangular channel with

1, yields

E D + gDc
C 2g

3
2" Dc· (11-8)

• For sections where a is not unity, it is seen from equation 11- 3 that
the Froude number may be defined as

v
(11-9)

•

•

•

•

•

•

•

provided a is constant. If a varies with depth, special precautions should
be taken in applying these equations.

Change of the state of flow from subcritical to supercritical or vice
versa occurs frequently in open channels. Such change is manifested in a
corresponding change in the depth of flow from a high stage to a low stage or
vice versa. If the change takes place rapidly over a relatively short
distance, the flow is rapidly varied. The hydraulic drop and the hydraulic
jump are the two types of rapidly varied flow that may be described as
follows:

Hydraulic drop. A rapid change of flow from a subcritical to super
critical will result in a steep depression in the water surface. Such a
phenomena is generally caused by an abrupt change in the channel slope or
cross section or both (see fig. 11-2). At the transitory region of the
hydraulic drop, a reverse curve usually appears, connecting the water surfaces
before and after the drop. The point of inflection on the reverse curve marks
the approximate position of the critical depth at which the specific energy is
a minimum and the flow passes from subcritical to supercritical.

o

...Jol:~_--l. • E

Water surface

Figure 11-2.--Flow changes from subcritical and supercritical.
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The free overfall is a special case of the hydraulic drop. Itoccurs
where the bottom of a flat channel is discontinued as in figure 11-2. There
will be no reverse curve in the water surface until it strikes some surface at
a lower elevation. If the specific energy at the upstream section is E, as
shown on a specific energy curve, potential energy will be converted to
kinetic energy as the water approaches the brink and the total specific energy
will decrease until it finally reaches a minimum energy content Emin. The
specific energy curve shows that the section of minimum energy, or the criti
cal section, should occur at the brink. The brink depth cannot be less than
the critical depth because a further decrease in depth would require an
increase in specific energy, which is impossible unless compensating external
energy is applied. Nevertheless, it should be remembered that equations 11-7
and 11-8 are based on the assumption of parallel flow, which is only approxi
mately applicable to rapidly varied flow. The flow at the brink is actually
curvilinear, and the curvature of flow is pronounced hence, the brink depth is
not exactly equal to the critical depth. The brink section is the true
section of minimum energy, but it is not the critical section as computed by
the principle based on parallel flow assumptions. It has been found that for
small slopes the computed critical depth is about 1.4 times the brink depth,
or

Dc = 1.4 Db

and that Dc is located a distance of about three to four times the critical
depth upstream from the brink in the channel. The actual water surface as
well as the theoretical surface are shown in figure 11-2.

Example:

Flow passes through critical depth as it leaves an 8-foot square box
culvert (see fig. 11-3). What is the discharge if the critical depth at the
outlet is measured as 2.5 feet?

Box culvert

Water surface

Figure ll-3.--Critical flow at the
outlet of a box culvert.

Solution:

Subcritical flow

Critical depth = 2.5 feet

Because critical flow occurs at the outlet, the Froude number is 1.0 or

1.0

assuming a 1.0

so the discharge is

Vc ;}32.2(2.5)
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•
Q = VA = 8. 97 (8) (2.5)

Likewise equation 11-7 could be used:

179.4 ft3/ s .

•

•

•

•

•

•

•

•

•

Q = 8q = 8 ~32.2(2.5)3 = 179.4 ft 3 /s.

Hydraulic Jump. A change of flow from supercritical to subcritical
almost always occurs abruptly and the water surface has an abrupt increase in
elevation. This local phenomenon is known as the hydraulic jump. It
frequently occurs in a channel below a regulating sluice, at the foot of a
spillway, or at the place where a steep channel slope changes to a flat slope.

Sometimes when the flow is only slightly supercritical, the jump will
not rise abruptly but the flow will pass from a low stage to a high stage
through a series of undulations gradually diminishing in size. Such a low
jump is called an undular jump.

When the flow is highly supercritical, on the other hand, the change in
depth is great and sudden and the jump is called a direct jump. The direct
jump involves a large amount of energy loss through dissipation in the turbu
lent body of water in the jump. Therefore the energy content of the flow
after the jump is much less than that before the jump and the energy equation
is of little value in predicting the downstream depth.

The water depth before the jump is always less than the depth after the
jump. The depth before the jump is called the initial depth and the depth
after the jump is called the sequent or conjugate depth. The initial and
sequent depths can be shown on the specific energy curve (fig. 11-1). They
should be distinguished from the alternate depths, which are the two possible
depths for the same specific energy on the specific energy curve. The initial
and sequent depths are actual depths before and after the jump in which the
energy loss is hi. In other words, the specific energy, El, at the initial

depth is greater than the specific energy, E2, at the sequent depth by an
amount equal to the energy loss, hi. If there were no energy losses, the

initial and sequent depths would become identical with the alternate depths in
a prismatic channel.
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PROBLEMS

1. 800 ft 3 /s flow in a rectangular channel of 20-foot width having
n = 0.017. Compute the specific energy at the intervals shown in the
table. Plot the specific energy diagram using the same scales for D and
E. Determine from the diagram (a) the critical depth, (b) the minimum
specific energy, (c) the specific energy when the depth is 7 feet, and (d)
the depths when the specific energy is 8 feet. What type of flow exists
when -the depth is: (e) 2 feet, (f) 6 feet; what are the channel slopes
necessary to maintain these depths? What type of slopes are these, and
(g) what is the critical slope? Show graphically that DC = 2E/3.

D V2 /2g E

1

1.5

2

3

3.5

4

5

6

7

8

9

10
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2. A hydraulic jump occurs in the channel of Froblem 1. The upstream depth
is 2 feet. Compute the downstream depth. Label your plot of problem 1.
Compute the energy loss.
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3. A uniform flow at a depth of 5 feet occurs in a long rectangular channel

of lO-foot width and having a discharge of 289 ft 3 /s: (a) Calculate the
minimum height of hump that can be built on the floor of this channel to
produce critical depth. What happens if the hump is larger than your
computed value? lower? (b) Without the bottom hump, what is the maximum
width of contracted section to produce critical depth?

