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ABSTRACT

This study deals with the modelling of stormwater runoff
in urban catchments. An analysis of the basic governing
equations shows that the kinematic wave equations repre-
sent a suitable approximation for urban runoff modelling
in general. The Manning formula was found to be a reason-
ably ‘valid friction relation for the modelling of over=
land flow. A modified numerical. solution algorithm is

proposed which reduces the calculation volune in compari-

son with conventional methods.

pDifferent- approaches to.discretization of the geometric
input data (size of base catchments) were investigated in
six small urban catchments (< ! ha contributing area) and
two large ones. From the tests it was concluded that:

o  Independent of the model used and the base catchment
size, the choice of input.parameters in the base
catchment model (overland flow parameters) has a-
significant effect on the attenuation of the outflow
hydrograph. ’

o The kinematic wave model is both simple to use and
adequate as a base catchment model.

o With this model, relatively big simplifications can
be made in the input data geometry with reasonably
well maintained performance, provided the catchment
characteristics are properly evaluated.

o The catchment characteristics can be evaluated using
relations derived from the kinematic wave theory,
assuming constant rain intensity.

In a separate study the ability of the Rational Method
to reproduce statistical peak flows was tested. Using a
time of concentration based on kinematic wave theory.
the method performed well.
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PREFACE
The inveétigatiohs_presented in-this thesis deal with
urban runoff modellingland are mainly concerned with the

'relevance of basic equatlons, numerical solution methods

and dlscretlzatxon of geometrical input data. The work
has been carried out at the Department of Hydraulics,
Chalmers Univérsity of Technology and is a part of a
major resgarch effort by the Urban Geohydrology Research

Group at -the University.

Other studies in the field of urban runoff modelling
carried cut by the research group have dealt with
gelection of storm input for the design of sewer systems,
optimization-in the design of sewer systems, and - storm
water quality.

All relations presented in the report are based on SI-
units. The SI-unit for rain intensity and discharge per
unit area (m/s) is not very practical. Both 1n figures

‘and when magnitudes of intensities are dlscussed the unit

litres/ (second » hectare) 1 1/s*ha = 10 =7 m/s = 0,36 mm/h)}

‘has been used. It is the most commonly used unit among
Swedish sanitary englneers. In describing magnltudes of
catchment areas, hectares have been used (1 ha = 10 m )

Gbteborg, March 1985

Sven Lyngfelt
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SUMMARY
"The study deals with modelling of the urban runoff
' process. The main objectives were to make recommendations

for the selection of a basic model and suitable numerical

solutions, and also to investigate the importance of dis- -

cretization of the geometrical input data and develop

usable base catchment models. (A base catchment model is
the smallest part into which the catchment is subdivided
and definesfthe sewer net modelled.)’ Runoff from perme-

able surfaces is not considered in the study.

‘Phe runoff process in. surfaces, gutters and ‘sewers is

described by one continuity ané one momentum equation,
the shailowbwater equidtions., These are not very vractical
in application and a lot of computation can be saved by
simplifying the basic formulation.By neglecting certain
terms in the momentum equaticn, simplified sets of equa-
tion systems are obtained. A study of the influence of
different terms shows that there are two approaches of
interest in urban runoff modelling, the kinematic and the

diffusive wave approximations.

\

simple set of differential equations and boundary con-
ditions. The momentum eQuation is reduced tc an unique
relation betweén flow and waﬁer depth. Despite th;s, in
the general case the equations have to‘be solved by
numerical metheds. In the case of constant lateral inflow
an anélytical solution is obtained. It is then possible
to derive relations for the evaluation of the time of
concentration based on the kinematic wave model. In the
model, the flow waves travel with the kinematic wave
velocity which is greater than the mean velocity ard -

'varies in both. time and space. The kinematic wave model

does not take backwater into account and in tﬂeory it is
not able to reproduce the dynamic attenuation of a flow
wave.
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-In the Qigfgsivg wave_ approximation a downstream

boundary condition is needed. Then it is possible to
analysg s?stems significantly influenced by backwater,
The model also reproduces the main part of the dynamic
attenuation of the wave.

In urban runoff modelling where the geometries usually
have to be simplified, it is difficult to formulate the
relevant downstream boundary conditions {(with the excep-
tion of the main sewer line). Flow ‘in lateral inflow
reaches, such as surfaces, gutters or sewers with lateral
inflow, is ekposed to a characteristic (ﬁot dynamic
attenuation). This "attenuation” is generally more signi-~
ficant than the dynamic attenuation and is properly re---
produced by the kinemati¢ wave model. From a theoretical
point of view the kinematic wave model appears to be
suitably sophisticated for base catchment modelling.

In the kinematic wave approximation the momentum equation
is represented by a friction'relation.'In the study
results from reported investigations of friction losses
over rough surfaces have been put together. The study
gives no base for using differentiated roughness para-
meters at different types of surfaces in an ordinary

_urban catchment. Neither could a relation between the

friction factor and rain intensity be specified.Several
friction relations for instance the Danish L-formula, the
quadratic formula and the Manning formula, were compared
with the reported friction loss studies. They were found
to fit reasonably well to the test data, provided a
suitable roughness parameter was used. As a general rela-

tion for overland flow, the Manning formula was selected -

with a roughness coefficient n=0.016 for surface flow and
n=0,013 for .gutter flow.

The numerical solution method commonly used for the
kinematic wave equations gives rise to considerable
numerical attenuation of flow waves. In order to keep
this to a level close to the dynamic attenuation very

X

prm——




‘)’:\

R AT

o

small space steps have to be ‘used {ax/L < 1/15). For each

space step the solution is evaluated by an iterative
technique. By a'slight modification of the solution
algorithm (the delffuszve model) greater space steps may '

be used with retained low numerical attenuation. .%

By aSsumlng ‘the wave veloc;ty to be constant in space,
time or both space and time, simplifications of the
solution algorithm can be made. The non linear reservoir

- model and the Time-AreavMéthod are examples of the first

two alternatives; the Rational Method is an example of
the third. It was found that the performance of the
Time-Area Method in simulating real storm events 'is as
good using a linear time-area diagram as using diagrams
of any other shape. ' .

Recorded rainfall and runoff from six small catchments
(<1 hectare contributirg area) were used to test the
Kinematic wave model. It was found that the kinematic
wave model based on a detailed descrlptlon of this catch~-
ment reproduced the runoff process reasonably well.

The detailed_model wés used. to test the effect of differ-
ent degrees of simplification of the catchment parameters
and to test the Time~Area Method. It was found that the
performanée of the kinematic wave model is still very
Qood even for quite great simplifications of the catch-~-

ment geometries such as

- replacement of guttefs with increased surface lengths

- assuming only lateral surface inflow to the
main sewer line, R
- using the mean slope of the main sewer line

- excluding minor branches in the sewer system.
The simulations by the Time-Axea Method showed that

reasonably accurate values of single flow peaks may be
obtained. However, the general shape and delay of the

X1
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simulated hYdtographs were not in-level with those of the

" kinematic wave models.

Independent of which model is used the main diffiéulty
is to choose input data, such as surface length, slope
or time of concentration, in order.to get properly

- attenuated hydrographs. In the study the choice was based

on the evaluation of representative times of concentra-
tion by kinematic wave based relations. As the evaluation
is ‘approximate there is a risk of incorrect attenuation,
The risk of large errors is greatest for the simplest
models (the KW3 model and the Time-Area Method). A closer
evaluation of the time of concentration would increase

the accuracy of the models. However, a more sophisticated'

way of estimating this time is not meaningful when the
basic idea is to develop a simplified method of creating
input data for the models.

The optimal geometric simplification for the kinematic
wave model, regarding both-the demand for simplicity . in
input data and accuracy, is described by. the KW6S model.
The model is built up of a sewer with the length and mean
slope of the>maiﬁ sewer line in the catchment. The sewer
is lateraly fed by a surface with length ana slope
corresponding to an estimated time of concentration which
is representative for runoff to the main sewer line.

The tested runoff models were also applied as base catch-
ment models in two urban catchments with total areas of
15 and 19 hectares. Three levels of subdivision into base
catchments were tested where the finest division corre-

sponds to sizes round 0.5 ha.

The simpie KW6S model was applied as base catchment model
at the three different levels of subdivision. Using
greater base catchment sizes the performance is not quite
as good. However, there are no drastic changes and it is
obviously possible to obtain a very good performance
using quite large base catchments, provided the catchment

XII
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j." ' : i characteristics (the representative times of concentra-
tion} are properly evaluated. It should here be stressed

. that 'as the base cétchment area increases: the effects of
making misjudgements in this evaluation increases. It was
also found that when the main séwer system contains

] ) - :several long branches these have to be included in the . v i

i. : input data system and should not be replaced by one main i /

‘sewer line.

| The Time-Area Method does not perform quite as well as
‘ the kinewatic wave model despite the fact. that the same
" amount of catchment ‘data is required. Though the nodel 3
‘ . I prpperly used has a performance which is acceptable in ’ i S
many -applications there is no obvious argument for its ‘ I
use.

From the tests with base catchment models it was

. . 1 . ‘ :
[ . concluded : ’ _ . )
v VI'

Independent of model and base catchment size, the

- . input parameters in the base catchment model  (over-
land flow parameters) has a significant effect on the
‘attenuation of the outflow hydrograph.

The kinematic wave model (KW6S~model} is both simple
to use and adequate as base catchment model.

With this model relatively great simplificutions
of the input data gecmetry can be used with
reasonably well maintained performance provided the

Ao

catchment characteristics are properly. evaluated.

These catchment characteristics can be evaluated
using relations derived from the kinematic wave
theory assuming constant rain intensity,

R R Lo

‘The Rational Method is the traditional method in urban
drainage deéign and is used to evaluate single design H
flow values. Basically the method relates the distribu-
tion functions of rain intensity and runoff in a catch-
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» ! ment{‘The reievance of the Methoq was tested by compari-
® : sons with distribution functions evaluated for a number
of catchments. The distributions wére obtained from simu-
lations of a series of historical storms by a detailed
runoff model (the CTH-model). The method was found to
perform well when a time of cohcentration evaluated by

relations based on kinematic wave theory was used (also
used in bage:catchment modelling).

% Bised on the results ofbthe study, the following recom=-

X1v

| mendations are given for use in urban runoff modelling:

A distributed kinematic wave model is the
most suitable model for all parts of the run-
off system.

A numerical solution method with the smallest
possible artificial attenuation (preferably the
B-diffusive model) should be used. If the con-
ventional solution is used, 4x should be smali
(8X/L ‘about 1/10}. \

The Manning formula is a suitable friction
relation which, in the model proposed above and
for ordinary applications, should use the
roughness coefficient n=0.016 and €.013 for
surface and gutter flow respectively.

It is advantageous to keep the time step
constant beween different applications. Fox’
typical swedish conditions and applications

4t=60s is an appropriate value.

By using a model as recommended above, gquite
complex runoff system geometries may be replaced
by simple ones. This is true provided that the
equivalent parametérs in the simplified geometric
model are estimated on the basis of equal times




e

of concentration in the ‘real’ and simplified
qeoﬁetries {using kinematic wave based rela-
tions). One example of a suitable simplified
geometric model is the KW6S mbdel.

The Time Area Method (though not recommended
here) should be used with & linear time area
diagram and:a timé of concentration evaluated

'by kinematic wave based relations.

The Rational Method is a suitable method for
calculating flow rates in the.preliminary design
stage of a network system, in small or ‘simple’
systems, and also for checking the input data
for more complex modelé. When this method is
used, again, the time of concentration should be
evaluated by kinematic wave based relations.

Particular care should be téken in estimating te

when this time is shoxt.
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1. . INTRODUCTION : S ;

1.1 Urban runoff modelling . : _ i

The analysis and design of urban drainage syétems was :
traditionally, and is still often, executed using the :
Rational Method. That method, however, has for a long

time been regarded as too approximate for many applica-

tions. With the introductien of computers into the

calculations, several advanced runoff models have been
developed and brought into use among consulting engin-

eers. At least five advanced models for the design and

analysis of urban network systems are now in commercial

use in Sweden. These models use traditional hydtaulics in

a systematic way giving a vexry accurate and detailed
description of the flow thrcugh the drainage systen. for

a prescribed storm input.

Detailed runcff models have been shown to be very useful,
especially in the analysis of existing systems and in the
design of complex systems {containing detention basins,
overflows, constricticns ard so on). In the design of
*simpie" network systems and for estimates and checks,
the Rational Methocd is still am important alternative '

nodel.

The user working in the field of urban drainage design
must be able to handle models intended for both detailed
analysis and making rouch estimates. Regardless of. the
problem to.be solved the modélling work: should be per-

formed in four main steps

o selection of -a suitable mocdel’

¢ transformaticn of the "real' catchment into
the "input data" catchment

o selection of the hydrological design event

o interpretation c¢i the output obtained from
the computation step.

Preceding page blank = 1




B i GO T

The sécond'step is Qery important and may be accomplished
at many different levels of precision. Crucial for the
succesg of this step'is a thorough knowledge of the
properties of the model in use. This is also very import-
. ant in the'lastkstep. An advanced interpretation of the
performance of aAsimplevmodel is always better than a

poor interpretation of the performance of an advanced

nodel.

Every detailed runoff rmodel is Built up of two main {
submodels. One treats the col.éction of stormwater on the ;
surface including the trénspcrt to the sewer network

system. The other describes the transportation of water

within the network system. In available runoff models a

wide range 65 approach is used for overland flow routing

from the Time-Area Method to the kinematic wave approxima-

tion.

The model user is in practice not able to describe the
catchment geometry with every pavement and roof in
detail. In generating the model input he has to simplify
upstream ends of the network are connection points to
what will here be called base catchments. These will
normally contain several different runoff surfaces,
Qutters and small diameter sewers.

The base catchment is represented by a simplified ge-=
ometry and the runoff from it by a model containing an

thus given by the definition cf the main network. As the
network is usually well specified, the main approxima-
tions and difficulties will be in the modelling of runoff .
from the base catchment. Essential for the effective and
precise use of urban runoff models is a balanced geometri-
cal discretization and a sound base catchment modelling.
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1.2 Scope, of the study

Thé scope of the study is to

o discuss various approaches for overland flow’
models . .

o discuss different levels of geometric
discretization

o develop a methodology for base catchment
modelling.

The first point includes disqﬁSSion of both basic equa-
tions and numerical methods of solution.

Genexrally the study is based on theoretical considera-
tions and numerical experiments based on field data. This
rather fundamental approach is considered to make the
results generally'applicable to any runoff model in use

today.

In runoff simulation the primary result is a runoff
hydrégraph. This hydrograph is characterized by its
volume and ghape} For a given storm the runoff volume is
governed only by the prescribed runoff areas and the
retention storége and not by the properties of the model
(with the exception of systems containing overflows).
Comparisons between different models and geometric -

" discretizations wiil therefore be focused on differences

in hydrograph shapes.

All simulations in the report have been executed aséuming
that there is no influenée from permeable urban surfaces.
The assumption is applicable to the majority of Swedish
urban catchments and runoff cases. 1t is based on experi-
ence from a series of field measurements made over the
jast ten years in Sweden, see for instance Arnell and
Lyngfelt (1975), Falk and Niemczynoﬁicz (1978) -and Arnell
(1980) .
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“1.3 Arrengement of the contents

The report is made up of three main parts:

The first part deals with the propertles of the basic
differential equations for free surface flow including
the diffusive and kinematic wave eguations. Friction
relations are also discussed and a literature review of

friction loss investigatiohs of surface flow is given.

The second part. deals with numerical methods of solution .
for the kinematic and dlffuslve wave eguations. In connec-
tion with these methods, further simplified overland flow

models, such as the Time-Area Method and reservoir models,

are analysed.

The third part deals with the problem of geometrical dis-.
cretization and representatlon in base catchment modelling:
The analysis is mainly based on comparative numerical ex-

periments. Simulated hydrographs are given in appendix II.

The basis of the study is a series of field measurements
in urban areas and a specially developed runoff model.
Details of this work ‘are given in several reports and

also in appendix I.

To give a background to the mathematical analy51s,van
attempt is made in the next chapter to describe the char-
acteristics of urban runoff, such as rain intensity, vel-
ocity of rain drops, surface/sewer flow and catchment/

network geometry.
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2. ° . URBAN RUNOFF CHARACTERISTICS

2.1 '.Generél

Storm water runoff in urban areas is a complex’' process

“which is governed by many hydrological and geometric

variables such as rain intensity and surface slope. The
selection and application of urban runoff models requifes
a thorbugh knowledge both of the processes involved and
of the governing variables. In this chapter these charac-
teristics are described from a rather general point of
view. For some variables values which are typical for

swedish conditions are also given.

some runoff characteristics, such as wave velocity and
friction, ‘are discussed in connection with the correspond-
ing mathematical representation in later chapters.

The runoff process is divided into ggerlahd flow and

flow_in_the sewer net, where the overland flow is related

to all water movement above ground. The overland flow is

_ instance gutters, rills or roof collectors.

2.2 Precipitation

Precipitation is the origin of runoff and influences
overland flow in several ways. The most important vari-
ables are rain intensity i, rain drop velocity U; and the
direction of rainfall Y. ’

The rain intensity has a very marked variation with time.

A typical pattern for a storm event is given in figure
2.2.1. The averaging time here is one minute. On this .
scale very high intensities, greater than 150 1/s-ha
(54 mm/h), may temporarily oécur.
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Rain intensity
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100
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Figure 2.2.1 .Typical intensity variations for a’

If the averaging time is increased then corresponding
intensities will become increasingly attenuated compared
with the real storm intensities, figure 2.2.1. The
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1 . —— Average 1 minute
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Figure 2.2.2 1IDF-diagrams used in Goteborg,
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ihtenéity duration frequency diagram (IDF-diagram) is

“based on averaged intensities in-a long series of storms

using different durations, see figure 2.2.2. The diagram
gives an idea of the time scale of rain intensities.

' Analysis of the characteristics of runoff hydrographsb

indicates a suitable averaging time of one mirute for’
typical applications of runoff models. A representative
interval for rain intensities used in runoff models is 5
- 150 1/s-ha. '

Rain intensities measured by a raiA gauge are only valid
for the area of the gauge itself. However, in practical
applications these point values are used for a catchment
surroundihg the raingauge. The introduced error will
depend on the properties of the storm and the catchment
area. As the catchment areas used in this study are quite
small (0,04 ~ 22 ha) the error should not be signiiicant,

Niemczynowicz (1984).

Laws et al. (1941) analysed the sizes of raindrops for
different types of rain and rain intensities. They found

" that the drop diameter increased with rain intansity.

According to their study the majority of drops have
‘diameters between 1 and 3 mm; in the intensity interval
given above. The raindrops have normally reached their
terminal velocity when they hit the ground. This velocity

Rah\inieﬁsﬂyi
rain velocity Ui

Figure 2.2.3 Water surface at constant rain-
intensity and rain velocity vectors
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depends on the dropsize 5nd varies between 4 and 9 m/s.5

.) i when the raxndrops are falling vertlcally the angle
' between the surface and velocity vector (see figure
2.2.3) is determlned by the slope of the surface. If wind o i
forces are acting on the raindrops they also will be ' ;
given a horizontal velocity component. A wind velocity of F . :
6 m/s will give a value of ¥ around 45°, The more intense ) : .
2 stoxms are seldom ‘connected with strong wlnds and 45 j :

A§ believed to he an extreme value.: i

EHRERURIPT

2.3 ! Surface runoff

® - The surface flow is characterized by tne velocity Us and
the water -depth Y in each flow section. It is governed
by the storm varlables and the geometric parameters
length Lo slope S_, and surface roughness.

Figure 2.3.1 Water surface profiles when the rain
intensity is constant and the time
t < t_. {The scaling of water depths
is not realistic).

Certain properties of surface runoff are caused by the

) source of flow being entirely lateral, see figure 2.3.1.
® f . : ) From the start of rain, water surface profiles similar
to those of figure 2.3.1 (A-B-E - A-C-F -» A-D-G) will
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develop successively . If the time taken for water
particles from the upstream part of the surface to reach
the outflow section is denoted by’tc, the profile A-H
will be fully developed at time t=t, after the onset of

“rain. - When t<tc the part of the surface that has not

been reached by water from the upstream end will have

uniform water depth (profiles B-E, C-F, D~G).

Typical recession water profiles when the rain has ceased
.(t>tc) are shown in figure 2.3.2. The water depth is
gradually decreasing with time all over the surface (2-D-»
A~C -» A-B).,

Figure 2.3.2 Water profiles when i=0 and t>t
{The scaling of water depths is
not realistic)

This two-dimensional representation of surface flow with
constant slope is called sheet flow. The water profiles
are valid provided the influence from the downstreém
boundary is negligible. This is the case for ordinary
urban runoff surfaces and the water depth then normally
increases downstream (3Y/3x>0). Typical values are 0.5 -
3 millimetres. Corresponding flow velocities are 0.0l -
0.4 m/s.

Evaluation of Reyrnolds' numbers representative for
surface flow indicates laminar flow. This is, however,
turned into a turbulent state by the impact of raindrops
and by the unevenness of the surface. As the rain recedes,
with the decreasing waterdepth, the flow may, however,
take on a laminar character.
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"y’ : . - ¢The main part of the storm water is collected on imper-
meable surfaces such as roofs, streets and parking areas.
Normal flow lengths L, are 5 to 3U metres. In special
cases (for instance at airports) greater lengths are
accepted but rarely exceed 70 m. The slope Sg is usually
around 0,03 or more and very seldom less than 0,01. The
most important reason for using relatively large slopes
on surfaces is to avoid the risk-of pénding caused“by
local settings.

. when rain starts to. fall over the initially dry imper-
o meable surface it first wets the surface and then fills
up all the .depressions. This part of the rain volume,
usually denoted debression storage will evaporate when
the rain ceases. The magnitude of depression storage
depends basically'on the "roughness" of the surface

. i i (asphalt, . concrete etc.) and the large scale depressions.
%. ‘ » These are the effects of settlings and the lack of

| precision in laying the surface. Several investigators
have analysed the depression storage, see Pecher 11969,
1970), Arnell and Lyngfelt (1975), Kidd (1978), Falk et
al. (1979). For impermeable surfaces most investigators
suggest a depression storage ranging from 0.4 to 0.7 mm
for surface slopes greater than 0.01.

] - ' b
® Street — ~~ ~~ ~~

Gutter —
Pavement| — ——~ —

e ) Figure 2.3.3 A part of a street with gutter,
@ . pavement and inlet

.

Very often urban surfaces have a main slope that is not

- parallel to the boundaries, see for example figure 2.3.3.
In this case and others with irregular surfaces, strips
. E along the direction of mean slope have different lengths.
° E
S . e e e e e s e e s i e et
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vmovihé water form rills. The water depths are often of
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Thus cross-sections perpendicular to this direction will
have different water—depths.'These differences introduce
velocity componénts perpendicular to the direction of the
mean slope. In addition the cross-section is not actually i
plane which also intréduées such components and make the

the same order as the the irregularities caused by the
surface material, for instance asphalt has local differ-
ences in level of several millimetres. Furthermore the
water is accelerated or retarded because of .local differ-
ences in slope in the direction of flow. '

surface flow is obviously far more complex and jirregular
than that described here as sheet flow. In practical
wodelling it is, however, impossible to get closer to the
physical behaviour of surface flow than this assumption.