5ft -

x ~-=-

~~~~~:~~~J-i~_~-~~-=_~~
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PART IV - GRADUALLY VARIED FLOW IN OPEN CHANNELS

Lesson 12 - Determination of Flow Resistance in Open Channels

Measure of Flow Resistance

The Manning equation for the mean velocity V is defined as

• (7-9)

•

•

where ~ equals 1.0 when using metric units and 1.486 when using inch-pound
units, R is the hydraulic radius, S is the friction slope, and n is the
Manning coefficient. In applying the Manning equation to open-channel flow,
the greatest difficulty lies in determining the coefficient, n. The value of
n indicates not only the flow resistance caused by the sides and bottom of the
channel, but also all other types of irregularities of the channel that add to
flow resistance. Choosing the proper value of n remains largely a matter of
engineering judgment and experience. To the untrained beginner, the selection
of a resistance coefficient can be no more than a guess with different
individuals obtaining different results.

The; following discussion will emphasize ways to estimate Manning's n,
but this coefficient is directly related to other measures. The Darcy
Weisbach_ ,Iequation for open conduits is written as

where f is the Darcy-Weisbach friction factor. The Chezy equation is written
as•

V (7"-) 1/2 ~, (7-11)

•
V=c-{RS

where C is the Chezy resistance coefficient.

Comparing equations 7-9, 7-8, and 7-11, it is seen that

(7-8)

n = 1. 4 9 R11 6 (8fg) 1/2
1. 49 Rl /6

C
(12-1)

• or that

~=
1.49 Rl /6

n~
(12-2)

•

•

It is not uncommon to think of a channel as having a single value of n
for all occasions. In reality, the value of Manning's n is highly variable
and proper selection is dependent upon a basic understanding of the factors
affecting this variation. The factors having the greatest influence upon the
Manning coefficient in both artificial and natural channels are listed below:

Surface roughness
Vegetation
Channel irregularity
Channel alignment
Silting and scouring
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Obstructions
Size and shape of channel
Stage and discharge
Seasonal change-
Suspended material and bedload

It should be noted that these factors are somewhat interdependent; hence, the
influence of one factor may include the effect of another. All the above
factors, however, should be studied and evaluated. They provide a basis for
determining the proper value of n for a given channel. As a general guide, it
may be assumed that conditions tending to induce turbulence and cause retar
dance of the flow will increase the n value while those tending to reduce
turbulence and retardance will decrease the n value.

Approaches for Estimating Resistance in Stable Channels

Stable-bed channels are those in which bedload transport is negligible
and the channel boundary is rigid. Possibly the chief contributors to
hydraulic resistance for these channel types is grain roughness and internal
distortion of the flow (form resistance) generated by relict or remnant bed
forms of previous floods.

In order to provide guidance in determining the proper value of the
Manning coefficient, four general approaches will be discu~sed namely:

1. Understanding the factors that affect the value- of n and thus
acquiring a basic knowledge of the problem. The Cowan procedure
illustrates this approach.

2. Consulting a table of typical n values for channels of various
types. Abbreviated tables presented by Chow (1959) will illustrate
this approach.

3. Comparative methods that are based on examining and becoming
acquainted with the appearance of some typical channels whose
Manning coefficients are known.

4. A number of formula are presented that compute the value of n from
measures of the bed material size and other geometric data.

Cowan's Procedure for Estimating Manning's Coefficient

Recognizing several primary factors affecting the Manning coefficient,
Cowan (1956) developed a procedure for estimating the value of n. By this
procedure, the value of n may be computed as

n = (nO + n1 + n2 + n3 + n4)m5, (12-3)

where nO is a basic n value for a straight, uniform, smooth channel, in the
natural materials involved, n1 is a value added to nO to correct for the
effect of surface irregularity, n2 is a value added to account for variations
in shape and size of cross sections, n3 is a modifying value for obstructions,
n4 is a correction value for the retarding effect of vegetation, and ms is a
correction factor for channel meanders.

Arcement and Schneider (1984) modified and extended the Cowan method to
develop procedures to aid engineers in the selection of Manning coefficients
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•

•

•

•

for channels especially with overbank flow. Their method is especially appli
cable for flow through heavily vegetated flood plains in which n values as
large as 0.2 have been documented.

In the selection of the modifying values associated with the five
primary factors, it is important that each factor be examined and considered
independently. In considering each factor, it should be kept in mind that n
represents a quantitative expression of retardation of flow. A discussion and
tabulated guide to the selection of modifying values for each factor is given
under the following procedural steps.

First step.--Selection of basic n value, no. This step requires the
selection of a no value for a straight uniform channel in the natural materials
involved. The selection involves consideration of what may be regarded as a
hypothetical channel. The conditions of straight alignment, uniform cross
section, and smooth side and bottom surfaces without vegetation should be kept
in mind. Thus the no will be visualized as varying only with the materials
forming the sides and bottom of the channel.. The value of no, for natural or
excavated channels, may be selected from the table below. Where the bottom and
sides of a channel are of different materials, this fact may be considered in
selecting no.

Character of channel

Second step.--Selection of modifying value for surface irregularity, n1.
The selection is to be based on the degree of roughness or irregularity of the
surfaces of channel sides and bottom. Consider the actual surface irregularity
first, in relation to the degree of surface smoothness obtainable with the
natural materials involved, and second, in relation to the depths of flow under
consideration. The table below may be used as a guide to the selection.

•

•

•

•

•

•

Degree of
irregularity

Smooth

Minor

Moderate

Channels in earth
Channels cut into rock
Channels in fine gravel*
Channels in coarse gravel*
Channels in very coarse gravel*
Channels in cobbles*

*See table 12-3.

Surfaces comparable to

The best obtainable for the
materials involved.

Good dredged channels; slightly
eroded or scoured side slopes
of canals or drainage channels.

Fair to poor dredged channels;
moderately sloughed or eroded
side slopes of canals or drainage
channels.
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0.02
0.025
0.024
0.028
0.032
0.036

0.000

0.005

0.010



Severe Badly sloughed banks of natural
channels; badly eroded or sloughed
sides of canals or drainage
channels; unshaped, jagged, and
irregular surfaces of channels
excavated in rock. 0.020

Third Step.--Selection of modifying value for variations in shape and
size of cross sections, n2. In considering changes in size of cross sections,
judge the approximate magnitude of increase and decrease in successive cross
sections as compared to the average. Changes of considerable magnitude, if
they are gradual and uniform, do not cause significant turbulence. Greater
turbulence is associated with alternating large and small sections where the
changes are abrupt. The degree of effect of size changes may best be visual
ized by considering it as depending primarily on the frequency with which
large and small sections alternate and, secondarily, on the magnitude of the
changes.

In the case of shape variations, consider the degree to which the
changes cause the greatest depth of flow to move from side to side of the
channel. Shape changes causing the greatest turbulence are those for which
shifts of the main flow from side to side occur in distances short enough to
produce eddies and upstream current in the shallower portions of those
sections. Selection of modifying values may be based on the following guide.

Character of variations in
size and shape of cross1sections

Changes in size or shape occurring
gradually.

Large and small sections alternating
occasionally, or shape changes causing
occasional shifting of main flow from
side to side of the channel.

Large and small sections alternating
frequently or shape changes causing
frequent shifting of main flow from
side to side of the channel.

0.000

0.005

0.010
to

0.015

Fourth step.--Selection of modifying value for obstructions, n3. The
selection is to be based on the presence and characteristics of obstructions
such as debris deposits, tree stumps, exposed tree roots, large boulders,
fallen and lodged logs. Care should be taken that conditions considered in
other steps are not reevaluated or double counted by this step.

In judging the relative effect of obstructions, consider: the degree to
which the obstructions occupy or reduce the average cross- sectional area at
various stages; the character of the obstructions (sharp-edged or angular
objects induce greater turbulence than curved, smooth-surfaced objects); the
position and spacing of obstructions both transversely and longitudinally in
the reach under consideration. The following table may be used as a guide to
the selection.
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•
Relative
effect· of

• obstructions n3

Negligible 0.000
Minor 0.010 to 0.015
Appreciable 0.020 to 0.030
Severe 0.040 to 0.060

•

•

•

Fifth step.--Selection of modifying value for vegetation, n4. The
retarding effect of vegetation is due primarily to the turbulence induced as
the water flows around and between the limbs, stems, and foliage, and, secon
darily, to the reduction in cross-sectional area. As depth and velocity
increase, the force of the flowing water tends to bend the vegetation. There
fore, the ability of vegetation to cause turbulence is partly related to its
resistance to bending. Furthermore, the amount and character of foliage is
important (that is, growing season versus dormant season). In judging the
retarding effect of vegetation, critical consideration should be given to the
following: the height in relation to the depth of flow; the capacity to
resist bending; the degree to which the cross section is occupied or blocked
out; the transverse and longitudinal distribution of vegetation and the
different types; and densities and heights in the reach under consideration.
The following table may be used as a guide in the selection.

•

•

•

•

•

•

vegetation and flow conditions

Dense growths of flexible turf grasses
or weeds (for example, Bermuda and
blue grasses) where the average depth
of flow is two to three times the
height of vegetation.

Supple seedling tree switches such as
willow, cottonwood, or salt cedar
where the average depth of flow is
three to four times the height of the
vegetation.

Turf grasses where the average flow is
one to two times the height of the
vegetation.

Stemmy grasses, weeds, or tree seedlings
with moderate cover where the average
depth of flow is two to three times the
height of the vegetation.

Brushy growths, moderately dense,
similar to willows 1 to 2 years old,
dormant season, along side slopes of
channel with no significant vegetation
along the channel bottom, where the
hydraulic radius is greater than 2 feet.

83

Degree of effect

Low

Moderate

0.005 to 0.010

0.010 to 0.025



Vegetation and flow conditions Degree of effect n~4~ __

Turf grasses where the average depth
of flow is about equal to the height
of the vegetation.

High 0.025 to 0.050

Dormant season, willow or cottonwood
trees 8 to 10 years old, intergrown
with some weeds and brush, none of the
vegetation in foliage, where, the
hydraulic radius is gr~ater than 2 feet.

Growing season, bushy willows about 1
year old .intergrown wit'h some weeds in

o 1 °d I 1 Ifull fo11age a ong S1 e s opes, no
significant vegetation ~l~n~ ch~nne~
bottom, where the hydralu11c :rad1us 1S
greater than 2 feet.

0.050 to 0.100Very highTurf grasses where the average depth
of flow is less than one-hal;f the
height of the vegetatiqn. I

I ,
Growing season, bushy JilloWJs about 1
year old, intergrown w~th w~eds in
full foliage along sid~ slopes; dense
growth of cattails alo~g channel
bottom; any value of h~ldrau~ic radius
up to 10 or 15 feet. I

I I

Growing season, trees intergrown with
weeds and brush, all in full foliage;
any value of hydraulic radius up to 10
or 15 feet.

Sixth step.--Determination of the modifying value for meandering of
channel, ms. The modifying value for meandering may be estimatoed in the
following way. Let

Is the straight length of the reach under consideration, and

1m the meander length of the channel in the reach.

Compute the modifying value m5 in accordance with the following table.

Ratio 1m/I s Degree of meandering ms

1.0 to 1.2
1. 2 to 1. 5
1.5 and greater

Minor
Appreciable
Severe

1. 00
1.15
1. 30

Where lengths for computing the ratio 1m/I s are not readily obtainable, the
degree of meandering can usually be judged reasonably well by field inspection.
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•

•

•

•

•

•

•

•

•

•

Seventh step.--Computation of n for the reach. The value of n for the
reach under consideration is obtained by adding the values determined in steps
1.through 5 and multiplying this total by the modifying value found in step 6.

This method was developed from a study of 40 to 50 small to moderate
sized channels. Therefore, the method is questionable when applied to large
channels where the hydraulic radii exceed, say, 15 feet. In the case of flood
plains, the estimate of n would be based on all factors except meandering
(that is, ms would be taken equal to 1.00).

Tables of Manning's n

The following table 12-1 contains parts of a table presented by Chow
(1959) and gives a list of n values for various types of channels. For each
type of channel, the minimum, normal~ and maximum values of n typically