2.4 Gutter flow

The gutter flow is characterized by the mean flow velocity
U_ and the water depth Yg; It is governed by the surface
flow and the geometric parameters length Lg, slope Sg,

cross-sectional shape and roughness.

The gutters, in the same way as surfaces, are exposed
only to lateral inflow as source. Therefore the develop-
ment of the water depth in the gutter is, in principle, ’
the same as that described for surfaces. .

Normal flow length is 30 to 60 metres but a length up to -
100 metres may exist. The slope is generally in the range
given for surface flow but sometimes smallef sioﬁéé éfe
accepted and a lower 1imit would be around 0.005. The
cross-section of roof drains are well defined, rectangu-
lar or circular. The gutters at the side of the pavément
or rills on a large surface have usually the same side
wall slope as the surface. A standard side wall. slope
would. then be around 0.03. The cross-section for these
flows will become relatively wide and have propertiés

11
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Phe lateral inflow to the gutter will have a velocity

similar to those of the downstream end surface flow.

Considering the geometrical and hydrological factors
given above, gutter flow should be mainly turbulent.
Laminar flow may occur at the upstream end at low
intensities, Typical mean velocities are 0.4 - 0.8 m/s.

vector with a direction angle ¢ as defined in figure
2.4.1. At ¢ = 90° the Surface flow vector is perpendicu-
lar to the guttef flow. This direction angle depends. on

the slopes of the gutter and surface, sg and S respect-
ively. (S is here the surface slope perpendlcular to the
gutter). For small slopes tan ¢=45 /8 which corresponds
to values of ¢ in the interval 10° - 85° .

tateral inflow q
with velocity

Q+q-L
Figure 2;4.1 Gutter flow with lateral inflow

The gutter flow is collected in inlets, which do not al-
ways have the required capacity, in which case parts of the

flow will pass the inlet. Important properties of the inlet
are the grating and thenlnflow velocity, Eskenazi (1984).

2.5 Flow in conduits

The flow in conduits is characterized by the mean veloc~
ity U_ and the water depth Yp. It is governed by the
inflow and the geometric parameters length Lp, slope Sp’

diameter Dp and roughness.
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The sewers in an urban dralnage system are geometrically -
bettew defzned than the part above ground. This is true
in both the analysis of existing systems and the design
of new ones. The flew section is also better defined. The
sewers are connectsd by manholes in order to simplify
inspection. Between the manholes the sewer is usually
straight and has constant slope. The distance between
manholes rarely exceeds 100 m. The slope is primarily
governed by topography and consequently varies within a
wide range of values. In order to avoid sedimentation a
minimum slope of 0.001 to 0.005, depending on the diameter,
is used, VAV (1976). This limitation of slope and. the low
friction factor of sewers causes relatively high veloc-
jties and often supercritical flow. Typical flow veloc-
ities:are 0.5 - 1 m/s. Of special interest in this report
are sewers connectlng gullies or down pipes to the main
sewer system. Standard diameters in this part of the
network system are 200-400 mm. These sewers are compara-
tively long and run with small water—deptns, both factors
which 519n1flcantly affect the runoff hydrograph.

Despite the use of minimum slopes sedimentation in sewer
systems 1s not unusual. This affects the runoff with
respect both to capacity of sewers and attenuation of
flow waves, Berg (1983‘.’

Figure 2.5.1 Network system of the band and the tree
type
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The network system may be characterlzed by two basic
'structures, the tree and the band types, see flgure

" 2.5.1. The two structures may of course be combined to - -
~

give more irregular types.
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3. . BASIC EQQATIONS FOR UNSTEADY GRADUALLY
VARIED FREE SURFACE FLOW

3.1 Gemeral

In application, the modelling of'storm water runoff cannot
be accomplished in great detail. Simplifying assumptions
have to be accepted in the formulation of the dlfferentlax
equations and in their numerical solution, as well as in.
the geometrical description of the catchment. Despite the
fact that the complete basic eguations are almost never.
used ‘in urban rnnoff modelling, it is necessary to dlscuss
their properties in order to understand the simplified ver-

sions.

The movement of water over surfaces, in gutters and in
sewers caused by rain can be regarded as unsteady, ‘spu=
tially varied, free surface flow in a prismatic channel.
A flow with these characteristics is described by the

. shallow water eguations, which are two partial differen-

tial eqguations derived from the laws of conservation of
mass and momentum. The eguations are based on several
assumptions which appear to limit their application,
Yevjevich (1975). However, the equations have been found
to be valid for a wide range of unsteady £low-cases. The
shallow water equations have been verified in natural
channels as well as in man made channels, see for in-
stance, Yevjevica (1975) and Brausert (1971).

The derivation of the shallow water eguations can be
found in several references, for example, Eagleson (1270),
Ligget (1975) and Sjbberg (1976), and is therefore not
presented here. In this chapter their basic propertles
and relevance to urban runoff are discussed.
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3.2 'The.shallow water equations

The equationé describe the continuity and dynamic prop-
erties of the flow. If the lateral imflow is considered
they may be written : ’

3t

.%% + %% =q » ‘ T .. (3.2.1a)
and
30 , 2 2 Y '
30 +-3§(3-%—)+9A-3§ - gA{So—Sf)-chosd =0 .. {(3.2.1b)

where -(as also given in chapter 2}

= coordinate in flow direction
= time '
= Y(x,t)
A(x,t)
= Q(x,t)
= tan a = bottom slope, wheré a = slope angle

water depth

cross-sectional area of flow

flow rate

0P oot X
it

= friction slope (defined in section S5\1)
= g(t) lateral inflow (flow/unit length)
= i(t) = rain intensity (flow/unit area)

0
th

mean velocity of lateral inflow

= angle between main and lateral flow
(figure 2.4.1)

aa - Q
it

g = i-B in the surface flow case

¢ = ¢ in the surface flow case (figure 2.2.3)

B = width of cross sectional area -

g = correction factor for the cross-sectional
velocity distribution

g = acceleration due to gravity

In the derivation it is assumed that sina==ta£a and
cosa=1, which gives a resulting error less than about 1%
for tana<0.05. Morris (1979) analysed this approximati6n
for a range of overland flow cases and found no signifi-
cant effect on depth and velocity profiles.
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1
' ¥ . ' : . The terms in the momentum equation are here called §
; €« A . : : , 30 H i .
- - o o local acceleration term ¢ H 3 !
R : ; ¢
| R 2
| o = convective = (8-Q /a)
| ) o v . j . w . 9Y : i
@ _ . o pressure force gA-<= i .
B : : ax i H
" " " - ‘
[o] 'slope ) . gA (So Sf)
o . lateral momentum ~ " qUcos ¢ i
. t '8
® |
3.3 Initial and boundary conditions
A solution of the shallow water egquations requires
initial and boundary conditions to be specified. The E
. ~ basic properties of the equations and their connection __:,/
® . . to these conditions are best illustrated by applying the- ; /"/
method of characteristics. : ;
. The basic -equations may ‘be transformed to a system of s
ordinary differential equations, see Sjdberg (1976) . :
® Using the formulation from the previous section gives
. Q_g. _ _ A ‘éé _ . _ ) . ) M . P//'
- w- i - onis, -5 _ H
_ eee (3.3.1a) '
gtV - (¢B) - .cos 8) = 0
® " which is valid if
ax _y g8 i
ac - V+tVag ess (3.3.1b)
and
- i {
99 _ (yaf5By. 82 L gas - : ?
o . v 29 _ (v+ygR)- §F - gr(s,mSg) ¥ . i :
eee (3.3.1c) ; 3
. q((v+fed) - Ucosd) = 0 i :
. !
- | §
| 17 : i
3 t
o b i y
) - i i
o | |
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which is valid if

dax A : |
9 .y -‘/g.ﬁ . o T

where B = B(x,Y) ié the width of the cross-sectional area

at the water table.

Equatlons (3.3.1b) and (3.3.1d4) express two wave veloc-
ities. of a disturbance emanating from an arbitrary point
in the channel. The velocities appear in the x-t plane as
two lines or characterlstlcs. The line corresponding to
equatlon (3.3.1b) is here called the p~characterlst1c,

and that corresponding to equation (3.3. 1d) is the n- .
characteristic. Equation (3.3.la) is satisfied along the -
p-characteristic and eguation (3.3.1d) along the r-charac-
teristic. In each point where two known characteristics
meet, the équations may be solved for @ and 2. Ttis is
what is known as the method of characteristics.

The_equations (3.3.1b) and (3.3.14) may be written

Cdx A .
T =V9s (F, % 1) eee £3.3.2)

where the Froude number Fo is given by

F, = = ' v ce. (3.3.3)
gA/B

In subecritical flow, where F°<1, the p-characteristic is

directed downstream and the n-characteristic upstreanm,

see figure 3.3.1. In supercritical flow both characteris-

tics are directed downstream.

The direction of characteristics clearly demonstrates the
required initial and boundary conditions for different -

flow regimes. The initial conditions

A = A(x,0} and Q =@ (x,0)

are always needed, regardlesé of the flow regime. In

subcritical flow the boundary conditions
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Suberitical flow

Supercritical flow

Figure 3.3.1.

»
L}

and

Y

conditions

A(O,t) or Q

Characteristic directions in.sub- and
supercritical flow

Q(o,t)

[

Y(L,t) or Q= Q(L,t) or @ = f(Y¥)

A =A(0,t) and Q = Q(0,t}

are both needed {(no downstream condition required).

The requirement of boundary conditions will obv1ously
vary with the flow regime. In sewer routzng, the regime
will often vary rapidly which will compllcate the solu-
tion and usually require very small steps in both time
and space. The accuracy of the method of characteristics
is governed by the distance between the selected calcula-
tion points. Using adequate distances the method is very

approximate numerical schemes. The method is sometimes
referred to as the "exact®™ solution, Sjdberg (1976).

accurate and is often used for comparisons with more
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v3{4‘ pimensionless shallow water eguations -

magnitude of the terms

There are several reasons both practical and theoretical,
for examining the pdssibility of simplifying the mathemat-
ical'description given in the shallow water eguations, It
is thus of interest to analyse the relative magnitudes of
terms. One way is to make the eguations dimensionless by

"making the follqwing substitutions

A% =,A'/A'° _
Q"l = Q/0, = Q/ (g L) (L = length in flow
o c direction}
= Y/Y
i o
‘9 = alq,
vE o= /v,
u® = v/u
x* = x/L
®x _
" = tVo/L

which apply to flow elements fed by a lateral source, see
Woolhiser (1967). Subscript o refers to a.chosen suitable
stationary flow, for instance normal flow at a lateral

" inflow of qo; and x denotes a dimensionless variable.

Here, 9, is used for both lateral inflow (to a gutter)
and rain inflow to a surface (qo = ji-B for surface flow).

The continuity equation (3.2.1a) becomes

® »
0, A g i ee (3.4.1a)
X at : :

and the eguation of motion (3.2.1b} becomes

2

»* 3 Y
LT P S +_3.9Ax.a_Y_’;: -
it 29 ° ax
_ ve. (3.4.1b)
S u ’
- —éi-gAx-Sd(l - gf) - Vg—cosé-q”-ux =0
° (] o
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If the kinematic wave number

L-S, L-S,-9 , »
Ko = : = 2 or —-—Tv .'.. v(3.4v.2)_
oo , ° '

is introduced the equation (3.4.1b) may be writtéh'w

aQ" 2 (4?2 N
SteTg U5 VAT T
at 3Ix Fo 3xX
' - cee (3.4.3)

S v : ’

-Ko-Ax41 - §£)- v9~cos ¢-q*0x =0

o o .