observed are shown. The normal values for artificial channels given in the
table are recommended only for well-maintained channels. This table was
compiled from a variety of sources and will be found useful as a guide to the
quick selection of the n value to be used in a given problem. The tabular
approach is somewhat like the Cowan approach in that the Manning coefficient
is selected based on a written description of boundary texture and form.
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Table 12-1.--yalues of the Manning resistance coefficient
(from Chow, 1959)

Type of channel and description Minimum Normal Maximum

A. Closed conduits flowing partly full
A-l. Metal

a. Brass, smooth 0.009 0.010 0.013
b. Steel

l. Lockbar and welded .010 .012 .014
2. Riveted and spiral .013 .016 .017

c. Cast iron
l. Coated .010 .013 .014
2. Uncoated .011 .014 .016

d. Corrugated metal
l. Subdrain .017 .019 .021
2. Storm drain .021 .024 .030

A-2. Nonmetal
a. Lucite .008 .009 .010
b. Glass .009 .010 .013
c. Cement

l. Neat, surface .010 .011 .013
2. Mortar .011 .013 .015

d. Concrete
l. Culvert, straight, and

free of debris .010 .011 .013
2. Culvert with bends,

connections, and
some debris .011 .013 .014

3. Sewer with manholes,
inlet, etc. , straight .013 .015 .017

4. Unfinished, rough wood
form .015 .017 .020

e. Wood
l. Stave .010 .012 .014
2. Laminated, treated .015 .017 .020

f. Clay
l. Common drainage tile .011 .013 .017
2. Vitrified sewer with

manholes, inlet, etc. .013 .015 .017
g. Glazed brickwork .011 .013 .015

mortar .012 .015 .017
h. Sanitary sewers coated with

sewage slimes, with bends
and connections .012 .013 .016

i. Paved invert, sewer, smooth
bottom .016 .019 .020

j. Rubble masonry, cemented .018 .025 .030
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Table 12-1.--Values of the Manning resistance coefficient

(from Chow, 1959)--continued

Type of channel and description Minimum Normal Maximum

•

•

•

•

B. Lined
B-1.

B-2.

or built-up channels
Metal
a. Unpainted smooth steel

surface
b. Corrugated
Nonmetal
a. Concrete

1. Finished, with gravel
on bottom

2. Gunite, good section
3. Gunite, wavy section
4. On good excavated rock
5. On irregular excavated

rock
b. Concrete bottom float

finished with sides of
1. Dressed stone in mortar
2. Dry rubble or riprap

c. Gravel bottom with sides of
1. Formed concrete
2. Dry rubble or riprap

d. Asphalt
1. Smooth
2. Rough

e. Vegetal lining

.011

.021

.015

.016

.018

.017

.022

.015

.020

.017

.023

.013

.016

.030

.012

.025

.017

.019

.022

.020

.027

.017

.030

.020

.033

.013

.016

.014

.030

.020

.023

.025

.020

.035

.025

.036

.500

•

•

•

•

•

C. Excavated or dredged
a. Earth, straight and uniform

1. Clean, recently
completed

2. With short grass, few weeds
b. Earth, winding and sluggish

1. No vegetation .
2. Dense weeds or aquatic

plants in deep channels
3. Cobble bottom and clean

sides
c. Dragline-excavated or

dredged
1. No vegetation
2. Light brush on banks

d. Rock cuts
1. Smooth and uniform
2. Jagged and irregular

e. Channels not maintained,
weeds and brush uncut
1. Dense weeds, high as

flow depth
2. Clean bottom, brush on

sides
3. Dense brush, high stage
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.016

..022

.023

.030

.030

.025

.035

.025

.035

.050

.040

.080

.018

.027

.025

.035

.040

.028

.050

.035

.040

.080

.050

.100

.020

.033

.030

.040

.050

.033

.060

.040

.050

.120

.080

.140



Table 12-1.--yalues Qf the ManninQ resistance cQefficient
(frQm ChQw, 1959)--cQntinued

Type of channel and description Minimum NQrmal Maximum

. D. Natural streams
D-l. Minor streams (tQP width at

floQd stage <100 feet)
a. Streams on plain

l. Clean, straight, full
stage, nQ rifts or
deep PQols .025 .030 .033

2. Clean, winding, SQme
pools and shoals .033 .040 .045

3. Sluggish reaches,
weedy, deep pools .050 .070 .080

4. Very weedy reaches,
deep pools, or flood-
ways with heavy stand
of timber and underbrush .075 .100 .150

b. Mountain streams, no vegetation
in channel, banks usually steep,
trees and brush along banks
submerged at high stages
l. Bottom: gravels, cobbles,

and few boulders .030 .040 .050
2. Bottom: cobbles.with

large boulders .040 .050 .070
D-2. Flood plains

a. Pasture, no brush
l. Short grass .025 .030 .035
2. High grass .030 .035 .050

b. Cultivated areas
l. No crop .020 .030 .040
2. Mature row crops .025 .035 .045
3.. Mature field crops .030 .040 .050

c., Brush
l. Scattered brush, heavy

weeds .035 .050 .070
2. Medium to dense brush,

in winter .045 .070 .110
3. Medium to dense brush,

in summer .070 .100 .160
d. Trees

l. Dense willows, summer,
straight .110 .150 .200

2. Cleared land with tree
stumps, no sprouts .030 .040 .050

3. Heavy stand of timber, a
few down trees, little
undergrowth, flood stage
below branches .080 .100 .120

4. Same as above, but with
flood stage reaching
branches .100 .120 .160
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Table 12-1.--Va1ues of the Mannin~ resistance coefficient

(from Chow, 1959)--continued

Type of channel and description Minimum Normal Maximum

.025

.035

•

•

D-3. Major streams (top width at flood
stage >100 feet). The n value is
less than that for minor streams
of similar description, because
banks offer less effective
resistance
a. Regular section with no

boulders or brush
b. Irregular and rough section

.060

.100

•

•

Comparative Methods

Photographs of a number of typical channels, accompanied by descriptions
of the channel conditions and the corresponding n values, are contained in a
report by Barnes (1967). These photographs represent a wide range of channel
conditions and facilitate selection of an n value for a given problem.

Sites used in Barnes (1967) were selected for study after a major flood
had occurred in a given region. Each site met the following criteria:

1. the peak discharge of the flood was measured by the current-meter
method or determined from a well-defined stage-discharge relation;

2. good high-water marks were available to define the water-surface
profile at the time of the Peak;

• 3. a fairly uniform reach of channel was available near the gage; and

4. the flood discharge was within the channel banks--that is, exten
sive flow in flood plains did not exist.

•
A

flood.
rately
marks,
reach.

transit stadia survey of each reach was completed shortly after the
The necessary information was obtained in this survey to plot accu-

to a common datum the water-surface profile as determined by high-water
a plan view of the reach, and cross sections at intervals along the

•

•

•

Photographs of the reach were taken during the time of the survey. The
photographs shown in Barnes (1967) thus represent conditions in the reach
immediately after the flood.
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A size description of the bed material at some of the sites is included
in the reach description. The bed samples were, in general, taken several
years after the flood for which the Manning coefficient was determined and,
therefore, may not be representative of the bed material at the time of the
peak. Frequency distributions of the bed material size were determined by
sieve analysis where the medium size of the material was less than 50 rom and,
where the material was too large to sieve, by measuring the intermediate axis
of particles selected at random from the bed surface.

Equations for Manning's n Based on Measures of Roughness

A number of equations have been developed for predicting Manning's n
based on a measure of the bed particle size, usually in the form of a repre
sentative particle diameter, dp , which is larger than p percent of the bed
material. This measure of roughness is typically related to n either directly
or as a dimensionless ratio of roughness, R/dp , which is often called the
relative roughness (or relative smoothness). These equations are generally
applicable to gravel or cobble bed streams, and only a few of these equations
are presented in table 12-2. Table 12-3 contains reference sizes for bed
material of various descriptions. The table is not complete in that only the
major size classes are shown.

Special Considerations in Mobile-Bed Channels

Mobile-bed channels are those in which the bedload transport rate is
significant and in which the channel boundary deforms. Two types of mobile
bed channels will be considered those whose beds are composed of sand and
those whose beds are composed of coarser material (that is, gravel, cobbles,
and boulders) .

Gravel-Bed Channels

In contrast to sand-bed channels, which can have a variety of bed forms,
apparently only dunes or bars can develop under subcritical flows on the
channel bottoms of gravel-bed rivers. When the channel boundary is stable,
the resistance to fully turbulent flow in straight, regular reaches of coarse
gravel-bed rivers have been found to be largely dependent on the relative
roughness. Equations listed in table 12-2 are generally applicable. For
channels with active bedload transport where the boundary is mobile and bed
forms develop, flow resistance was found by Griffiths (1981) to depend on a
mobility parameter as

(~)0.34n = 0.042 V '

where mobile boundary conditions were assumed to occur if

d50 < 11RS.

(12-4)

Notice that as the velocity increases, and more material is moving, the resis
tance to flow decreases. this relation of decreasing resistance with
increased bed-material movement is often observed. The rolling bed-material
particles act much as marbles on the floor reducing the resistance between the
flowing water and the stationary bed.

90



•

•
Table 12-2.--Equations for resistance based on bed material size

I

Gravel- and cobble- ' Griffiths (1981)
bed rivers in the
United States, ;
Canada, New Zealand,
and England

•

•

•

•

•

•

Equation*

n = 0.034 dS0 1 / 6

n = 0.032 d90 1 / 6

n = 0.039 d7S 1 / 6

(0.35
0.0927 R1 / 6 )

n = + 2.03 log(R/d50)

n = 0.048 dSO O. 179

n = 0.126 R1 /6 (R/dSO)-0.281

(0.248
0.0927 R1/6 )

n = + 2.36 log(R/dSO)

(0.760
0.0927 R

1
/

6
)n = + 1.98 log(R/dSO)

n = 0.104 R1 / 6 (d:O) -0.297 (;) 0.103

n = 0.39 SO.38 R-0. 16

n = 0.24S RO. 14 (d~O) -0.44 (~) 0.30

Channel description

Gravel-bed rivers
in Switzerland

Sand mixtures in
flumes

Canals lined with
cobbles

Gravel-bed rivers
in California :

,

Gravel-bed rivers
in Alberta, Canada

"

"

Steep streams in
Colorado with
cobbles and small
boulders

Gravel- and cobble
bed rivers in the
United States

Investigators

Strickler (1923)

Meyer-Peter and
Mueller (1948)

Lane and Carlson
(19S3)

Limerinos (1970)

Bray (1979)

"

Jarrett (1984)

Froehlich (1978)
unpublished

•

•

•

*All length dimensions are in feet
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Table 12-3.--Sediment grade scale (Guy; 1969)

Sediment in Size in
millimeters inches Class

>256 40-20 Boulders
256-128 10-5 Large cobbles
128-64 5-2.5 Small cobbles
32-16 1.3-0.6 Coarse gravel
8-4 0.3-0.16 Fine gravel
1-0.50 -------- Coarse sand
0.50-0.25 -------- Medium sand
0.25-0.125 -------- Fine sand
0.062-0.031 -------- Coarse silt
0.016-0.008 -------- Fine silt
0.004-0.0020 -------- Coarse clay
0.0010-0.0005 -------- Fine clay

Sand-Bed Channels

Resistance to flow in sand-bed channels varies between wide limits
because the configuration of the channel bed is a function of the flow itself.
Estimation of flow resistance in sand-bed channels is a complex subject that
cannot be treated adequately here. For further detail the reader is referred
to Simons and Senturk (1977). Flume experiments and field observations have
shown that bed forms can be classified on the basis of a lower, a transition,
or an upper flow regime. The bed forms that occur are ripples, ripples on
dunes, dunes, washed-out dunes, plane or flat bed, antidunes, and chutes and
pools. These specific bed forms and the regime classification, as indicated
in figure 12-1, are associated with a specific mode of sediment transport and
a specific range of resistance to flow. An example of the effect of bed
material size and Froude number on the bed form and Manning's n is given in
figure 12-2. In an 8-foot wide laboratory sand channel, it is noted that
ripples generally cause Manning's n to range from 0.020 to 0.028; dunes, from
0.020 to.0.033; washed-out dunes, from 0.013 to 0.025; antidunes, from 0.014
to 0.020; and chute and pools from 0.020 to 0.026 (Guy, 1970).

It is important to note that different bed forms and flow regimes may
occur side by side in a stream cross section or one after another in time. The
relatively large resistance to flow in the lower regime results mostly from
form roughness whereas most of the resistance in the upper regime results from
grain roughness and wave formation and subsidence. Resistance to flow for a
plane bed is less when the bed material is moving than when the bed material
is not moving.
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• A. Typical ripple pallern, lillie sediment movement

Smooth surface
E. Ptane bed

Water surface. lillie turbulence

F. Anlidune standing waves, surface waves in phase wilh
sand waves I SU'f.

,"",a\e aCe-8. Dunes and superposed ripples

Weak boil
•

•

•

C. Dunes, surface weve. oul of pha" wilh "nd wavea

____---8_0...;..' ~~_::==
G. Antidune breaking wev...

•

D. Washed -oul dunes or Iransilion
Waler surface

•
Figure 12-1.--Eight types of roughness found in sand-bed channels.

Types A through Care representative of the lower
flow regime where the Froude number is usually <0.4,
E through H are representative of the upper flow
regime where the Froude number is usually >0.7, and
D represents the transition regime. Modified from
Simons and Richardson (1966, p. J5).

•

•

•
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~ dp; 0.46 millimete,

1:/":\\1 dp = 0.28 millimete,

1.81.6
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:::!:

0.010
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0

Figure 12-2.--Effect of size of bed material and Froude
number on the bed form and Manning's n for a
range of flow conditions with sands of 0.28
and 0.45-millimeter median diameter in an
8-foot wide flume. Modified from Guy (1970).

The Manning coefficient for a plane bed with motion depends primarily on
the size of the bed material. Values of Manning's n for plane bed flow may be