The relative importance of different terms in the egua-
tion above can be shown by comparing the magnitudes of
corresponding dimensionless parameters. This reguires
"estimated representative values of the parameters, which
here have been calculated from the characteristic values
of rain intensities, slope and lengths of flow reaches
etc, given in chapter. 2. The following discussion of the

relation between terms is based on these values.

In overland flow, the Froude‘number will not depart very
much from unity. The pressure force term is thus of the
same order of magnitude as the dynamic terms. Usually,
the magnitude of one dynamic term is less than 20% of the
pressure force term. 4 '

In typical overland flow situations the kinematic wave
number exceeds several hundreds. Thus the forth term

_KOA’e normally dominates the first three.

If the raindrops have a horizontal velocity component
they may give a momentum contribution to the flow as
Geseribed by the fifth term in equation {(3.4.3) . However,
each drop also create a disturbance when it penetrates
the water on the surface. It is questionable if the
complex impact of the raindrops could be described as a
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* » pure momentum contribution. Therefore, in surface flow, ) ) - é
the laferal momentum term is normally neglected despite ' ‘ :
the fact that, in theory, it may be sxgnlf1cant. The

impact of rain drops will be discussed further in the two

st

.i

- chapters which follow.

.

In gutter flow, the lateral term is governed by the
_ relation betweeﬁ surface slope and gutter slope. For the T4
. ' » . representatxve values given in chapter 2, the lateral : ]
term 1s not 51gn1f1cant in gutter flow.

"Phe slope term appears in typical flow cases to be the
most significant. If all other terms are neglected the

equation of motion is reduced to

S¢

Ko A1 = g5) =0 g cee (3.4.4)

or

S, =8 ' ' c.. (3.4.5)

This con_iderable simplification of the momentum equation

5 is called the kinematic wave approxiration and, together

i with the continuity equation, forms the kinematic wave

eguations. The properties and the validity of the kin-~

‘s ematic wave approximation are analysed in chapter 4. : ' ‘ oo,

The comparison of terms in this section is only valid if
upstream and downstream boundary conditions do not

significantiy influence the flow. This is generally true
in overland flow, becaﬁse of the relatively small water-
@ ) depth and great slope, see Morris (13979). The discussion
' presented here is not generally applicable to flow in - v ’ i

conduits.

The significance of the different terms in the eguation ) ;

= ) of motion has also been analysed by Jacobsen (1980) . He
. - obtained basically the same results including significant Lo
shear stresses caused by wind (discussed in section 5.5). : f
4 H
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3.5 . Célerity and attenuation of waves

The linearized dimencionless basic equations can be
solved analytically for certain simplified conditions. .
An example of such a solution was presented by Ponce and

-8imons (1977) and is described below. The solution is

based on a small amplitude sinusoidal wave superimposed
on a steady,uniform flow of depth Yo‘and involves no
lateral inflow and no influence from boundaries (see
section 3.4). The dimensionless solution is given by the

relations

c® = (P, o) , eee (3.5:1)
and -

§ = G(Fo, 9,) eee £3.5.2)

where c® = c/Vo is the dimensionleés wave velocity or
celerity and § = 1n(a2/a1) is the logarithmic decrement
(a1 and a, = amplitudes at two sections, 1 and 2, at
distance A along the flow) - a measure of the attenua-
tion qf the wave. The wave number % is defined by

2% ‘o - o .
% > vt ees (3.5.3}

where A is the length of the sinusoidal wave. oolcharaCJ
terizes the wave shape. A high value corresponds to a
"steep” wave and vice versa. These solutions are shown in
figures 3.5.1 and 3.5.2.

Figure 3.5.1 shows the variation in celerity witn the
Froude number and the wave number. The diagram can be

divided into three regions:

o small wave numbers o_ < 100 and Froude
numbers Fo < 2 - the Selerity is independent
of both Fo and %%
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o intermediate wave numbers 100 < oo < 102 -

the celerity is dependené on both F, and 9

2

.0 ‘great wave‘numbers‘oo > 10° = the celerity

is dependent on F only

: 0.01
102
004

oot L 0.1
% 1 0.2
b ad
T .0 L /1] Fo=1
s N 277 2
o . \ T,

101 L 1 o

1072 10t 100 10t 102 107
Wave number G,

Figure 3.5.1 The relation between the celerity c®, the
wave number o and the Froude number Fo
(after Ponce 8nd Simons (1977) ). . \

From. the analysis éresented by Ponce and Simons it
follows that waves in the region of small wave numbers
can be described by considering oniy the slope term in
the equation of motion, tha: is, by means of the kin-
ematic wave equation. As demonstrated in section 3.4,
this was the case also for larée values of the kinematic
wave number Ko. From the relations given in (3.4.2) and
¢(3.5.3) it appears that K, is p;oportional to l/co if L
in Ko is replaced by A . A large Ko thus corresponds tq a
relatively slowly varying outflow hydrograph.

According to figure 3.5.1, the kinematic wave velocity is
c=1.5 Vo where 1.5 is the exponent cf the water depth.
in the Chezy friction relation which was used by Ponce
and Simons. In the next chapter the kinematic wave veloc-
ity will be derived for an arbitrary friction relation.

Waves in the region .of large wave numbers may be de~
scribed taking only acceleration and pressure force terms
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® Lo into acceunt -~ so called gravity_waves. Corresponding

wave velocity is ct = 1+1/Fo or

=V, +\VgY o ees. (3.5.4) ¢

which is similar to the characteristic velocity given in
equation (3.3.1b). . 3

WA i s

Waves with intermediate wave numbers are called §¥§§gig
waves. They can only be represented by the complete
eqguation of motion.

' In figure 3.5.2 the attenuation of the primary wave
(associated with the positive characteristic, section
3.3) is given as a function of the Froude and. wave _ ' g »
numbers  (an attenuating wave has a negative logarithmic 5

o £ i ivart s ol e R v

: decrenment) .
°'® |
: 103 T T 7T ' ' i
102
o
1)
+~ 101
" ©
£
g 100
g
€ 10t
*x
S, -
® & 102
1073
w2 10 100 101 102 103
Wave number G, : i
- ‘ ;
._ a Figure 3.5.2 The relation between the logarithmic i
) decrement - § = 1ln(a /a ), the wave 3
number ¢ _ and the Fréudé number F_. H
- - {After p8nce and Simons (1977)). %
: The attenuatlon for F < 2 is greatest in the dynamic é
- . band 10 < % < 10 W1th decreasing or increasing wave %
® ' : 25
‘ ) ~ ‘L
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number, towards the kinematic or ‘gravity bands, the

_attenuation decreases.

In the extreme case the gravity and kinematic waves are

.'subject to no attenuation at all., For F > 2 (see Ponce

and Simons (1977)) the waves amplify and at F = 2 the
waves neither amplify nor attenuate. It should be noted
that the. cr1t1cal value of the Froude number depends on

" the frlctlon relation used, and is 2 for Chezy~’s relation

and ‘1.5 for Manning” S.

The analysis made by Ponce and Simons is basically only

 applicab1e to waves with small amplitudes (compared to
the uniform flow waterdepth) which are not generated by a

lateral source. As the storm water waves have great

amplitudes compared to the base flow, and as the source .

in overland flow elements is usually lateral no stronger
conc1u51on may be drawn from the analysis. It illus-
trates, however, the general properties of flood waves.
It. is also believed that the results from the kinematic

band, namely

o dimensionless celerity, independent of the wave
number,

o 1ncrcasxng attenuation w1th the wave number,

are also largely valid fcr most storm water waves.
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4 . KPPRQXIMATION OF THE SHALLOW WATER EQUATIONS )

.

4.1 Simplification of the equation of motion

Jsing the basic equations it is possible to obtain an

“almost complete description of the propagation of an

arbitrary wave. From a practical numerical point of view
they are, however, difficult to handle and simplifications
have to bg considered. The difficulties in application may
commonly be traced back to the n-characteristic (see
figure 3.3.1) which is directed upstream for subcritical

_ flow and downstream for supercritical flow. The boundary

conditions reguired Oary with the flow regime, which has
to. be checked at each time step in the calculation. It is
also difficult to ensure numerical stability in the case
of steep wave fronts:

In the last chapter, it was shown that several terms in

the momentum eguation are of lesser importance in urban
runoff simulation. By neglecting one or more of these
terms new equa;ion systems ére created. fhese‘systems
will have different properties with respect to character-
istics, wave velocities, boundary conditions, etc.

In the selection of suitable approximations, systems with
one or no positive characteristic direction defined and
with on1y the less important terms neglected are of
greatest interest.

The approximations of the momentum equation are named
after the main physical characteristics of the associated
wave movement. Below, the terms used in the different
approximations are indicated.. ’

2 : :
30,3 Qg .2 o aqs -5 .)=g-U- - .
3€+3§(8'A }+g-A 3% g-A(S Sf) g-U-cosg=0 ... (3.2.1b}

kinematic wave approximation

diffusive " "
steady dynamic " "
dynamic " "
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The steady dynamic wave approximation has only one charac-
terlstxc, whlch is directed upstream for subcritical flow
and downstream for supercr1t1cal flow. If the second term
is droppad instead of the first, again we have a system
with two characteristic directions. As the negative charac-
teristic in this case is always directed upstream this sys~
tem should be easier to handle than the complete equations,

The two acceleration terms are of the same order of
significance and usually very small compared to other
terms, as was shown in section 3.4. Furthermore, the two
terms are alwavs of opposite sign at the important rising
flow stage. Thus cases where the dynamic equations are
significantly better than the diffusive equatlon should
be very rare. This leaves only two approximate models of
interest; the diffusive wave model and the kinematic wave
model. Their properties are the main sub]ect of this

chapter.

The 51gnificance of the lateral momentum term has been
discussed in the previous chapter.. It is believed that a
significant portlon of ‘the momentum of the raindrops 1s
lost due to the disturbances created when the raindrops
penetrate the sheet flow and hit the ground. Therefore
the effect of falling raindrops on the flow can not be
simulated only by means of the momentum tern. The 1mpact
of raindrops should rather be looked upon as a loss of
momentum which could be accounted for by means of an_
increased friction factor (c.f. chapter 5). The lateral
momentum term is therefore neglected in the follow1ng.
However;, in connection with the solution of the kinematic
wave equation in the case of constant rain intensity, an
example is given where the lateral momentum term is taken

into account.

Further approximations can only be made in terms of
51mp11f1cat10ns of the friction relation, celerlty,
diffusive coefficients etc., and can always be derived
from one of the above mentioned models.
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4,2 The kinematic wave approximation

- 4,2.1 The kinematic wave equations’

The klnematlc wave is a widely used approxlmatlon of the
dynamic wave equations. The first thorough analysis of
its properties was given by Lighthill and Wittham (1955).
In .this approx;matlon only the slope term is taken into
account. “The kxnematlc wave equations are thus ‘written

LQ .a—A- = :
% + 3% q ess (4.2.1)
Sg -8, = 0 ees (4.2.2)
If 8, is expresséd in terms of Q and A
5 :
s, = Lp . 4.2.3)
K-A
equation (4.2.2) gives
o= k-st/%aP ' e. (4.2.49)

which is a general expression for a friction relation
valid in a prismatic channel. K is mainly a roughness
parameter while b is governed by the selected friction
relation and channel geometry. For instance, in surface
flow, Manning”s relation gives b=5/3 and Chezy”s gives
b=3/2.

Phe kinematic wave equations may be transfermed into a

" system of ordinary differential equations in the same way

as the shallow water eguations (see section 3.3)

The equation 4.2.5a expresses a wave .velocity or a system
of positive characteristics in the x-t plane.