selected from the following table, which shows the relation between median
grain size (d50) and the Manning n.

Median Grain Size Manning's n

0.2 rom
.4
.6
.8

1.0

0.012
.020
.023
.025
.026

After the discharge and velocity are computed from the Manning equation,
it must be shown that the bed configuration is actually in the assumed flow
regime. This can be done by using figure 12-3 below, which relates unit
stream power to the type of flow. In the lower flow regime the form resis
tance of the dunes greatly increases the value of n.
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Figure 12-3.--Relation of stream power and median
grain size to the bed form.
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PROBLEMS

1. At a gaging station on the Mississippi River near New Orleans, a dis
charge of 1,200,000 ft 3 /s was measured when the cross-sectional area was
202,000 ft 2 , the wetted perimeter was 2,700 feet, and the slope was 0.168
ft/mi. Assuming uniform flow, compute the Chezy discharge coefficient,
C, the Manning, n, and the friction factor, f.

2. Use the Cowan method to estimate the Manning n for the channel reach
described below.

Reach description: Straight, approximately 660 feet long. Cross
section has very little variation in shape; variation in size is
moderate, but changes are gradual. Side slopes are fairly
regular, but the channel bottom is uneven and irregular. Soils in
the channel consist of a yellowish-gray clay along the bottom and
light-gray silty clay loam along the banks. Banks are covered
with a heavy growth of poplar trees 2 to 3 inches in diameter,
large willo~s, and climbing vines during the summer growing
season. There is a thick growth of water weed on the channel
bottom. At bankfull stage, average depth and top width are about
8.5 and 40 feet, respectively.

3. Using ~hree appropriate equations, compute the Manning n for the follow
ing two channels.

Area (ft2)
Top width (ft)
Wetted perimeter (ft)
d50 (ft)

Channel A

6,976
429
435

0.44
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Channel B

599
115
117

0.31
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Lesson 13 - Classification of Water-Surface Profiles

Uniform open-channel flow is a limiting condition that is approached
asymptotically but never attained. That is, any local nonuniformity of the
channel boundary will produce a nonuniformity of the flow that--though contin
uously decreasing in magnitude--theoretically extends extremely far upstream
or downstream.

Assume, for example, that a canal of constant cross section and bottom
slope is designed to carry a discharge, Q, at a normal depth, Do, which is
greater than the critical depth, Dc, as indicated by the dashed line in figure
13-1. If the sluice gate in the channel is partly closed, the depth will
increase directly upstream until the head on the gate corresponds to the
discharge, Q. Then, however, the decrease in velocity resulting from the
increase in depth causes the rate of energy dissipation to be less than that
for normal uniform flow conditions. As a result, the free surface and the
total head lines must have slopes that are less than that of the bed. Because
the total head line has a slope that is flatter than the bed slope, the
specific energy increases in the downstream direction. For subcritical flow,
an increase in specific energy results in an increase in depth as shown on
figure 13-1. Because the degree of departure from uniformity decreases as the
depth approaches normal depth, the resulting lines of total head and surface
elevation approach their limits asymptotically far upstream as shown on the
figure. The vertical scale on figure 13-1 is greatly exaggerated, backwater
effects commonly extend many miles upstream in natural channels. Nonuniformity
of this type is called gradually varied flow to distinguish it from rapidly
varied flow (for example, in the immediate vicinity of a hydraulic jump).

•

•

•

•

•
CALL 1-800-EMBASSY

for reservations

lried flow in an open channel-
1 scale greatly reduced.
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Directly downstream from the sluice gate, at point C, the depth is less
than either the critical or the normal depth. Because the velocity is higher
than normal (depth less than normal), the slope of the total energy line is
greater than the slope of the bed. This large slope of the total head line
indicates a decreasing specific energy with increasing distance downstream.
For supercritical flow, a reduction in specific energy results in an increase
in depth as shown in figure 13-1. The depth tends to increase with distance
in the downstream direction approaching the critical depth as a limit. If the
flow reached the critical depth, a paradox would develop because the flow
would need to continue decreasing its specific energy; however, the critical
depth would be the point of minimum specific energy. This situation cannot
exist so before the flow reaches the critical depth, a sudden change occurs in
the form of a hydraulic jump. The flow shifts suddenly from a supercritical
depth to a subcritical depth resulting in a large decrease in total energy.. ,

The depth just downstream of the hydraulic j?mp i~ at the normal depth.
This is proven by assuming first that the flow depth downstream of the
hydraulic jump is less than normal depth. The velocity'would be larger than
normal so the head loss per foot ~ould be larger than normal and the specific
energy would decrease with distance downstream. D~creasing specific energy
results in decreasing depth (for subcritical flow) so the flow departs further
from normal rather than approaching it. Furthermore, if the water depth is
greater than normal just downstream of the hydraulic jump, the velocity would
be less than normal so the energy dissipation per unit length of the channel
(the slope of the total head line) would be less than the bed slope and the
specific energy would increase with the distance downstream. Because the flow
is subcritical, the water depth would also continually increase, resulting in
another impossible situation. Therefore, the water depth downstream of the
jump must be at the normal depth for the channel.

The flow at the brink is at critical depth as was seen before. Just
upstream of the overfall the velocity will be larger than normal and the head
loss will be larger than normal therefore, because the flow is subcritical,
the depth will decrease with increasing distance downstream. The water
surface profile would approach the normal depth asymptotically with distance
upstream from the brink.

Water-surface profiles of all types can be sketched for various combina
tions of channel reaches and transitions. Keep in mind that if the depth is
greater than critical (subcritical flow), the surface profile will be con
trolled by a downstream transition because the velocity is less than the
celerity of even the smallest disturbance. If, on the contrary, the depth is
less than critical (supercritical flow), the surface profile will be con
trolled by an upstream transition because disturbances cannot travel upstream
in supercritical flow. Any disturbance that is large enough to travel
upstream in supercritical flow, will, in doing so, change the depth to a value
larger than the critical value (as does the hydraulic jump), and the control
will shift downstream.

In figure 13-2 water-surface profiles are categorized in terms of the
bottom surface slope (whether steep, critical, or mild) and the water depth
whether it is greater than both critical and normal (case 1), between critical
and normal (case 2), or less than both critical and normal (case 3). A more
complete version of this table can be found in Vennard (1962).

To qualitatively sketch water-surface profiles, the following approach
may be used. First, if the depth is greater than normal, specific energy will
increase in the downstream direction. Likewise, if the depth is less than
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•

normal, specific energy will decrease. Second, if the depth is greater than
critical, an increase in specific energy results in an increase in depth and
if the depth is less than critical, an increase in specific energy results in
a decrease in depth. In sketching the water-surface profiles, first draw the
bed, critical depth, and normal depth in their proper relative positions.
Next, consider what happens to the depth if the water surface is in any of the
three zones: above both normal and critical depth, between the two, or below
both depths. Then draw the water-surface shape from figure 13-2 in each zone
indicating the direction of depth change, provided the water surface is within
the zone. These shapes will be found very helpful in sketching the water
surface profile. because the true water-surface shape must be continuous and
have the indicated shapes in each zone.

•

•

•

On figure 13-1, for example, suppose the channel slope is mild and the
water level is at point A that is above normal depth. Because the depth is
greater than normal depth, the flow gains specific energy as it moves down
stream (it will have a smaller velocity and energy loss per unit length than
normal). Because point A is also at a depth greater than critical depth, an
increase in specific energy is accompanied by an increase in depth. Therefore,
the depth will increase in the downstream direction as shown by the shape of
the M1 water-surface profile. Because the depth passes through critical at
the drop off and the shape of the M1 curve is concave up, it is impossible for
the jump to raise the water above the normal depth.

On the other hand, if the water level is at point B, the depth is less
than normal depth. This causes the velocity to be greater than normal and the
flow loses specific energy as it moves downstream. Point B is still greater
than the critical depth and so the decrease in specific energy causes the
depth to decrease as shown by the M2 profile. This curve is consistent with
the true water-surface profile provided that the brink is not too far away.

•
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Finally, if the depth were at point C, the flow will lose specific
energy as it moves downstream and the flow is supercritical so the reduction
in specific energy causes an increase in depth as shown by the M3 water
surface profile.

Qualitatively drawing the water-surface profiles aids visualizing many
natural flow phenomena and understanding these profiles can be useful in
stream-gaging applications.
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PROBLEMS
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1. A wide channel flows from a reach where the slope is 0.001 to a reach
where the slope is 0.0005. The discharge is 100 ft 3/s/ft and the rough
ness is 0.015. Compute the critical depth, the critical slope, and the
two normal depths. Draw the critical depth, normal depths, and the
water-surface profile through the transition between slopes. Label the
water-surface profile.
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2. A wide channel flows from a reach where the slope is mild to a reach
where the slope is 0.003. The discharge and roughness are the same as in
problem 1. ·Compute the normal depth in the steeper reach and draw the
water-surface profile.

--r I---;
-_ I

-°0 --T '--.../
I

0c I

,""'-
"'-

"" "" ""

3. Repeat problem 2 except the upstream reach slope is mild and the down
stream slope is steeper than the upstream reach but still mild.
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4. Repeat problem 2 except both slopes are steep; that is, the flow passes
from a steep slope to a steeper slope.
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Lesson 14 - Local Energy Losses in Natural Channels

The Manning, Chezy, or Darcy-Weisbach equations can be used to compute
the slope of the energy grade line (energy loss per unit distance) for
channels where all resistance to flow is caused by boundary friction.
Boundary friction will be the dominant source of resistance in prismatic
channels with no local disturbances. Natural channels are seldom prismatic,
however, and so energy losses are generally greater than in prismatic channels
such as flumes or lined canals. Examples of disturbances that increase energy
losses in natural channels include boulders, fallen trees, bridge ·constric
tions, bends, and natural contractions and expansions. Generally speaking,
the resistance caused by small obstructions is lumped in with boundary fric
tion and the resistance coefficient is modified to account for the greater
energy loss.

Major disturbances such as expansions and contractions are generally
accounted for separately and the energy loss, he, is assumed to occur instan
taneously. The energy is converted to turbulence or to turbulent eddies that
in turn convert the energy to heat as they dissipate while moving downstream.
Figure 14-1 shows the usual way of drawing the water surface and energy grade
line in the vicinity of a local disturbance. The true shapes probably look
more like the dashed curves.

Water surface

h, -V,

~. ~_ 'm""

(1)

-----
Total head

----------

Figure 14-1.--Energy grade lines at a local obstruction.

Applying the energy equation between points 1 and 3 (point 2 is not a
good point because the location of the total head is indeterminate), one
obtains

(14-1)
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in which hI and h2 represent the sum of the potential plus pressure potential
energies (the hydraulic head), and hf represents the head loss due to fric
tional resistance. The local energy loss, he, is generally computed as a per
centage of the velocity head. Percentages (loss coefficients, kv ) for various
geometric forms of obstructions are tabulated in handbooks of hydraulics.
Here we are mostly interested in head losses at expansions and contractions.
The head loss at either an expansion or contraction is usually computed as

(14-2)

•

•

•

•

where the absolute value 0f the difference in velocity heads allows the same
expression to be used forieither an expansion or contraction. For a sudden
contraction the value of *e isiusually found to be about 0.5. Its value
decreases as the transitiqn becomes more gradual or streamlined. For a sudden
expansion the value of ke·is u~ually found to be 1.0 which implies that all