29

ax _do e

dt  da i v ees (4.2.5a)
a0 _ 49, ’

at - an' 4 _ (4.2.5b)
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Along éhese characteristics the equation‘4.2.5b is satis-
fied. The kinematic equations evidently only simulate
wave propagation ‘in the downstream direction. The necess-

ary initial and boundary conditions are

'@ = Q(x,0)  (initial condition)

L}

- Q 0¢0,t) - (upstream boundary_conditioﬁ)

and no downstream boundary condi§ion,is,neeaed. This
property of the kinematic wave makes it incapable of
taking backwater effects into account pbut simplifies its
use. The basic appearance of kinematic cnaracteristics is

shown in figure 4.2.1.

.

l;v/<

[+ 4
o
[+4
8 S
o s3]
a
=
<I\
3 &
> %
o
B S
[ % Q
2 o

- X

L

Figure 4.2.1 Kinematic characteristics in the case of
lateral and upstream inflow

The equation (4.2.5a) defines the kinematic wave velocity'

Cp e Using the friction relation, it may be written
_do _ .ql/2 . (b-1)
€ = dA " K-S, b-A oo (4.2.6)
or . .
= b2
k= b-% een (4.2.7)
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The kinematic celerity is then always greater than the
mean velocity of flow, for instance in surface flow by
67% and in gutterflow by 25% (Manning”s formula). It
should be noted that the celerity is sensitive to the
selection of friction relation.

An alternative way of writing the equation system is

dx

- b-v . : <.. (4.2.8a)
aa _ ' ' '
@ g - _ ve. (4.2.8b)

It can also be shown that

do _ aa _
ax ~ &t ' ees (4.2.9)

Equation (4.2.8b) shows that the kinematic’wave is not
subject to any attenuation.

1If the definition of the kinematic celerity is used, the
continuity equation may be written

*%"
k

=q eee (4.2.10)

3
=18

which can be compared to the convective diffusion
. equation in section 4.3.

Figure 4.2.2  Converging surface (after Singh (1976))

31

RENRIRR PRSIV AR

e e A VAP AN -

T e @

1 AR A i e

&

e b A e e i 0 N e e ek i 08 s e

PUSPIEN

PENEATANSE VR S WA

X



@

B Lol

The equations above assume a plane surface. For compari-
son, the corresponding eqguations for a converging surface
according to figure 4.2.2 are {(Singh 1977)

. S
:3 at =9t : e 22110

-5,=0 ’ ve. (4.2.12) ';

4.2.2 Analytical solution of the kinematic equations = . j
in the case of lateral inflow only

A typical system of kinematic characteristics of a surface
or a gutter flow (in the case of only lateral inflow) is

“shown in figure 4.2.3. The characteristic starting at x=0,

§=0 divides the x-t plane into two zones. The zone Z} in-
cludes all points where the associated charactéristics
emanate from some point X at t=0 and the zone 22 includes
all péinﬁs where the characteristics emanate from the up-
stream end at some time t= t .. The time taken for a wave
to travel from the upstream end at t 0 to %=L 1is the

FEvery downstream flow value Q(L,t) is associated with a
specific characteristic path. By integrating equation
(4.2.8b) over this characteristic an expression for the
gross-sectional area A is obtained at the downstream end

t : .
A(L,t) = [ g(o)do ' eee (4.2.13)
t

~as A(0,t)=0 and t°=0, A(x,0) = 0 if t<t_ . From eguation

{4.2.4) and (4.2.13) an expression of downstream outflow
is obtained ' '
_ t
o, t) = ksi/2. ( fqlerdn)® ced (4.2.14)

to
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Figure 4.2.3 A system of kinematic characteristics
. in the case of lateral inflow only

K is assumed independent of x and t and the upstream

boundary condition is 0(0,t) = 0. Equations (4.2.13) and

(4.2.6) inserted in (4.2.5a) yield after {ntegratipn

’ t 1 .
L = k-5L/%bf [ fq(o1ae}P™t ax .. (4.2.15)
toto :
For a given geometry it is possible to determine the out-
flow at any time by the equations (4.2.14) and (4.2.15).
In zone 21 the flow is directly given by equation (4.2.14)
the time to which is speciiic for each

(t°=0). In zone 22
4.2.3) must first be determined. This

time t (see figure
is done by using equation (4.2.15)

If equation (4.2.15) is applied to the characteristic

emanating from x=0, t=0 we have

t.
C

L= k5% f [fatorae]® ™t ar .. (4.2.16)
)
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i Analytzcal solutions are obtained if the lateral inflow
‘is given as an analytical expression which 1s _integrable
in equation (4.2.15}. Li et al. (1975b) propose an iter-
ative method of solv1ng this equation for an arbitrary

analytical function of g based on the.Téylor-seties‘ex-
pansioa. he'general problem of eévaluating the discharge

if the lateral inflow is glven as a time series must be
treated by numerical 1ntegrat10n or a finite difference
method (see chapter 6). analytical solutions are there-
fore no; directly used in simulating of runoff.

4.2.3 Analytical solutions in some spécial cases

Anélytical solutions of the kinematic equations are only
obtained in special cases. The solutions are based on -
specific assumptions of the inflow or the frictien rela-
tion. Below, some cases are discussed in order to illus-
trate the general properties of the kinematic wave and

the limitations o0f the analytical solution.

Ugstream inflow

Integrating eguation (4.2.8b) along a characteristic for
the case of only upstream inflow '3=0, A(0,t) # 0) shows
that the éross-sectional area A(x,t) is constant along
this characteristic. Regarding the relation between flow
and area {equation 4.2.4) and the definition of wave
velocxty (equation 4.2.5a}, both Q(x,t) and ¢ will also
be constant along this characteristic. If A0, t) at the
start ppint of the characteristic is denoted Ain we ob-

tain the velocity, see eguation (4.2.6)

s r.el/2 ¢ b-1
e = K-55/ % ka0 eee (4.2.17)

or, if the corresponding flow value Qin is used (see équé—

tion (4.2.4)), .
1 b~1

1/2,5 b ' , _

o V@) . cer (4.2.18)

< "
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The outflow at the downstream end at time t is easily ob-
tained as the upstream inflow at time (t-L/ck). The solu-
tion may, however, give unreallstzc outflow hydrographs
qaused by intersecting characteristics. Such a case ‘is
discussed in sectibn 4.2.5.

For a constant 1atera1 inflow, Dy v stationary flow is
obtained at t= t “and the state of flow is only of
interest in zone 21 (figure 4.2, 3). Integration of
equaction (4.2.14). in this zone gives (to— 0)

ow,t) = x-sL/% gpeP (06tét ) ... (4.2.19)

The time of concentration in the case of constant lateral
inflow. is then

1-b . Yisp

9% L
t. = s 172 ees (4.2.20)
o .

- {(since Q(L, tc) = qK-L when t=tcL

A linear approximation of the friction reiation (b=1 in
eqguation 4.2.4) simplifies the solution procedure considexr~
ably. Both the Time-Area Method and. the Unit-Hydrograph
Method are based on this approximation, Chow (1964).

The equation (4.2.15) may in this case be integrated for
an arbitrary lateral inflow, giving '

o x.el/2 (o
L = k-5 He-t | _ Ceee 4221

All characteristics have, obviously, the samc integration
time, showing that the wave velocity is constant in time
and space (straight line characteristics). It should be
noted that representative values for the factor K are
very different for different friction relations.
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~Nonlinear friction_in a surface_flow case

Analytxcal solutions may also be obtained for certain
time varying lateral inflows when .a friction relation
with b=2 is used (see chapter 5). An example of such an
inflow is given by

-ty -ty
q=gq e (1L -e ) v ees (4.2.22)
where ¢, and tk are constants. (see Parlange et al. (1981)).
In figure 4.2.4 the functlon has been plotted to. show the
principal shape. It is believed to be fairly representatlve
for a storm event .and ' the COrrespondlﬂg inflow to a gutter.

qfoTmss] - - q2m%umwﬁm%
50 T qma,-%ﬁo 10" Tmis .
40 1 at t=tg-In2
2 %
20 ¢
10 1 \
oL + t + + + = t[s)
0 120 0 30 480 600 720

ngure 4.2.4 The lateral inflow

‘Integrating: equatlon (4.2.14) using this lateral inflow
gives the following expre551on for the outflow at the
downstream end

1/2 21 -Zt/tk -t/tk

Q(L,t} = K- S “dg tk(f'e - e

L.. (4.2.23)
-2t0/tk)

-t /t
+e © K- % e

where to is first evaluated by .equation (4.2.15) when
t>tc {when t<t is t =0}, see figure 4.2.3. Using the
above equations, outflow hydrographs have been generated
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from a surface of length 40 m (width 20 m) for three
different slopes, The hvdroqraphs are shown in figure
4.2.5 together with the lateral inflow hydrograph (from
figure 4.2.4) given as the total inflow to the surface.
This hydrograph corresponds to an inflow at the upstream
end if all the lateral inflow were concentrated to this

‘point.

Q [10'5m3/s]
b

20 4 o ,.—-‘\ - = Total inflow
18 + : // \\ minaes Qutflow at downstream end
: . of a surface ; L=40m, B=20m

16 T

Figure 4.2.5 Outflow hydrographs from an asphalt surface
derived by the kinematic equations

It appears that the hydrographs get increasingly attenu-
ated with decreasing slope. According to the equation
(4.2.23) an increase in roughness would have attenuated
the hydrographs in the same way. This is typical for "flow
elements exposed to lateral inflow" such as

surfaces exposed to rain
qutters " inflow from a surface

networks " " inflow from gutters

Given a lateral inflow with a duration greater than the
time of concentration ter the outflow will increase until
t=t,, see equation (4.2.14). Whether o~ not the flow
maximum is reached at t=t, depends on the shape of the
lateral inflow hydrograph. A steep rising lateral inflow
will give an outflow maximum very close to the time of
concentration.
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The’ attenuatlon is generated by the dependence on the
outflow of both the time of concentratlon and the shape
and magnltude of lateral inflow. To dlstxngulsh it from
*dynamic ‘attenuation" of waves the attenuation discussed
here will be called #Jateral inflow attenuation". This
attenuation is as significant as the dynamxc attenuatlon
in urban runoff -systems.

4.2.4  The kinematic wave including the lateral

momentum term

If the lateral term in the momentum eqguation is taken
into account the kinematic wave equations become

3Q | 3A _ . ‘ ' ' ) .
_8§+E-Aq e ) ) ...(4.2.243)’
_ _ g-U-cosé _ . '

Sg - S, - TR0 .. (4.2.24b)

Using the method of characteristics, see section 3.3;
the characteristic equations can: be obtaired. Although
they are expressible analytically, they become very
complicated. In the case of constant iateral inflow the

rising hydrograph is given by
_ . b Db U.cos &
(L, t) = g~qk-t VS0+ — gt .5.(4.;.25)

valid for
S+94-ﬂs—g'>0and§>0
o gt o

The corresponding time to eguilibrium is

b U. cos " U-cos @ L
J = = oo (4.2.26)
‘ K-q(b 1) E .

As an example, in figure 4.2.6 are plotted'the rising
hydrographs for a flow case, with and without considera-
tion to lateral inflow momentum. The influence of lateral

inflow becomes more stressed for great intensities, short

lengths and small slopes, and then i = 150 1/s-ha (54 mm/h)

38

e

ot st i SN

s b

il

PRI Y




e i e 8

L, =5 m and S_= 0.01 have been chosen as an extreme case.

The rain hits the surface at an angle of ¥ = 135° (8 = ¥

1 a[w® %2]
8T :
64 /
4 Se26.01 . /S°=0.0t
Y R 8 . . / Simulations ;
. ; : —Without lateral
4 : - / momentum term
Y — with lateral
2 4+ / momentum term
) / (¢ =135°)
-+ . / g w
: S,=0.0033
0L ot t 5]
0 20 40 60 80 100 120

Figure 4.2.6 Comparison between rising hydrographs
calculated with and without lateral
momentum ‘

in surface flow). AS we can see water has to build up be-
fore the runoff can start. It is here assumed that the
water is not able to pass x=0. The lateral term can be re-

placed by a correction in slope to give the same time of

concentration but, as can be seen in figure 4.2.6, the

. rising hydrograph is not properly réprdduced. ‘However,

as discussed in section 4.1 the impact of raindrops on
the flow is much more complex than described by the lat-
eral momentum term and the term is neglected in the fol-

lowing analysis.

4.2.5 Kinematic shocks

The analysis in previous sections is only valid as long
as no characteristics intersect each other. The condition
for two consecutive characteristics (Cl and C2) to meet
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‘can be written, according to Rorah and Prasad (1980), as

dx dx '
(4, ] < [b—-) ] eer (4.2.27)
at tJcl at £,)c2 -
where t, is an arbritary time, see figure 4.2.7.

Figure 4.2.7 Two characteristics emanating from the

upstream boundary

According to the equations (4.2.4) and (4.2.5a) .the
celerity may be written

-1
by P ee (4.2.28)

which inserted in the inequality, gives

(o] ., ¢ (o5

] eee (4.2.29)
t, cl t, c2

In the lateral inflow case we have (eguaticn 4.2.13))

t . . o
[“1 atarad®] < [Ul araa)®1] L (.2.30)
t, c1 t, cz

[+}

when[to]Cl=[to]cz(characteristics in zone:Zl figure 4.2.3)
the right and left hand sides are identical and the
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1nequa11ty is not. satlsfled. if the characteristics
eminate from ‘the upstream boundary[t ]Czls always greater
than{t ]Cl' As g is positive the inequality (4.2.30}
cannot be satisfied. Thus in the lateral inflow case, no

_intersecting characteristics are obtained.

The case of only upstream_end inflow is characterized by
cénstanf wave velocity along ‘each characteristic. As soon
as one characteristic leaving the upstream boundary has a
velocxty greater than the foregoing one they will inter-~
sect (provided L is long enough). From the point where two

" characteristics meet a nLew one will form with a different

celerity. A zone of 1ntersect1ng characterlstlcs will
develop, associated with the r1s1ng part of the inflow
hydrograph. In this zone what are known as kinematic
shocks or bores will form. The movement and shape of
these shocks have been analysed by several investigators,
Lighthill and Whitham (1955}, Kibler and Woolhiser (1970),
and an .approximate method of routing shocks ‘has been pre-
sented by Borah and Prasad (1980). \

It is possible to get a pure kinematic solution if the
characteristics are allowed to intersect. More than one
flow value may then occur at the outflow at each moment,
which, of course, is physically unrealistic. In figure
4.2.8 is given an example of the kinematic solution in a
case when kinematic shocks form. The lateral inflow from
figure 4.2.4 (multiplied by the surface area) is used as
the upstream end inflow and routed over the surface (L =
40 m, B=20m S = 0.03). Typically, the outflow hydro-
graph has three flow values at each specific time in the
shock forming zone.

In the numerical solution of the kinematic wave equations
an artificial attenuation is obtained (see chapter 6). '
This attenuation smooths out the shock giving, at least,
unique flow values at each time step.

41

£ g

[P

R VAR R di e e e e e L Dtk I s e

Ghniar




et oteanmion ey

i . | ;“...

. 124+

-

@0 m¥s] o
) =« Inflow at upstream end

e Qutflow at downstrzam end
207t ———~ L=40m , B:20m

4 4
/ \\
st /7 >
! \\ .
[}
1 . \\\\
[} .
[} ’ N .
] ! \\\
8+ 4 ) ~
L 3 ' \\
I' Ts<
4 T \\\\
.' §‘~,'~s
i
0 b ¢ 4 + t ; :
0 120 20 360 480 600 t {s:

Figure 4.2.8 The kinematic solution in a case of
intersecting characteristics (physically

unrealistic).
4.2.6 Applicability of the kinematic wave eguations
It appears-from the dimensionless dynanic equation '
(3.4.3) and section 3.4 that the kinematic wave number

L'So :
K = : oo (3.5.4)
o 2

Y F
: o ©

is an important parameter in the discussijon of the appli-
cability of the kinematic wave model. Generally ké in-~
creases with increasing slope, length and roughness of the
surface or gutter. If the flow is generated by a "lateral
source", Ko increases with decreasing rate of lateral in-
flow and increas’ng length..Several investigators, for
instance Woolhise.- and Liggett (1967) have discussed limig-

ing values of K for the kinematic model.

Woolhiser and Ligget compared dimensionless rising‘
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%‘g ) hydrographs evaluated by the kinematic and dynamic equa- v :
o

tions for different vaiues of Ko and Fo' They found that
“the error of the outflow hydrograph using the kinematic
equations was less than 10% at K. = 10: (Chezy”s friction
relation used). The error decreased rapidly with increas-
ing K, and K, = 20 was then defined as a limiting value
below which the klnematlc solution does not apply.
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s ' graphs. D* is the dimensionless time at . E
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Morris and Woolhiser (1980)). %
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Morris and Woolhiser (1980) analysedbin a similar wéy
partial equilibrium hydrdg:aphs from a plane, see figure
4.2.9 a,b. They concluded that the condition on K, must

be further restricted in cases of ‘small values of Fo and
proposed the general condition:

FS.K > 5 when - F, < 0.5

o o : -..(4f2.31a)

K, > 20 when = F_ > 0.5. ees(4.2.31b)
Comparing it with Ponce and Simons” analysis referred to

in section 3.5, the condition correspends to the kinematic
band--co < 1 in figure 3.5.1, provided the length of flow

L is replaced.by the wave length X of Ponce and Simons”

- sinusoidal wave.

Using the iimiting values of surface flow characteristics
given in section 2.3, the kinematic wave number Ko > 38

and the Froude number F,> 0.5 are obtained. The kinematic

wave then applies to surface flow according to the condi-

\

tion given above.

In gutter flow the kinematic wave number may be less than

20 (Fd > O.S) and the usevof the kinematic wave approach
is in some cases doubtful. For small values of F, the
diffusive wave is a more appropriate approximation, see
section 4.3.2, In the great majority of cases the kine-
matic wave approach, however, applies also to gutter flow.

The condition (4.2.31) also applies to a sewer fed by a
lateral source only. Such a flow element is in this
report used as an alternative épproximation for sewer
systems. In this case the kinematic wave number ﬁay be
less than 20 (Fo > 0.5) and the kinematic wave épproaéh
is consequently sometimes less appropriate. ’

The discussion of the applicability of the kinematic wave
model in secticn 4.3 and here is based on the case of
constant lateral inflow. It may be regarded as an extreme

44

B e T B AN ATOWS

| e, b Smese ominss

o A At o SRR il Lt L pe e




type of inflow. According to sectiqn'3.5,'kinematic waves
have long wave periods and gentle slopes of rising and : i
receding parts. If the lateral inflow is increased suc+
cessively instead of instantaneously, more gentle slopes
of the wave will result.'The'kinemétic approximafion»can
in this case be expected to be valid for smaller values
of Ko than those givgn in condition (4.2.31).

Morris (1979) analysed the influence of the choice of

downstream boundary conditions on solutions of the shal=-

low water eguations. She found no effect on the solution
for a range of Froude and kinematic wave numbers covering
most overland flow cases. This result is in accordance

with thé kinematic wave solution which does not take the %

downstream boundary condition into account.

It should be noted that the analysis so. far is purely
theoretical and based on assumptions such as sheet flow.
However, regarding these limitations the discussions
above give a clear indication that the kinematic wave
approximation is, despite its simplicity, sufficiently
accurate for urban runoff simulation in the great major-

ity of .cases.

4.3 The diffusive wave approximation

4.3.1 Basic equations - the diffusion analogy

The diffusive wave equations are obtained by neglecting
the local and convective acceleration terms in the basic
momentum equation. For prismatic cross-sections (3A/3x.=
B3Y/3x) the equations may be written

3Q JA .

Tx + 3t = q . ) ...»(4.3.1)
1 3A -

......a._q, sf— s =0 » vee (4.3.2)

The equations form a system of linear.differential
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. eguations whlch is elliptic, that is, no characteristic

can be found. pifferentiating the equations (4.3.1) and
(4.3.2) with respect to X and t, respectively, and using

the friction slope

Q ' :
S, = ees (4.3.3)
£ 7 {2 a2b

(for example Manning's or Chezy”s relations, see chapter
5), the kinematic celerity (section 4.2.1) ’

a0 -9 4 - :
el Wl . b ees {4.3.4)

0
~

gives for surface flow or rectangular channel flow

20 20 _p 2@ .
5t * CkIx D=5 + Cy+q ees {4.3.5)
X . .
where
_ .9
- b= %7 oo (4.3.6)

The second term on the left hand side of equation  {4.3.5)
presents the convective transport and the- first term on

- the rzght represents the diffusion of the wave with diffu-

sion coefficient D. The equation will here be called the
convective-diffusion eguation, paily~Harleman (1965} .

The convective—diffusion equation jillustrates the prin-
cipal ability of the diffusiv- wave'equations to deséribe
an attenuating wave movement. -his ig not possible using
the kinematic wave egquations. Comparing the convective-
diffusion equation with corresponding expression of the
kinematic equations (4.2.10) shows that these are ident-
ical if the dlffu51ve term in equation (4.3.5) is omitted.

A solution of the dszualve wave equation reguires besides
the initial and upstream boundary conditions (compare with
the kinematic eguations}, also a condition at the down-

stream boundary
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“assumed constant with respect to independent varlables,

Q = 0(x,0) (inital condition)
o = 0(0,t) (upstream boundary condltlon)
Q = Q (L, t). (downstream boundary condltlon)

1f the celerlty Cp and diffusive coefficient D are

the equatlon (4.3.5) can be reduced by the transformation
X, F X - ckt>to

e .
3 2 %0 L
= o5y + cpq - ee. (4.3.7)
5T 2 K

The equation may be further reduced (by manlpulatlng the

. poundary conditions) to the same form as the classical
‘heat conduction eguation or Fick”s law in one dimension.

This eguation has been solved analytically for numerous
different applications, mainly regardlng molecular dif-
fu51on, ‘Crank (;975), and heat aonduction Carslaw and
Jaeger (1959).

When the above mentioned analytical solutions are applied
to channel flow, difficulties in spec1fy1rg suitable
boundary conditions arise. In addition, the analytical
solutions will be expressed in terms of integrals that
have .to be solved by means of numerical integration

‘methods. It is therefore not possible to use analytical

solutions to discuss the properties of the diffusive wave
equations in the way it was for the kinematic wave equa-~
tions.
Inserting the friction relation (4.3.3) in the "momentum®
equation (4.3.2) and solving for Q gives

‘b 1/2

- xabglizg oL ¥ ‘ '
Q = K-Aa"'S; (1 s, W% ee. (4.3.8)

By expandlng the square root term as a power series and {
differentiating with respect to x and t, it is p0551b1e
to derive the convective~diffusion equation (valid for

B A

flow on surfaces or in rectangular channels), see Price
(1980a) and Kousis (1982),
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. , ; . _ ;
i : 2
Lo 20 0 __9 .3 ) :

3t +_ckA3x = TEE on + 0p-q ee (4.3.9)

which is identical to eguation (4.3.5) if S; is assumed

'equal to S in the diffusive coefficient D. It should be

noted that throuqhout the derlvatlon of equatlon (4.3.9)
terms containing

32Y‘ 3Y 2
2 or Gy
X :

have consistently been dropped. These terms are in
dimensionless form, (dimensionless variables denoted by

index ),
- 2 = ‘ 2
‘1 ? Yx 1 an
F2K .sz o F2K .(axx
oo » = %o

and are thus of the same order of magnitude as the-ne-
glected dynamic-terms (see equation 3.4.3), or smaller.