the kinetic energy (UIVI21,2g) in excess of that in the expanded channel is
lost to turbulence. As the expansion is streamlined, the value of ke
decreases but usually not very much. As can be seen by plotting the energy
and hydraulic grade lines for an expansion, if the value of ke is 1.0, there
is no increase in water stirface elevation as the flow passes through the
expansion. You probably recali that this is what is usually observed in the
field. For subcritical f+ow, ~owever, the water level will always decrease as
the flow passes through a;contraction.

Local energy losses'become important when computing flow from changes in
water-surface elevations such as occur at width constrictions. Figure 14-1
could be used as the defi~ition sketch for flow through a bridge opening; for
example, where section 1 is a short distance upstream of the bridge, section 2
is at the upstream side of the'embankment, and section 3 is at the downstream
edge of the opening. After a flood, peak water-surface elevations can be
determined at sections 1 and 3, usually from high-water marks. The discharge
can then be estimated as the value that· allows the energy equation 14-1 to
balance. Rewriting equation 14-1 in expanded form, in which the friction
slope is expressed as a function of discharge and conveyance and the local
entrance loss is expressed by equation 14-2, one obtains

•
(14-3)

•

•

•

in which L12 and L23 are the distances from section 1 to 2 and 2 to 3, respec
tively, VI = Q/Al and V2 = Q/A3. Because the areas and conveyances are all
functions of the geometric shape of the section, roughness, and depth, equa
tion 14-3 contains only one unknown (Q) besides the roughness coefficients in
reach· 1-2 and 2-3 as well as the contraction loss coefficient ke . Measurement
of the water-surface elevations hI and h3 as well as the channel shape and
assuming the roughness coefficients and ke allows the peak discharge to be
computed (by trial and error) from the energy equation 14-3.
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PROBLEM

1. After a flood the data in the table were measured at a bridge site.
Section 1 was located 40 feet upstream of the bridge opening and section 3
was located 15 feet downstream of the bridge opening, but still within the
zone of contracted flow. Assuming a contraction loss coefficient of 0.5,
compute the peak discharge. Assuming a true discharge of 575 ft 3 /s
(Matthai, 1968, p. 43), compute the actual value of ke . Draw and label the
total and hydraulic grade lines on the sketch.

Water-surface Area Conveyance
Section elevation (ft) ft2 ft3/ s a

1 10.81 148.2 10,840 1. 39
3 10.00 82.2 6,560 1.0

Total
Q head

Assume
a1V12

at 1 a3V32
h f 12 hf23 he2g 2g

(ft) (ft) (ft) (ft) (ft) (ft)
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Lesson 15 - Water-Surface Profile Computations

Methods of Computation

A common problem in open-channel hydraulics is to determine the water
surface profile of a stream under specific discharge and channel conditions.
The term "backwater curves" is applied to such profiles.

Backwater curves are used to determine grade lines for flood-protection
works, highways, and bridges. They are used to determine tailwater ratings
for hydroelectric power plants, canal headworks, and energy dissipaters. They
are also used to determine areas subject to flooding.

The computation of water-surface profiles basically involves solution of
the energy equation for gradually varied flow. Broadly classified, there are
three methods of computation:

1. the graphical-integration method,
2. the direct-integration method, and
3. the step method.

Explanations of both the graphical- and direct-integration methods may be
found in Chow (1959) as well as other texts. Only the standard-step method
will be discussed here.

Step method computations require the channel to be divided into short
lengths, or reaches, which have relatively small variations in conveyance. In
a series of steps starting from a point of control, each reach is solved in
succession. For subcritical flow the computations proceed upstream from a
downstream control and for supercritical flow the computations must proceed
downstream from an upstream control. It is very helpful, almost necessary, to
qualitatively analyze the problem using the methods developed in lesson 13
before detailed computations begin.

The standard-step method allows computation of backwater curves in both
nonprismatic natural channels and nonuniform artificial channels as well as in
uniform channels. This method involves solving for the water-surface eleva
tion at various locations along a channel. The energy balance used in the
standard-step method is accomplished by writing energy equation between the
upstream section, u, and the downstream section, d, in figure 15-1 as

(15-1)

and solving for the water-surface elevation at the unknown section by trial
and error.

Except for representing the hydraulic head, h, as the sum of the poten
tial and pressure potential heads (D + Z), equation 15-1 is identical to the
standard energy equation 6-2. The total energy loss in the reach, hI, is com-

puted as

•

•

where hi
-
Sf L

hI

energy loss due to friction and
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Figure 15-1.--Water-surface profile
computation. +== Wate, su,face

eddy losses due

to expansion or
contraction of
the flow.

(14-2)

Eddy losses allow a three-dimensional flow to be modeled using a one-dimen
sional theory. In nonprismatic channels, eddy losses may be appreciable.

Solving equation 15-1 for the hydraulic head at the upstream section
(assuming subcritical flow), one obtains

+ hf + he- (15-3)

The equation computes the upstream water-surface elevation from the
downstream elevation when backwater computations are made for subcritical flow
because the control is downstream.

The computation is carried out in steps, going from one cross section to
the next. The general computational procedure is as follows:

1. Starting at a cross section with a known water-surface elevation,
compute the necessary cross-sectional properties.

2. Estimate the unknown water-surface elevation at the next cross
section.

3. Calculate the hydraulic properties that correspond to the estimated
water-surface elevation.

4. Determine the energy losses that correspond to the estimated water
surface elevation.

5. Calculate the water-surface elevation using the energy equation
(equation 15-3) and the energy losses computed in step 4.
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6. Compare the es~imated and computed water-surface elevations. If
they are close enough, go to step 1 where the just computed water'C

surface elevation is considered to be known. If they are not close
enough, estimate a new water-surface elevation and go to step 3.

Friction-Loss Computation

Friction loss in a channel reach is computed by integrating the friction
slope along the reach:

•

fX 2
Sf dx.

xl

Equation 15-4 is approximated by

Sf L,

(15-4)

(15-5)

The product of Sf and L approximates the area under the actual -Sf curve on
figure 15-2. In general, the shape of the friction slope curve is unknown and
depends on the type of water-surface profile (that is, Ml, M2, :etc.).

•
where Sf

L

the average friction slope for the reach, and
the reach length.

•

•

•

•

Wale, Surface

Figure 15-2.--Variation of friction
slope with distance
along the channel.

Possible ways of calculating Sf include the following:

Weighted Average

(15-6)

1/2; Arithmetic Average
for e=

x/4; Elliptic Average

Geometric Mean

• (15-7 )

•
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Harmonic Mean

Average Conveyance

= (Qu + Qd)2
Ku + Kd

(15-8 )

(15-9)

Any of the friction slope equations will produce satisfactory estimates
of friction loss provided that the reach lengths are sufficiently short so
that the conveyances at either end do not vary too much. The advantage sought
in using alternative friction slope formulas is to maximize reach lengths
without sacrificing profile accuracy. Table 15-1 presents the results of
various investigations in a form that will enable proper selection of a fric
tion slope formula. The Geometric Mean equation is the preferred friction
slope formula for all profile types in the Geological Survey step-backwater
computer programs.

Table 15-1.--Criteria used to select friction slope eQuation

Profile type

Subcritical

Supercritical

Yes (M1, Sl)
No (M2)

Yes (S2)
No (M3, 83)

Equation used

Arithmetic Average
Harmonic Mean or
Elliptic Average

Arithmetic Average
Geometric Mean

where Sfd the known friction slope at the downstream cross
section, and

Sfu the estimated friction slope at the upstream cross

section.

Example:

A 100-foot wide rectangular channel has a slope of 0.0006 and a
Manning's n = 0.03. At a discharge of 1,669.2 ft 3 /s the observed depth is 4.5
feet. What is the depth 300 feet upstream? Assume all a's = 1.0 and expan
sion/contraction loss coefficients of 0.0 because it is a prismatic channel.
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Solution:

The first step is .to qualitatively determine the type of backwater
profile present. First, compute the Froude number to see if subcritical or
supercritical flow exists.

3.71 ft/s

•
v 1,669.2

4.5(100)

v 3.71

-VgD = -V32.2(4.5)
0.31

•

•

Because the Froude number is less than 1, the flow is subcritical and the
problem is well posed because the control will be downstream and backwater
profiles should be computed in the upstream direction. Also, the critical
depth is less than 4.5 feet and less than 5.0 feet.

Next, compute the normal depth. For normal depth the friction slope and
the bed slope are equal so

1.49 2/3. 1 ( 100 D ) 2/3
Q =~ A R '10.0006 = 1.22 (100 D) 100 + 2D

Solving by trial and error as shown below

• Normal depth ~

..J:L
4.5
4.6
4.8
5.0
5.2

o
1,408.9
1,459.7
1,563.2
1,669.2
1,777.6

•

•

The normal depth of 5.0 feet is larger than the critical depth so the slope is
mild. The local depth is less than the normal depth and greater than critical
depth so an M2 profile exists that is concave down as can be seen on table
13-1. In other words, the depth 300 feet upstream will be larger than 4.5
feet and less than the normal depth of 5.0 feet.

The exact value of the depth is computed from the energy equation as
expressed in equation IS-lor 15-3. Because the right side of equation 15-3
is a function of the unknown upstream head, hu , a trial-and-error solution
will be required, and it is convenient to organize the computations by use of
a table such as 15-2.

The first step is to compute each term in equation 15-3 that pertains to
the downstream section (which is called section 1) as follows:

The conveyance at the downstream section is

•
K =

so the friction slope is

( 450) ( !2.Q.) 2/3 = 57,518 ft 3 /s,
109
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Sf (
1,669.2)2
57,518
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Table 15-2.--Cornputation sheet for backwater analysis

Depth Water-surface elevationCross

section (ftl Assumed

K

Computed (ft3 /s)

v

(ft) (ft/s)

av2

2g

1 4.5 4.5 57,518 0.000842 3.71 0.214
0.000785 0.236

2 4.7 4.88 4.75 61,690 0.000732 3.55 .196
0.000765 .230

2 4.57 4.75 4.74 58,966 0.000801 3.65 .207

the velocity is

and the velocity head is

v 1,669.2
450

3.71 ft/s,

av2
--=
2g

1.0(3.71)2
6

= 0.214 ft.
4.4

These values are recorded in table 15-2 on the line marked section 1 with a
known water-surface elevation and depth of 4.5 feet.

The next step is to assume a depth at the upstream section. Because we
know the depth will increase upstream (M2l, an assumption of 4.7 feet is made.
The bed raises 0.0006 x 300 = 0.18 foot so the assumed water-surface elevation
(hu ) is 4.88. The next step is to compute the conveyance, velocity, etc., for
section 2 (the upstream section) just as for section 1. The results of these
computations are shown as the third line of table 15-2.

With the third line comQleted, compute the head loss terms and record
the results on line 2 because the values represent the head loss between the
two sections. The friction slope at section 1 is 0.000842 and at section 2
for the assumed depth of 4.7 feet is 0.000732. The average slope is computed
as the geometric mean

Sf = ~0.000842 (0.000732) = 0.000785

so the friction loss between section 1 and 2 is

h1i2 = 0.000785 (300 ft) = 0.236 ft.

The loss term is recorded on line 2 of table 15-2. The next step is to
compute the water-surface elevation at the upstream section by use of equation
15-3 using data contained in table 15-2
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hu + 0."196 = 0.214 + 4.5 + 0.236 + 0.0

or h u = 4.75, which is recorded as the computed water-surface elevation at
section 2. A poor assumption was made because the computed and assumed eleva
tions at section 2 are not equal.

Another try is made by assuming the water-surface elevation at section 2
is equal to the computed value of 4.75 feet. The conveyance, velocity, etc.,
are recomputed with the new assumed depth of 4.75 - 0.18 = 4.57 and the
results recorded on the fifth line of table 15-2. The head loss terms are
recomputed for the reach using data contained in lines 1 and 5 and the results
are recorded between the sections on line 4. The second estimate of the
upstream water-surface elevation is then computed as before as

h u = 0.214 + 4.5 + 0.230 - 0.207 = 4.74,

which may be close enough to the assumed value. So the approximate water
surface elevation 300 feet upstream of the measurement point is 4.74 feet and
the depth is 4.S6 feet, which is greater than 4.50 as it should be for an M2
curve. The conveyance at sections 1 and 2 differ by only 3 percent so the
method used in averaging the two friction slopes (geometric mean used here) is
not very important. If the conveyance at the two sections differed by more
than 20 percent, the computations probably should be made for sections that
were closer together. For example, to get the water-surface elevation 300
feet upstream, one might first compute it at 150 feet and then at 300 feet.

113



PROBLEM

1. A channel with a trapezoidal cross section as shown below has a constant
slope of 0.0016 and carries a discharge of 400 ft 3 /s. Manning's n has
been computed to be 0.025. Compute the normal depth. Compute the back
water profile created by a dam that backs up the water to a depth of 5.0
feet immediately behind the dam. Use the standard-step method. Estimate

the average friction slope, Sf, as a geometric mean. Assume that
ke = 0.0 for contractions and expansions, and a = 1.0. Locate cross
sections 500 feet apart. Compute the profile until the depth is within
0.10 feet of the normal depth. What type of profile is this (e.g., M1,
M2, etc.).

For a channel with a trapezoidal cross section:

Area = (b + zy)y

Wetted perimeter

Hydraulic radius
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Water-Surface Profile Calculations - Problem 15-1

Q ________________;ke = for expansion; ke = _ for contraction

......

......
\Jl

Water-surface

Cross- elevation Hydraulic xlO- 4 xlO- 4

section Com- Area radius

R2 / 3 - av2 av2
number Depth Assumed puted A R K Sf Sf L hf 2g

t:,.- he2g
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PART V - DISCHARGE COMPUTATIONS FOR RAPIDLY VARIED FLOW

Lesson 16 - Rapidly Varied Flow at Constrictions

The contraction of a stream channel by a roadway crossing creates an
abrupt drop in water-surface elevation between an approach section and the
contracted section under the bridge provided the upstream flow is subcritical
(Fr < 1). The contracted section framed by the bridge abutments and the
channel bed is, in a sense, a discharge meter that can be used to compute
floodflows. The piezometric (hydraulic) heads are defined by high-water marks
and the geometries of the channel and opening are defined by field surveys.
The energy equation is used to relate the change in piezometric heads to the
discharge. This lesson describes the theory behind using contracted sections
as flow meters. Details of the procedure are presented by Matthai (1968) and
Schneider and others (1977).

Consider the theoretical water-surface profile that occurs for steady
flow through a contracted section of a rectangular channel which is 500 feet
wide with a Manning's n of 0.03 and a slope of 0.0002 while the discharge is
5,075 ft 3 /s. Figure 16-1 is a plot of the theoretical water-surface and
total-energy profiles that would occur if the constricted channel was a 100
foot wide rectangle with the same roughness and bottom slope as the natural
channel. The opening is assumed to be 48 feet long (parallel to the flow) and
have contraction (entrance) and expansion (exit) loss coefficients of 0.5 and
1.0, respectively.

-------....+1...- 48 feel-iI'

Plan view

136 feet

---•• V
t

500 feet

+ t
100 feet

6.60 feet,,
he = 1.54 fee~\

Water s ~ "
v'face 5.06 feet .... >

5.00 feet Normal depth

hI = 7.46 feel

7.49 feet 748 f
=::;::=======iiM~l~=======,<~===:r-..'", . 7e:~ feet

..... , he' 0.65 feet
6.83feet~\- 'Toral head

\ I
Local effects '"\

\1
5.50 feet -i- M2

a =5075 cubic feet per second--_. I

03 = 03A = 5.00 feet

n =0.03
So z 0.0002

Figure 16-1.--Theoretical water-surface and energy profiles
through a contracted opening.
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Within the contracted section, the normal depth, Do, is 14.43 feet, as

can be seen by use of the Manning equation, and the critical depth is

Dc = 3~ 3~50. 752 __ 4.31 ft
32.2

•

•

•

•

•

•

•

•

•

while the wide channel has a normal depth of 5.0 feet and a critical depth of
1.47 feet. For normal depth in the wide section the velocity is 2.03 ft/s and
the Froude number is 0.16.

The flow is subcritical throughout because Do > Dc throughout and there
is no sudden drop in bed elevation. For subcritical flow, the control is
always downstream. . As can be seen by applying the water- surface profile
shapes discussed in lesson 13, normal depth must exist all the way up to the
opening on the downstream side. For the present discussion we ignore the
local effects and assume the velocity is capable of suddenly changing from one
value to another as the water leaves the constriction and enters the expanded
section. Therefore, just downstream of the outlet (section 3A) the depth is
5.0 feet, the velocity is 2.03 ft/s, the velocity head is 0.06 foot (assuming
a = 1.0), so the total head is 5.06 feet (assuming the bed is at zero eleva
tion at the outlet) .

The depth just upstream of the outlet, section 3, can be computed from
the energy equation as

V3 2
2g + D3 + 0

where the values of a are assumed to be 1.0 and the expansion loss coeffi
cient is assumed to be 1.0. Because the expansion loss coefficient is 1.0,
the velocity heads exactly cancel so the value of D3 is equal to the value of
D3A, and the theoretical water surf·ace is continuous at the expansion. Had
the expansion less coefficient been assumed to be 0.8, however, the theoreti
cal value of D3 would have been 4.64 feet for example. This would have indi
cated that the water surface suddenly increased by 0.36 foot as the flow
expanded. In other words, 0.36 foot of the kinetic energy at section 3 would
be converted instantaneously to pressure energy raising the water surface by
0.36 foot. With the loss coefficient of 1.0, figure 16-1 indicates the instan
taneous head loss at the expansion is 1.54 feet.

Within the contracted section, the depth is less than the normal depth
of 14.43 but greater than the critical depth of 4.31, so an M2 profile is
indicated as plotted on figure 16-1. Projecting the water-surface profile
back to the entrance (using the methods as outlined in lesson 15), the depth
and total energies at section 2A are as indicated on figure 16-1. Both the
water-surface profile and energy line is concave downward as required by the
M2 profile, but the curvature is probably too slight to detect on figure 16-1.

The next step is to compute the depth at section 2 by use of the energy
equation

1.33 + 5.49 + 0.01 + 0.5 (1.33 - ~~)

from which the value of 02 is seen to be 7.44 feet.
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The velocity and velocity heads are 1.36 ft/s and 0.03 foot, respec
tively, at section 2. The energy loss at the entrance is seen to be 0.65 foot
compared to the exit loss of 1.54 feet. The theoretical water-surface profile
is discontinuous at the entrance because it has been assumed that the velocity
changes instantaneously as it passes the opening and that the energy is
suddenly dissipated. Of course this discontinuity does not exist in nature
and the actu~l water-surface profile and energy line will look somewhat as
shown by the dashed curves. In general, these effects, which are due to
streamline curvature, are very localized.

Upstream the depth is greater than both normal and critical, so an M1
curve is indicated. The M1 curve is very slightly concave upward. For
example, at 136 feet upstream of the entrance the theoretical depth is reduced
to only 7.42 feet and it requires 36,300 feet for the depth to be reduced to
5.06 feet, which is still 0.06 foot above normal.

The Geological Survey is frequently faced with the problem of estimating
the discharge based on high-water marks left after a flood. A bridge opening
offers an ideal place to make this estimate. This is because there is gener
ally a large difference in water-surface elevations that are directly related
to the energy equation. For example, if the energy equation is written from
sections 1 to 3

(16-1)

in which there are several unknowns but the unknowns tend to be small. For
example, if D1, Zl, D3, and Z3 are measured in the field, the values of A1 and
A3 can be computed from the geometry of the cross section so that

In this equation, the unknowns are a1, a3, h f l-2, hf2-3, ke , V2A,·and
V2. Solving for Q

in which the entrance loss term is represented by he. For the example given

in figure 16-1, h1 - h3 = 2.46 feet, h f l-2 = 0.01 foot, h f 2-3 = 0.23 foot,
and he = 0.65 foot. The accuracy of the result would not be very much

affected by substantial errors in hf l - 2 or hf2 - 3 and even the entrance loss is
not large, so that a significant error in this can be tolerated. The value of
a3 will be nearly 1.0 because the section under the bridge is generally very
regular in shape and the actual value of a1 is rather insignificant because
1/A3 2 is 56 times larger than the value of 1/A1 2 .

The depth and total energy lines are strongly affected by local condi
tions at sections 2 and 2A. At sections 3A and 4 additional unknowns are
added, the expansion loss and the friction loss between 3A and 4. The exit
loss term is also large, 1.54 feet in this example, so estimates of its value
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should be avoided if possible. For these reasons, sections 1 and 3 are almost
always selected as application points for the energy equation.

Figure 16-2 shows typical streamlines for flow through a sharp-edged
opening. The water following streamline A approaches the opening at a
significant angle and is unable to change directions instantly upon passing
the opening. The active jet, therefore, continues to contract in the down
stream direction for a short distance after it passes the opening. The vena
contracta is defined as the point where the active area is smallest (often as
much as 20 percent less than the gross area). At the vena contracta the flow
is,nearly parallel so the energy equation can be applied with accuracy. The
energy equation should not be applied upstream of the vena contracta because
the curvature of the streamlines is large and the simple one-dimensional
assumptions are not applicable.

I

Figure 16-2.--Streamlines for flow
through a sharp-edged
opening.

The upstream section should be selected such that it is upstream of the
local drawdown caused by the converging streamlines. Generally the drawdown
effects extend upstream less than one opening width. Wide, heavily vegetated
floodplains present unique problems that have been addressed by Schneider and
others (1977).

Detailed procedures for computing discharges at contracted openings are
presented by Matthai (1986). The basic equation used in this manual can be
derived from equation 16-1 by assuming the entrance loss can be estimated as

instead of the expression given in equation 16-1. This assumption is desir
able and reasonable because the velocities at section 2 are not generally
known and V3 ~ V2A while V2 «V2A. Expressing the entrance loss as indicated
above and replacing v3 by Q!A, equation 16-1 can be written

• (X1 V12
+ h1 h3 + hf l - 3 +~~ (1 + ke )

2g A3 2 2g

or solving for Q yields

• A3 ~2g(~h (Xl V1 2
- hfl - 3) ,Q

-V (X3 (1
+ 2g

(16-2)
+ kel

I.
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which is identical to Matthai's equation 1

where

C
1

and 6h is the fall in water-surface elevation

The entrance loss coefficient ke is dependent on the shape of the
entrance, the angle of the approach flow, the length of the opening, etc.
Values of C, which are mainly a function of ke , have been measured for many
shapes and hydraulic conditions using laboratory studies. The results of
these studies are presented as tables and charts by Matthai (1968). It was
found that the dominant factor in determining the value of C is the channel
contraction ratio (m) which describes the degree of contraction imposed by the
constriction on the normal stream channel. The contraction ratio is a measure
of the portion of the total flow that enters the contraction from the sides of
the channel. It can be computed from the equation

m = (Q - q') IQ (16-3)

in which Q is' the total discharge and q' is the discharge that would have
passed through the area of the opening if the constriction was not there. For
the example shown in figure 16-1, Q = 5,075 and q' = 5,075/5 because the
channel is uniform so one-fifth of the flow would have passed through the
center 100 feet had the constriction not existed. For very wide flood plains
(width of flood plain greater than five times the width of the opening), or
very rough approach conditions (Manning's n greater than 0.05), special pre
cautions are needed. For these conditions the special procedures developed by
Schneider and others (1977) should be used.

The total value of C is then computed as

(16-4)

in which C' is a function only of m and Lib where Land b are defined in
figure 16-3C and kF, k$' etc., account for other factors such as shape.

Figure 16-3 contains a copy of some of the figures for a type 1 opening
(Matthai, 1968). For this opening, the value of C' is determined from figure
16-3A. The value of C is equal to C' if the Froude number is 0.5, the corners
are not rounded, etc. If the Froude number is ~ 0.5, the correction for C'
can be determined from figure 16-38 if the corners ~ rounded, the correction
can be determined from figure 16-3C, etc.
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•
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A. Curves for base coefficient of discharge
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Fr =0.5
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Figure 16-3.--Coefficients for type 1 opening, vertical embankments,

and vertical abutments.
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PROBLEM

Compute the flood discharge through a highway bridge opening in a practically
straight, uniform reach of a river. The bridge spans the main channel and
completely blocks both overbanks. The bridge opening is 180 feet wide and 30
feet in length with vertical embankments and vertical abutments (Type 1 open
ing) and no piers as shown in the figure below. The average water surface at
the contracted section was found to be 3.0 feet below that at the approach
section. Data for the approach section and the contracted section are given
below. The approach section is located 180 feet upstream from the obstruc
tion.

\\

180 It

--------'-t----r----
,~" II

1\

Subarea
Approach section:
, Left overbank

Main channel
Right overbank

Total
Contracted section:

Tctal

4,930
5,000
2,760

4,460

403
225
246

230

0.045
0.035
0.052

0.035
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Solution Procedure:

(a) Compute conveyances at approach section.
(b) Compute velocity head correction factor at approach section (al)
(c) Compute conveyance at contracted section.
(d) Compute channel contraction ratio, m, and length-to-width ratio, Lib.
(e) Determine C' for a Type I opening from figure 16-3A.
(f) Assuminq a Froude number of 0.5, determine the discharge coefficient

(C) from figures 16-3A and 16-3C.