In chapter 6, the diffusive coefficient defined by the
equation (4.3.9) will be compared with the diffusion
caused by the numerical solution of the kinematic wave
equations.’ ‘

4,3.2 Applicability of the diffusive wave eguations

The diffusive wave equation includes the pressure force
term as well-as the slope term. The dimensionless analy-
sis in chapter 3.4 shows that this term will be more
significant for small values of the Froude number. wWhen
Fo increases towards unity (K less than 20) the accelera-
tion terms become more 1mportant and the full dynamic.
eqguation should be used.

Morris.and Woolhiser (1980) derived partial equilibrium
hydrographs from a surface at low Froude numbers, figure
4.3.1. As might be expected, in this region the perform-
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ance of the diffusive wave was better than that of thg'
kinematic wave, compare with figure (A,Z.Qb). It performs
o . W _ less wgll for the receding part thau‘the rising part. ’ :
This might be explained by the fact that the sign of the ) i
. local acceleration term changes at the receding part and

the acceleration terms no longer counteract one another.

According -to Morris and wWoolhiser the diffusive wave

® ’ ' ’ approximation should be significantly-'better than the
: o ) kinematic wave when K Pg,< SVand'Fo < 0.5 {equation {

(4.2.31a)) . The criterion has a simple physical inter-

pretation following directly from the definition of Kgi

when the difference in level between upstream and down-

: : streéam ends is less than 5 times the waterdepth the

. ' diffusive wave equations should be used; otherwise the

kinematic wave equations apply.

oo : Considering typical slopes and water depths in urban run-

| off systems the condition is essentially fulfilled only

® . ’ _in very flat sewer nets. Runoff simulations in such cases
. . require a downstream boundary condition.

Q*
[

10

Z —~—— Basic equations
D=0848 .  Diffusive wave

\

05 equation
£ =025
\~\\ ;=10
- — T —— .
® 0 i 1 - :
0 05 10 15 20 t :

. Figure 4.3.1 Dimensionless*partial equilibrium

. hydrograph. D is the dimensionless time

‘. at which the lateral inflow ceases (after
- : Morris and Woolhiser (1980})

A Sy

. Ponce et al. (1978) developed a similar criterion for
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ihis-case based on the analysis'discussed in séction 3.5
fof a single'condui* which is féd by an upstream source
only. Accord:ng to this crlterlon the dszu51ve wave egua-
tions apply to the same cases - :lat sewer systems with
great water depths.

Agaln it should be stressed that the discussion is theor-

" etical and the condltlons to some extent subjective. There-

fore a definite rule for making the choxce between the two
approx1mat10ns can not be given. It is, however, evident
that in:network systems with 51gn151cant backwater the
diffusive wave equations have to be used.

4.4 Summary and discussion
An analysis of the magnitude and sign of the terms in the

dimensionless momentum equation shows that there are two -
simplifying approaches of interest for urban runoff model-
ling. These are the kinematic wave and the diffusive wave

equations.

51mp1e set of differertial equations and boundary condi--
tions (no downstream boundary condition). Thé‘equations
have in the lateral inflow case no general analytical
solution and must be solved by means of numerical methods.
Regardlng the propertles of the equations, the correspond-
ing numerical algorithm can be expected to give conpara-

tively stable solutions.

From a theoretical point of view the kinemstic wave
approximation is, despite its simplicity, sufficiently
accurate for urb~n ruroff simulation in the great'
majority of cases. This is explained by tﬁe rather
impressive abiiity of the eguations 'to reproduce the
wave velocity in ordinary urban runoff systems -~ the
kinematic wave velocity. : :

The kinematic wave equations are not able to reproduce
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dynamic attenuation. Provided there is only an upstfeam
source the wave is not subject to any attenuation at all.
" This is in practice not a serious drawback because in the

numerical solution an artificial attenuation is introduced
which in most cases is greater than the dynamic attenua-
tion (chapter 6).

The diffggive‘wayg_ggggg§ggggigg is defined by a system

of differential equations which are a bit more complex and
also need a doﬁnstream boundary condition. The correspond-

ing numerical solutions can also ia this case be expected .

to be "stable" (compared to solutions of the basic equa-

“tions).

Using the diffusive approximation it is possible to repro-

duce the main part of the “dynamic" attenuation. It is also
possible ‘to take into account the downstream boundary con-

dition which makes analysis of sewer systems with signifi-

cant backwater possible.

The diffuéive wave approximétion applies to all cases
where the kinematic wave approximation is relevant and
also to special cases where backwater is significant. It
thus appears.to be the most generally valid approximation
for urban runoff simulation. It has successfully been
used in the anélysis of sewer systems, see Sjdberg (1981),
Akan and Yen (1981) and Lyngfelt and Svensson (1983).

An important property of urban runoff is that the sources
feeding the flows are spread along the "channel" elements.
This is, of course, highly relevant for surface and gutter—

flow cases but applies in principle also to most sewer net-

work systems. In these kinds of system an attenuation of.
the wave is obtained that can be related té a characteris-
tic time of concentriation for the system. This "lateral
inflow attenuation” is believed to be at least as signi-
ficant in urban runoff systems as the *dynamic”’ attenua-
tion. Therefore a very important property of a model used
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for lateral 1nflow systems is the wave velocity. As the
velocities of klnematzc and dszuszve waves are equal,
the lateral inflow attenuation should be simulated with
about the same accuracy by the two approximations.

In this chapter, the properties of urban runoff described

by the Proude and kinematic wave numbers and also the prop-

ertxes of the klnenatlc and dlffu51ve wave approxxmatlons
have been considered. It is concluded that the former ap-
proximation ‘is sufflcxently accurate for simulation of
overland flow. The approximation is also appropriate in
many cases of sewer flow simulations.

The main difference between the two discussed approximé—
tions is whether or not they are able to consider down-
stream conditions. In most practical appllcatlons, for
instance in designing sewer systems, it is very difficult
to take these conditions into account. It is therefore
believed that the kinematic-wave approximation is more
suitable for sewer flow simulations in general than the
diffusive wave_approximation.

However, in casa3s of significant effects caused by down-
stream conditions the diffusive wave approximation must

be used. The most flexible model would, of course be one
that generally uses the kinematic wave eguations but which
is capable of changing these for the diffusive wave egua-
tions in parts of the system affected by downstream con-

ditions.

As the analysis of systems affected by downstream condi-
tions is beyond the scope of this report, in the dis~
cussioh to follow only the kinematic wave approximation
and "associated" models will be treated.
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S * OQHE FRICTION LOSSES IN OVERLAND FLOW

5.1 - | General

The friction forces,aloné the wetted perimeter and the
water surface (wind) in the momentum eguation are

k'spmmarized iﬁ the friction term Sf. The term is defined

by
S¢ = (zmp-p_+ zms-a)(pgA “eee (541.1)
where
"mp ='meaﬁ shear stress along the wetted perimeter
Ths = Mean shear stress along the water surface
P = wetted perimeter
B water surface width

The total shear stress is related to the flow velocity,
the cross~sectional area, the wetted perimefer and the
water surface width. Usually the wetted perimeter is
represented by the hydraulic radius R'= A/P. Using Q =
vV A and ignoring shear stress at the water surface the
standard form of the friction term is obtained

5 = c1~Q":2~Ac3-Rc4 ' cee (5.1.2)
where c,-cy are constants or .functions related to rough-
ness, rain intensity etc. In statjonary uniform flow the
friction slope equals the bed slope, Sf= SO; The estab-
jishment of a relevant friction relation for this case
has long been a fundamental problem in hydraulics.
Through numerous investigations several relations that
can be regarded as empirical or half empirical have be=
come generally accepted.

In the general case, additional effects caused by non

stationarity would be plausible. However, no investiga-
tion guantifying such an influence is known (Yevjevich
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. (1975)) . Conséquently the friction term in the momentum
@ . : ‘equation is determined in time and space by traditional
' friction relations developed for stationary flow.

In this chapter, flow. resistance at small water depths
(sheet ‘low) will be discussed. Many investigations of
. ) . . this flow type have bcen performed and the discussion
.. ) will be based on some of the best known studzes. Frlctlon
‘ : ‘relations relsvant for surface and gutter flow suitable
for urban runoff modelling are analysed. Besides the
influence of roughness and rain intensity, the effects bf
wind and rollwaves: on the flow are briefly discussed.

5.2 Alternative formulations of the friction

relation - ; : L
The most frequently used friction relation in standard :
literature is the Darcy-Weissback equation. For statlonary

‘ ‘ ) open channel flow (prismatic section) it may be written.
as a relation between the flow and cross sectional area

=s =L ' ' )
Se = S, = 7R 2 cee (5.2.1)

o where R is the hydraulic radius and £ a dimensionless
friction factor. In surface flow, R~ Y and if Q, is the
flow per unit width the relation is '

_ J3/2 ‘fgg
o, =¥ 215 eee (5.2.2)

@ ) The relation is derived considering only friction due to
shear stresses along the bottom. Raindrop impact:and wind
shear stress on the surface may, however, be incorporated

in £.

® The equation covers the laminar flow, the flow in. the
s transition zone ani the turbulent flow. In laminar flow
over_smooth_ surfaces the friction factor is only dependent
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én Reynoids‘_number R,

ees (5.2.3)

’12

In»surféce flow R, = Qb/v (v = kinematic viscosity of

" flow) giving

= 3- . V l ) )
o, = ¥ 3%}50 cee (5.2.4)

In_turbulent flow_over_rough_ surfaces_ the friction
factor depends mainly on the relative roughness and may

be represented by

f’; %% L v (5.2.5)

where C'ié the roughness parameter of the surface. Insert-

-ing in the Darcy-Weissbach relation gives

= 23/2-C\fs_'o ve. (5.2.6)
\

%

which is the well-knéwn Chezy relation for surface flow.

Another relation is the Blasius equation

£ = °~§§3 ' vee (5.2.7)
Ry :

which is valid for turbulent flow.

other relations of interest in turbulent flow are:

_¢5/3.1
Q, =¥ s,

cee k5.2.8)

the Danish -formula, Jacobsen {1980)

- /g s cer (5.2.9)

e L

b

and
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0, = YK Vs o s e (5.2410)

(after the exponent of

here called the guadratic_formula
governed by

Y). n, K and. K_ are friction parameters

roughness properties of the surface and the impact. of the

raindrops.

InveStigétions of the friction properties of the flow are
usually presented in a logarithmic f’Ré diagram. A
convenient way. of making comparisons between suitable
friction relations should thus be to express them.in

terms of £ and R, }(by using R, = Qb[v):

The Manning formula

s -nt® 1710

£ = 8g ‘{——s5—) eee (5.2.1D1)
v2-R2

e
the L-formula
So 2/11 :
f = 8g-{ 55 2) . e (5.2.12)
K. . ‘
L e

the quadratic formula

= PR < M
f = 8g (K6 'vz.Rz) aee
q e
Using the Manning, L= oY guadratic for
Weissbach”s equation with a. friction
(5.2.12) or

f-Re-diagram

mulas is equivalent

to the use of Darcy;
factor given by the equations (5.2;11),
(5.2.13). These relations will appear in the
each defined by its "slope" and level.
or each friction relation
In figure

as straight lines,
The “"slope" is characteristic £

and is dependent only on the exponent of R,.