(g) Compute the discharge through the contracted opening using equation

16-2 and the following table.

Assumed

Q
a1V12

hf l - 2 =
L12Q2

hf2 - 3 =
L23Q2

V3 Fr 3 kF Q
2g K1 K3 K3 2

25,000

I

I
(

,
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Lesson 17 - Flow Through Culverts

When a roadway crosses a small stream, the streamflow is usually carried
under the roadway by use of a culvert. Like a bridge opening, the culvert
invariably constricts the flow and the channel transition usually results in
rapidly varied flow wherein acceleration rather than boundary friction domi
nates the flow pattern. Because acceleration is an efficient process, the
energy losses are small and peak discharges through culverts can be determined
from high-water marks that define the headwater and tail-water elevations.
This indirect method is used extensively to estimate flood discharges from
small drainage areas.

Culvert flow has been studied in laboratories by the Geological Survey,
the Bureau of Public Roads, and many universities. Detailed procedures for
indirect discharge measurements are outlined by Bodhaine (1968). The purpose
of this lesson is to review the theory upon which these procedures are based
and to briefly outline the procedures that are used.

In all cases the flow rate is computed by writing the energy equation
between a point upstream of the culvert and a second point within or down
stream of the culvert, then solving for the discharge in terms of an estimate
of the energy loss. The procedure has much in cornmon with that used at bridge
openings. Figure 17-1 represents'a schematic of the flow through a culvert
with the sections and terms defined. For culverts the best point to use as
the downstream control (second po~nt in energy equation) depends very much on
the flow conditions. In general there are six types of flow possible. These
are summarized in figure 17-2.

¥?'==-.' --.- Datu'm ~---- z ..... _." 5 0 ..••.

-

Horizontal line
h}·2

he = Entrance lOll

--=-_-=---=-_E!!,e!9ti.'ade;;;;;' - - - h2.3-
----_______ f

~..~, ~.,., ..:;::m=~·..~····..··d····" \ - T
\ E'2/ \ Xlt 101&

V3 2g \
\

. "2 .... -----
a4V4 /2g surface

'13~~~-=---=-..;-_
Culvert outlet 141~~'~

Z = distance from datum to culvert entranca invert Tailwatar lection

121
Culvert entrance

(1)
Approach section

Figure 17-1.--Definition sketch of culvert flow.

Note: the loss of energy near the entrance is related to the
sudden contraction and subsequent expansion of the live stream
within the culvert barrel.
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TYPE

Critical depth
at inlet

hI - Z
Qil<1.5

. h4 /Oc < '.0

So> Sc

2

Critical depth
at oullet

hI - Z
-----c;il < 1.5

h4 /Dc < 1.0

So < Sc

3
Tranquil flow
throughoul

hl - Z
Qil<1.5

h4 /OP :s 1.0

h4 /Oc > 1.0

4

Submerged
oullet

hl - Z
QP>1.0

h 4 /OP :> 1.0

5
Rapid flow

at inlet

hl - Z
DP~1.5

h 4 /OP :=1.0

6
Full flow

free outfall

hl - Z ~ 1.5
oP

h4/0P ~ 1.0

EXAMPLE

0'= CAcV2glhl ~ UIV?/2g - Dc - h)·2 - hr-3,

~Lw L

,IIB:P'¥.4}E'2['~·

•

•

•

Figure 17-2.--Classification of culvert
flow (after Bodhaine, 1968,
p. 2).
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The discharge equation for type 1 flow will be derived to illustrate the
procedure. Writing the energy equation from section 1 to section 2

V2 2
D2 + z + --- + he + h f l-2

2g
(17-1)

where a2 is assumed to be 1.0 because the flow velocity should be fairly.
uniform in the culvert. The entrance loss, he, for the contraction is
approximated as

(17-2)

The value of ke has been found, by use of many experiments, to range from 0.1
to 0.6 depending on the shape of the entrance.

Solving for V2 2

1

in which z is the distance from the datum to the culvert invert, but V2
and A2 = Ac , D2 Dc since critical depth occurs at the inlet so

Q2
(1 + ke ) = h1 +

a1V12
- Dc h f l-2

Ac 2 - z -
2g 2g

Define the coefficient of discharge, C, as

c =
.-.j1 + k e

then solve for Q as

Q/A2

(17-3)

(17-4 )

and the formula in figure 17-2 is obtained. Notice as ke varies from 0.1 to
0.5 the value of C ranges from 0.95 to 0.82 in excellent agreement with the
values given in figure 17-3, which is a reproduction of Bodhaine's figure 23
(1968). The values in figure 17-3, as for most other figures in Bodhaine's
report, were derived from laboratory experiments on scale models. The head
loss term is computed as

(17-5)

in which L is the distance from section 1 to section 2.
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17-3.--Base coefficient of
discharge for types 1,
2, and 3 flow in box
culverts with square
entrance mounted flush
in vertical headwall.

Figure

Box culvert having square entrance
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• The critical depth at section 2 must be determined to apply equation
17-4. It will be recalled from lesson 11 (equations 11-4 and 11-8) that
critical depth is uniquely related to specific energy and velocity head or

The specific energy at section 2 can be easily computed by referring to equa
tion 17-1 or figure 17-1 as•

Dc = 2/3 E 2 Vc 2

2g
(17-6)

•
(17-7 )

letting H1 be defined as the specific energy at section 1 relative to the
bottom of the culvert entrance

- z (17-8)

• and combining equations 17-6 and 17-7 it is seen that

1.5 Dc _ hfl-2 _ k
e

Dc
H1 2

or that

I

• DC =
(1. 5 + 0.5 ke >

(17-9)

•
If the entrance and friction losses were zero, H1 would equal E2 and Dc would
be 0.667 HI. However, ke and h f l-2 are never. really zero so Dc is always
less than 0.667 H1. The ratio of Dc to H1 is called the dc factor and its
value is computed from the coefficient of discharge (Bodhaine, 1968, p. 24)
For example, assume C = 0.96 and hf l - 2 = O. From equation 17-3 the entrance
loss coefficient can be computed as

• giving ke 0.085 s.o

(0.96)2 1
1 + ke
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which agrees with the value given by Bodhaine (1968, p. 25).

As can be seen from figure 17-2, the six types of culvert flow can be
divided into two groups (1, 2, 3) and (4, 5, 6) depending on whether or not
the inlet is submerged. For subcritical upstream flow, critical depth is the
smallest possible depth at the inlet to the culvert. So if critical depth at
the inlet is larger than the pipe diameter, Dp , the inlet will be submerged.
If you ignore the velocity head at section 1, the friction loss between
sections 1 and 2 and the entrance loss, it can be seen from equation 17-9 that
if h1 - z is greater than 1.5 Dp , the inlet will be submerged.

The flow equations for types 2 .and 3 are obtained in the same way as the
equation for type 1 except the downstream energy point is section 3 and the
energy loss in the barrel must be accounted for.

Types 4, 5, and 6 occur when the inlet is submerged. In this case the
, velocity head at section one is ignored because it is assumed it would be
negligible due to ponding upstream from the culvert.

The equation for type 4 is derived by writing the energy equation from
• section 1 to section 4:

I

I

in w~ich he and h o are the entrance and exit losses, respectively. Because of
the 'large flow areas at sections 1 and 4, these velocity head terms are
assumed to be negligible as is the friction loss from 1 to 2 and 3 to 4. The
exit loss for a sudden expansion is computed in the usual way

V 2
..:::l2-
2g

so rewriting with these assumptions

V 2 V 2
h1 = h4 + ke ..:::l2- + hf2 - 3 + ..:::l2-

2g 2g

computing the friction loss in the pipe from Manning's equation

2 2
h 2-3 _ L Vp n

f - 1.492 R4 / 3

solving for Vp

but 2g/1. 49 2

Vp
2

( 29 n
2

L )
2g 1 + ke + 1.492 R4 /3

29.01 so

0
2

[1 29n
2

LJ(1+ k e ) 1 + 1
Ap

2 2g + ke R4 /3
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C2 as before
1

letting 1 + k
e•

•

Q Ap C

where C accounts for the entrance loss just as it does in all other cases.

The entrance loss coefficient is mainly a function of the rounding of
the entrance as shown by table 17-1, which has been reproduced from Bodhaine's
report (1968, p. 42).

Table 17-1.--Discharqe coefficients for
box or pipe culverts set
flush in a vertical head
wall; types 4 and 6 flow

•

• rlDl p or riD C

•
o
0.04
0.08
0.12

0.84
0.88
0.96
0.98

r = radius of curvature of bell
entrance

•

•

Type 5 acts as an orifice where the velocity at 2 is ~2g(hl - z) and
the C accounts for the vena contracta (contraction) at the orifice. Type 6 is
treated as an orifice at section 3 (no contraction), but the head losses at
the entrance and through the pipe must be accounted for.

•

•

•
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PROBLEMS

1. A 5-foot diameter concrete culvert is 180 feet long and has a Manning's n
of 0.015. It has a bell entrance for which the radius of curvature of the
bell is 0.4 foot, the pipe is set flush in a vertical headwall, and the
pipe slope is 0.002. High-water marks observed after a flood indicate
that the headwater elevation was 7.36 feet and the tailwater elevation was
5.50 feet. The pipe is set flush in a headwall.

(See figure 17-2)
(See figure 17-2)
(See figure 17-2)

(See table 17-1)

a.
b.
c.
d.

Was the outlet submerged?
Was the inlet submerged?
What type flow occurred?
What was the flow rate?
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• 2. A box culvert 8-feet square is set on a steep slope and has a free getaway
so there is no backwater. It has a square entrance mounted flush with a
vertical headwall. The headwater elevation for a flood was observed to be
10 feet, which is 8 feet above the entrance invert. The approach section,
which is 20 feet upstxeam of the culvert entrance, had an area of 330 ft 2

and a conveyance of 38,900 ft 3 /s. The Manning's coefficient in the pipe
is 0.015.

• a.
b.
c.

d.

e.• f.

g.

•

•

•

•

•

•

•

How do you know it was not type 4 flow?
How do you know it was not type 5 or 6 flow?
How do you know it was not type 2 or 3 flow?

V1 2
Make a rough estimate of the flow assuming~ = 0 and Dc = 2/3 H1.

Compute the actual critical depth at the entrance by accounting for
the entrance loss by use of equation 17-9. Ignore the friction loss.
Using the approximate discharge computed in' step d as a first guess,
compute the flow through the culvert by use of equation 17-4. Compare
your results with those given in example 2 of Bodhaine (1968, p. 53).
Draw the energy and hydraulic grade lines between sections 1 and 2 on
a figure like that shown in figure 17-1 and compute the values of all
components of the curve.
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Lesson 18 ~ Flow Over Weirs

pefinitions

A weir is an obstruction in a channel that causes water to back up
behind it and flow over it, usually through an opening, or notch, of regular
form. The term is also applied to the structure containing such a notch.
Thus a weir may be a depression in the side of a tank, reservoir, or channel,
or it may be an overflow spillway of a dam. In addition, weirs are the
simplest, least expensive, and probably the most common type of devices used
to measure flow in open channels. Detailed procedures for measuring peak
discharges using dams, weirs, and embankments are described by Hulsing (1967)
This lesson will only give the background theory and briefly introduce the
methods.

The edge or surface over which the water passes is called the~ of
the weir. If the edge of the weir is thin or beveled with a sharp upstream
corner so that the water springs clear of the crest on the downstream side,
the weir is referred to as a sharp-crested weir (fig. 18-1). If the weir
notch is mounted in a wall or some other structure that is too thick for the
water to spring clear, the weir is called a broad-crested weir (fig. 18-2).

----- -hl- 3

Wale, V~i2g

Dc

p

.---- -
Water suiface

Crest

I· b 'I

B

Figure 18-1.--Definition sketch for a contracted,
sharp-crested weir.

V2 /29, Water

Ji---
p

~---:::3111 ~~-~-:.:. _- :_~ 12lG

L

surface

Figure 18-2.--Definition sketch for a broad-crested weir.
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The sheet of water flowing over the weir crest is called the ~.
When the water surface downstream from the weir is far enough below the crest
so that air moves freely beneath the nappe (aeration), the discharge is said
to be~ or critical. When the water level under the nappe rises to the
point where free aeration is not possible, the nappe is not ventilated. When
the downstream water surface rises to a level above the crest, the flow is
said to be submerqed or drowned. When the downstream water surface is above
the weir crest a distance equal to about two-thirds or more of the distance
between the crest and the upstream water surface, the flow rate will be
appreciably affected.

Broad-Crested Weirs

Consider the flow over a broad-crested weir as shown'in figure 18-2. A
flow constriction occurs so potential energy upstream of the weir is being
converted to kinetic energy as the water accelerates over the weir and there
is a drop in water-surface elevation. If the tailwater elevation, ht, is less
than the elevation of critical depth over the weir (= 2/3 H1), the flow rate
will be independent of the tailwater elevation.

To develop the flow equations for a broad-crested weir, write the energy,
equation from section 1 to 3 on figure 18-2. Let section 3 be located at the
critical depth point that will be near the downstream side of the weir if the
crest slope is less than critical. If the slope of the crest is greater than
the critical slope, the critical depth will occur near the upstream side of
the weir. In either case, applying the energy equation between section 1 and
the critical depth (section 3) yields

(18-1)

•
Because the velocity upstream of
assume hf l - 2 = O. Likewise the

value of hf2 - 3 is also ignored.

the weir is usually small, it is common to
length of the weir, L, is usually small so the

The value of he is approximated as usual by

• where V1 is approximately zero, so simplifying equation 18-1 gives

2
H1 = Dc + Ys- (1 + ke )

2g
(18-2)

Recall from equation 11-8 that critical depth in a rectangular channel is
related to the total specific energy and velocity as

•
so

Dc
Vc2

2
2g

2/3 Ec = 2/3 H1,

•

•

!!l
3
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or

The discharge can be directly computed as

Q _ L ... / 2g 1 5
b Dc Vc - b 3 V3(1 + ke ) HI .. (18-3)

This equation can be written simply as

Q = b C H1 .5,

where the theoretical discharge coefficient is

(18-4)

C 2 ~ 2g
'3 3 (1 + k e )

(18-5) .

Figure 18-3 has been extracted from Hulsing (1967) to illustrate the
variation of C with weir height.

As stated before, the value of ke generally ranges from a low of 0 for
very smooth openings or where the contraction ratio is small (h!L is small) to
a maximum value of about 0.5 for sharp nonstreamlined openings and a large
contraction ratio. As ke varies from 0.0 to 0.5, the theoretical value of C,
based on equation 18-5 varies from 3.09 to 2.52, which are within the range of
values indicated on figure 18-3. For values of h!L larger than 1.0, the
length of the weir (L) is short and the weir begins behaving more like a
sharp-crested weir, which as will be seen, has a larger coefficient of dis
charge. The efficiency of the weir increases (C increases) as the upstream
face is sloped. This in effect streamlines the entrance and reduces the value
of ke .

Figure 18-3.--Coefficients of dis
charge for full width,
broad-crested weirs
with downstream
slope = 1:1, and vari
ous upstream slopes
(Hulsing, 1967, p.
10) .

3.80,.--,---r---,---.--.---,---r--r--.---,
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•

•
The coefficient of discharge in equation 18-4 is actually a function of

many variables besides ke . In general, it is a function of the shape of the
entrance and other variables as defined by

C
.(h r

f
L' L'

H1, etc.) (18-6)

•
in which r is the radius of the rounding on the upstream corners. The effect
of many of these variables has been quantified by laboratory experiments and
the results are presented by Hulsing (1967). Corrections for other variables
are accounted for by letting

C = C' kr ks ... (18-7)

•
in which C' is determined from figure 18-3 and the k's are determined from
other figures· or tables. For example, if the slope of the downstream face of
the weir is flatter than 1:1, the values of C from figure 18-3 must be multi
plied by the factor, k s , given in the following table (Hulsing, 1967, p. 9).

• Value of k s for a downstream slope of

h/L 2:1 3:1 4:1 5:1

• 0.1 1. 00 1. 00 1. 00 1. 00
0.4 1. 00 1. 00 1. 00 1. 00
1.0 0.98 0.96 0.95 0.94
2.0 0.98 0.94 0.91 0.90

• If the upstream weir face is vertical and the entrance corner is
rounded, the value of C from figure 18-3 must be multiplied by a factor, k r ,
given in the following table (Hulsing, 1967, p. 9).

•
r/h o

1. 00

.02

1. 01

;04

1. 03

.06

1. 04

.08

1. 05

.10

1. 06

.12

1. 08

s..14

1.09

•

•

•

Sharp-Crested Weirs

If the corner of the upstream face of the weir is very sharp and the
length of the weir, L, is small, the water jet (nappe) will spring clear of
the weir as shown in figure 18-1. In writing the energy equation for a sharp
crested weir, consider section 3 to be immediately downstream of the weir
plate. Actually, the streamlines will have strong curvature at the face of
the weir so the one-dimensional assumptions will not be strictly valid but
nevertheless useful approximations result.
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Because the jet at section 3 is not supported from below, the pressure
at all points in the jet is zero and does not increase from zero at the
surface to roc at the bottom as it does for a broad-crested weir. The
hydraulic head (potential plus pressure-potential energy) therefore is not Dc
at section 3 but simply the average potential energy of parcels passing
section 3. The potential energy of a water parcel on the bottom of the jet is
zero while that of one on the top of the jet is Dc ft-lb/lb. Assuming the
ave+age potential energy of parcels passing section 3 is equal to the poten
tial energy of the parcel passing through the centroid of the cross section,
the energy equation yields .

VC
2

Dc 1 3 (Vc 2
V1

2
)+ + hf - + k e --- - ---

2g 2 2g 2g'
(18 -8)

because the centroid of the cross section (a rectangle) will be Dc /2 feet
above the crest of the weir. Equation 18-8 is identical to equation 18-1
except that the hydraulic head is adjusted to account for the fact that the
pressure in the free jet is zero and so the average potential energy of water
parcels passing section 3 is Dc /2 ft-lb/lb rather than Dc ft-lb/lb, which
would occur if the pressure were hydrostatic. Because the depth upstream of
the weir is generally large compared to the depth at the weir, we will con-
sider V1 and h f l-3 to be zero.

with this slight modification to the energy equation, the flow over a
sharp-crested weir can be analyzed exactly like that for flow over a broad
crested weir. The depth should be at critical depth at the weir plate so
Dc = 2/3 H1, which can be substituted into equation 18-8 to determine the
average velocity in the jet

Vc = - I 3 4g fH;".\J (1 + k e )

Comparing the velocity in a free jet as computed above to that on a broad
crested weir computed previously, it is seen that the average free jet . is
two times faster. This is because there is no pressure in the jet holding the
water parcels back.

Rectangular Weirs

Computing the discharge for a sharp-edged rectangular weir from the
velocity and the area, one obtains

Q VA - I 4g fH;" = 1 b - I 4g H11 .5..\J 3 (1 + ke ) 3 \J 3 (1 + ke )

Again this equation is usually written as

Q = b C H1 . 5 or Q = b C h 1 . 5 . (18-9)

The values of total head (H) or piezometric head are often used interchange
ably because the velocity head upstream is usually negligible. The theoreti
cal value of the coefficient of discharge is
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•

• c (18-10)

•

•

•

•

As the entrance coefficient varies from 0 to 0.5, the theoretical
discharge coefficient varies from 4.37 to 3.57, which is close to the experi
mental values presented by Hulsing (1967, p. 6). The minimum discharge
coefficient presented by Hulsing is 3.27 for a very small weir (hip ~ 0) and
the maximum value is 4.29.

If the width of the weir is less than the width of the channel (b < B on
fig. 18-1), then the flow tends to contract downstream of the weir plate (a
vena contracta is formed). The discharge coefficient is reduced because of
the smaller effective width of the jet. As can be seen from figure 3 in
Hulsing (1967, p. 6), this contraction can reduce the flow area by almost 30
percent.

If the nappe is not fully ventilated, a partial vacuum is created under
the jet that reduces the pressure in the jet below atmospheric and increases
the discharge just as reducing the pressure in the jet increases the discharge
relative to t~e flow over a broad-crested weir.

Trianqular Weirs

Triangular (V-notch) weirs permit the accurate measurement of much lower
discharges than do horizontal rectangular weirs.

A definition sketch for the V-notch weir is shown in figure 18-4. The
theoretical discharge for a V-notch weir is derived in the same manner as that
for the rectangular weir.

•

•

Figure l8-4.--Definition sketch of a
V-notch (triangular)
sharp-crested weir.

•
Section 3 is again just downstream of the opening and the pressure in

the jet is zero so the average potential energy of water parcels must be used.
For a triangular weir, the centroid of the cross-sectional area is at 2/3 Dc
(see fig. 18-4) so the energy equation becomes

(18-11)

•

•

The critical depth in a triangular channel is not equal to two-thirds of the
total specific energy as in a rectangular channel. It can be easily shown
that critical depth in a triangular channel is
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D = 4 V c 2

C 2g
4
5 E ~ . (18-12)

by use of equation 11-3. So the velocity at the critical section can be
determined by use of equations 18-11 and 18-12 as

_ ... / 14g ~
Vc - 'I 15 (1 + ke ) HI

and the discharge is computed as

(18-13)

or

Q AcVc (
4 ) 2 e ... I 14g "~5 HI tan 2 '115(1 + ke ) ~H1

Q = tan ! C H5/2
2

(18-14)

in which the theoretical discharge coefficient

C 16 ~ 14g
25 15 (1 + kel

For a sharp, constricted entrance, the value of ke should be about 0.5 yield
ing a theoretical discharge coefficient for a V-notch weir of 2.86. Experimen
tal values of C range from 2.46 for a 60° weir to 2.48 for a 90° weir
(Daugherty, 1937, p. 148).

A correction factor, kt, for submergence of sharp-crested V-notch weirs
is given by Virlemonte (1947) as

(18-17)

in which ht = tailwater elevation above the weir crest. This equation was
found to apply equally well to all types of sharp-crested weirs if the expo
nent of the term (ht/H1) is equal to the exponent in the free-discharge"·equa
tion of the particular weir.

Other Sharp-Crested Weirs

The Cippoletti (trapezoidal) weir is similar to a rectangular weir with
side contractions except that the sides are inclined outwardly with slopes of
4 vertical to 1 horizontal as shown in figure 18-5. The excess flow permitted
by the flared sides of the Cippoletti weir corresponds to the decrement of
flow induced by the lateral contraction. Therefore, the discharge can be com
puted using equation 18-9 with the coefficient selected as for the rectangular
weir and no correction is needed for the side contractions.

Other types of sharp-crested weirs are used which have been developed to
achieve certain head-discharge relations or to achieve some benefit peculiar
to a particular type of site. The most common of these special types of weirs
is the sutro, or proportional, weir (fig. 18-6a). Other special purpose weirs
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•

•
include the approximate linear weir (fig. lB-6b), the approximate exponential
weir (fig. 18-6c), and the Poebing weir (fig. 18-6d).

•

•

•

•

Figure 18-S.--Definition sketch of a
Cippoletti (trapezoidal)
sharp-crested weir.

•

B. Approximate linear weir

BJ!a
•

Figure 18-6.--Various other sharp
crested weir profiles.

•

•

•

D. Poebing weir
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PROBLEMS

1. A broad-crested weir 5 feet high and 10 feet long has a rounded upstream
corner with a radius of curvature 0.3 foot, a downstream slope of 1:1, a
vertical upstream face, and spans the entire width of a 20- foot wide
rectangular channel. What is the discharge over the weir when the
upstream water surface is 3 feet above the crest of the weir?
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•

•

•

•

•

2. Estimate the discharge over a vertical sharp-crested rectangular weir
extending over the full width of a rectangular channel 5 feet wide if the
weir is 3 feet high and the head is 0.84 foot.
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3. A Tectangular sharp-crested weir having a horizontal crest length of 3
feet is located 2 feet above the bottom and is centered in a channel 5
feet wide. Determine the discharge when the head is 0.40 foot.
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•

•

•

•

. ,

4. A 10-foot wide rectangular irrigation canal carries a flow of 200 ft
3
/s.

At what height should a rectangular sharp-crested weir spanning the entire
channel be installed in order to raise the water surface to a level 6 feet

above the canal bottom?
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5. The head on a 60° V-notch weir located 1 foot above the channel bottom is
0.5 foot. The approach channel is 4 feet wide. Compute the discharge and
the velocity head in the approach channel. Is the velocity head in the
approach channel significant?
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ANSWERS TO PROBLEMS

Lesson 1

2. specific weight = 49.27 1b/ft3

specific gravity = 0.79

•
3. 187.2 lb/ft2

4. 0.01417 lb s/ft2

Lesson 2

1. FH = 7,020 lb
Y 10 ft

2. F 6,240 Ib
Yr 5.83 ft below top of gate

4,000 lb ~

3,000 lb J,

444 lb ~

0.838 ft 3 /s dPp = -1.34 atmosphere (impossible cavitation
will occur)

32,760 lb ~

28,308 lb i

0.89 ft/s Tp = 32.1 min

g h 3 / 2 = f4.

3. F/pV2 L2 = f (~/pVL)

q

3. FH
Fv

4. FH

5. FH
Fv

Lesson 3

1. Vp

2. Om

•

•

•

• Lesson 4

1. (a) 5.56 ft, (b) 0.15 ft and 0.56 ft, (d) 2.03 ft

2. (a) 1.605 ft3/ s , (c) 24.07 ft/s

• 3. 1,716 ft 3 /s

4. Q = 1,200 ft 3 /s 2.0 or 3.5 ft

•

•
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Lesson 5

1. q 0.0071 ft 2 /s, vmax = 0.529 ft/s, V
Re = 584 (barely Laminar)

0.355 ft/e,

2. ~o = 0.0312 lb/ft2 , u* = 0.127 ft/s

3. vO.1 = 2.80, V1 = 3.53, v3 = 3.88, v5

Lesson 6

4.04, V 3.72

1. A-B B-C
h 1 = 10.69 ft, h 1 = 63.30 ft, ~T

2. (a) 21.49 ft 3 /s, (b) 1.125

3. 3.018 ft

4. 24.05 ft

Lesson 7

2. 0.784 ft/mi

3. 1,980 ft3/ s

4. 7.10 ft

5. C 145, f 0.0123

6. y Q

1 121 ft3/ s
5 1,610

*
5.1 920
6 1,815
10 8,100

Lesson 8

1. (a) K

(b) K

(c) K

2. 3.95 ft

28,711 ft 3 /s, Q = 1,287 ft 3 /s, V = 10.72 ft/s

2,707 ft 3 /s, Q = 121 ft 3 /s, V = 5.82 ft/s

48,855 ft 3 /s, Q = 2,185 ft 3 /s, V = 11.38 ft/s

148



•
Lesson 9

• 1.

Total section
Right
Center
Left

• Subdivided

K ft 3 /s Q ft 3 /s v ft/s

293,528 5,168 1. 03
6,200 109 0.22

881,500 15,520 7.76
180,300 3,175 1.27

1,068,000 18,800 3.76

2. 3.53

•

•

•

Lesson 10

1. 1,065 lb ~

I

2. 198.4 lb ~ , yes (the head loss is positive)'

3. D2 = 6.12 ft, hi =1.43 ft

Lesson 11

1. (a) 3.676 ft, (b) 5.515 ft, (e) 7.51 ft, (d) :7.57 ft, 2.04 ft,
(e) supercritieal, (fl suberitieal, O. Oi63 steep, 0.0010 mild
(gl 0.00413

2. D2 = 6.12 ft, hi = 1.43 ft

3. (all. 08 ft, (bl W = 7.21 ft

Lesson 12

2. n = 0.02 + 0.01 + 0.05•
1. C 122, n = 0.0251, f 0.0174

0.08

•

•

3. Equation Channel A

Strickler 0.030
Limerinos 0.046
Bray 1979 0.041
Bray 1979 0.073
Bray 1979 0.037
Griffiths 0.038
Griffiths 0.040
Froehlich 0.028

Lesson 13

1. Dc = 6.77 ft, Sc = 0.0017, DN
M1, Normal depth

Channel B

0.028
0.049
0.039
0.075
0.039
0.038
0.043
0.035

7.97, 9.82 ft

•
2. DN = 5.73, M2, Critical depth, S2

3. M2, Normal depth

•

4. Normal depth, 32
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3.362 ft, M1, DSOO

KL = 8.67 x 105, KM
1. 42
1.37 x 10 6 ft 3 /s
0.42~

0.75
0.78
49,080 ft 3 /s

4.39 ft

0.338551 ft 3 /s, ke

Lesson 14

1. Q

Lesson 15

1. DN

Lesson 16

1. (a)
(b)
(c)
(d)

(e)
(f)
(g)

Lesson 17

1. (a) 5.5 > 5.0 > yes
(b) (7.36 - 0.36) 15.0 > 1, yes
(c) Type 4

(d) 153.5 ft 3 /s

2. (a) Free getaway
(b) (10 - 2) 18 < 1. 5
(c) Steep slope, no backwater
(d) 559 ft 3 /s
(e) 5.15 ft
(f) 533.6 ft 3 /s

Lesson 18

1. 319 ft 3 /s

2. 13.73 ft 3 /s

3. 2.46 ft 3 /s

4. 3.1 ft

5. 0.292 ft 3 /s, 0.00003 ft
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