5.2.1 these “slopes" are compared to those of laminar,

flow given by £ = 24/Re and turbulent flow given by the

Blasius eguation. The jevels of the lines have been

chosen arbitrarily.

174
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The guadratic and L-formulas appear ‘as hybrlds between
the pure laminar and turbulent relations and should fit

e e S oy A B I

reasonably in the transition zone and surrounding. parts
of the laminar and turbulent zones. Mannlng s formula
shows the typical "slope" of a turbulent relation. A
relation which gives a "laminar slope" at low Reynolds” : .
numbers and a "turbulent slope® at high ones {illustrated :

in figure 5.2.1) is L

1 , v » ' '
-‘l_;_- = K, 199 'Re‘E* K, - ees $5.2.14) ; : .

where K1 and K, are constnnts. This type of relation is;
however, inconvenient in a runoff model. If a better U

2.2-togRe {T-1.7

"

01 <4

o . 001 \ TS EAUUT T B S
10 102 103 Re 10?

: Figure 5.2.1 "slopes” of the friction factor relation . i
N . used in-different friction formulas :

adaption to laminar and turbulent flow is required a

combination of a laminar and turbulent relation is pre-
ot ferred. The Manning, Chezy, Blasius, L~ and quadratic

B A i
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,relatlons can all be represented by the more general

formulat-on used . 1n previous chapter, equation (4.2.4)

where K is basxcally a roughness parameter (in surface
flow also including the. width, and in gutterflow, the
slope, of sides).

5.3 Investigation of friction losses in surface flow

5.3.1 General

Generally an empirical friction relation can be estab-
lished by measuring corresponding flows and water depths
aﬁ different statlonary flow conditions. This requires
well controlled measurements and consequently most re-
ported investigations have been carried out "indoors"

The used surfaces are very even and the surface lengths
are quite small. (5-7 m). Rain is generated in simulators
of different construction usually covering only a part of
the surface. Among the referred tests there are examples
of surfaces that are smooth, covered with sand or more o
reallstlc textures (asphalt, concrete). However, both the
rain and the surface will be different from the real "in
situ® situation giving difficulties in generallzlng the
results. On the other hand the fundamental relations
should be best studied under these well controlled in-
door condltxons, where the effects of dlfferene physical
phenomena can be separated.

5.3.2 Flow over a smooth surface

The characteristics of flow over a smooth surface have
been investigated by Yoon and Wenzel (1971), Yen et -al.
(1972), Shen and Li (1973), Kisisel et al. (1973), Nittim
{1977) and several others. The main objective of these
investigations has been to study the effects of raindrop

‘impact on flow.
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For flows not_exposed to_rain_, most tests confirm the

theoretical laminar relation £ ='24)Rea‘The'transition
frem: laminar to turbulent flow is found at a Reynolds”
numbex of about 900 with a transition zone 800-1400. At

low slopes (S <0.01) laminar flow tends to be maintained

‘at about 1100 For turbulent flow Nittim summarlzed

several investigations and presented a regression equa-
‘tion

1 o r '
L= 2.10g(R YVE) see (5.3.1)
7 9 RN E)

The relation is plotted togethér with Nittim”s results

for flow on glass, in figure (5.3.1). It appears to agtee

reaschably well with Blasius” solution,'see Shen and Li.

o §o=.001
o S°= .01
e So=.06

%; =2log(RevT ) .

10 ’ 102 103
Re

Flgure 5.3.1 Values of the friction factor f measured

for flow without rain over glass after
Nittim (1977)

The_influence of rain on the friction factor obtained in-
investigations by Yoon, Li and Nittim is shown in figures
5.3.2a-d. The tests by Yoon and Li agqree quite well and

Shen and Li derived from these (and tests by K1s1se1) the

follow1ng regression relation for laminar flow
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Experimentat Data ) Atter Yoon
Rainfall intensity
. "0".',‘ S670.01  $,°0.005
0 .
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(Blaseus Equation)

DARCY-WEISBACH FRICT:ON COEFFICIENT, f

¥

2 ) N 1
'oto' : 0o 10t
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- m/s 557011 5,70.008
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o
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=
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3 4,023
rei
. {Bloseus Equation)
R Experimental Data After Shen and Li
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w0t : 10° 0
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Figure 5.3.2 a,b Tests on the impact of rain on flow over
a smooth surface (U,=raindrop velocity)
After Shen and Li (1973)
(2 um/s = 10 1/s-ha)

0.407 . : .

£ = 240340003 eee (5.3.2)
e

where the rain intensity is given in [m/s]}. Nittim was
not able to.quantify a similar laminar relation. The
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Figure 5.3.2 c,d Tests on the impact of rain on flow
over a smooth surfcce (U.=raindrop
velocity) after Wittim (1977).
(1 um/s = 10 1/s-ha)

series shown in figure 5.3,.2c shows the same trend as
given by the equation. The second series of measurements
by Nittim, figure 5.3.2d, however, shows the opposite
trend. The friction factor decreases with increasing
rain intensity, but is generally greater than 24/Re. A
possible explanation for this discrepancy could be. the
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}greater ra1ndrop velocity in this test (figure 5 3. 2d).

flow is beyond ﬁhe subject “of this study. However, it

. slopes egual to or less than 0.01.

. o Flow wlthoht rain. agrees well with the laminar relation

However, Nittim could not show that this velocity had a
‘statistically significant effect. : o

The interpretation of these. contradictury effects on the

serves to indicate that the way raindrops are produced:in
the laboratory has a significant effect on the flow.

In turbulent flow, Shen and Li found that the Blasius
solution can be used if the constant £ R1/4 = 0.223 is
increased by 12%. Nittim™s tests agree reasonably in the
turbulent zone but with a sllghtly larger value for

£ Q1/4 = 0.260. It should be noted that the main part of
the study discussed above has been carried out using

and reasonably well with the Blasius solution in the
turbulent zone {with the value of f- Rl/4 sllghtly in-

creased)

o The flow is strongly influenced by the rain-
drop impact in the "jaminar" zone resulting in an

increased friction factor

o The flow is moderately influenced by the ralndrop
impact in the "turbulent” zone. The Blasius” solution
(with the value of f- R 1/41ncreas’ed by about 15%) may

be used.

5.3.3 Flow over "artificially" roughened surfaces

On an “"artificially" roughened surface (using sand or
small-spheres) the height and shape of the roughness can
be made very uniform. The influence on the flow caused by
the surface roughness is thus expected to be best observed
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on_such surfaces. Investigations of interest in this area
have been accomplished by Woo and Brater (1962), Kisisel : i
(1973), Phelps (1975) and Nittim (1977).

Phelps investigated flow without rain over a surface
coverel by glass spheres with a roughness height k=1.2
mm. His tests show a clear laminar zone for Reynolds” H
numbers less than 400, figure 5.3.3. In both the laminar
) zones and tran<ition zone an overall effect of increased
..- friction factor compared to the smooth surface flow can i
be observed. There is'aISOvéytendéncy for the friction
factor to increase with increasing relative roughness
k/Yo. I1f, however, only tests with a slope greater than
0.008 are considered (marked by squares in figure 5.3.3)

" . B ‘ ' . the pattern is changed. The laminar zone vanishes and the
transition zone moves towards lower values of Re' i T
Nittim investigated also flow without rain over a surface
covered by spheres: (k=2.33 mm}. The tests show rather
. different friction relations compared to those found by
L) ‘ : . - Phelps (figure 5.3.4). Generally, consider:bly . smaller
N
100 e,
Ny
- RN .
- N ©
- AN
® € N 8
2 "R
£ RN C.C) &
S \ \ ')
g A\ W 0] TJ .
o . ‘:;}\ . &L .o"
g kY, f:lé \\\;\ ope |
T 451 ° Re N Rilee
o 10 > T
; , ©.52- 55 N :
V : ® < 38 A i
o o : 0s,>.008 _ S
102 _ 163 _
Reynol¢s Number, Re ) ‘ .
oS
| | | | - /
~ . : Figure 5.3.3 Flow without rain-effects of the relative ‘ // !
. . roughness on the friction factor f£, ) S
o . = B _ after Phelps (1975) - 3 S
-
- 63
-~ N :




valués of £ were obtained and a less marked transition
zone: Tests with lérge_k/Yo {greater‘than 1) are prefér-
entially found at the lower edge of tae band formed by
Nittim“s testpoints. For Reynolds” rnumbers less than 600,
tests with the smallest values of k/Yo are very close’to-
the laminar relation (f=24/Re). Thus Nittim”s tests show
a tendency for the - friction factor to increase with
decrgasing relative roughness k/Yo. It should be noted

“that there is'a'différence in chosen k/Yo values in the

two investigations. Phelps” test points all fall in the
interval .k/¥g = 0.23 - 0.55 while Nittim"s are consider-

ablyvéreater.

1 L id
0,0 Sp= .01
e,® So= .08
f
R
l. 4
Y00 oy ~°:°'| PN
# Coon
M“
\
01
10 : w103 104

Figure 5.3.4 Friction factors at flow without rain
.~ (sphere roughness k=2.33 mm)
after Nittim (1977)

Compared to Nittim™s results for the smooth surface con-
siderably greater friction -factors can be observed in the
region R > 500 whereas lower values were obtained at Re

< 300, figure 5.3.4.

Nittim“s sphere covered surface was also used to study
flow exposed to rain using two different intensities. At
the high intensity (i = 800 1/s-ha) a great increase of

64

Py




the friction factor compared to flow without rain was

“found. However, at the lower, more realistic, intensity

(i = 18 1/s-ha) this effect is not so marked - about
20% increase at large Reynolds” numbers >800 and values
smaller than 24/Re for Re<100.

The results presented by Kisisel shows the same great in-

‘crease in f at unrealistically high rain intensities on a

surface- "roughened” with sand (k = 0.072 rm).
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Figure'5.3.5 a-b The friction factor versus Reynold™s
number at i=210 1l/s-ha and i=116 1/s-ha,
after Woo and Brater (1962}

Woo and Brater investigated flow: exposed to rain on a
sandcovered surface (k=1.0 mm}. Figure 5.3.5 summarizes
tests with Reynolds” numbers less than 800 and rain in=
tensities below 210 1/s-ha. At each slope (>0.01) the

friction factor reaches & maximum in the interval 80<Re<200
- and decreases rapidly from this point with decreasing and

increasing Reynolds” numbers. The moderate intensity .ests
(i = 116 1/s-ha) agree reasonably with those of Phelps”
without rain and k/YoN 0.5. The high intensity tests (i =
210 1/s-ha) give slightly greater values of f than Nittim“s
tests (i = 180 i/s-ha). The result from Woo.and Brater”s
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tests fits reasonably with Phelps” and Nittim”s and’
supports the earlier results of a great effect caused by

the relative roughness and a more moderate effect caused

by rain.

‘The following conclusions can be made from the tests of

flow on sand and sphere-roughened surfaces with a slope

‘greater than 0.01:

o The friction factor differs considerably from that
of a smooth surface. No laminar zone can be identified
and in the turbulent zone (R > 1000) significantly
greater friction factors are obtaxned (f increased by
-a factor 2). '

o Eor'flows having a relative roughness k/Y > 0.5 the
traditional relation - f increasing with k/Yo - does
not apply.’

realistic for urban surfaces, f-values less than
24/Re are obtained at low Reynolds”™ numbers\(Re<400).

o The influence_of _rain on the friction factor is great
at high intensities but more moderate at realistic
intensities - (about 20% increase at high ReynoldS’

numbers) .

o The friction relation has characteristics resenbling

" a transition zone at Reynolds” numbers less than 1000
with great scatter. Thus it is not possible to guan-
tify this relation with the referred ihvestigations
as a base.’ ‘ )

5.3.4 Flow over asphalt and concrete surface

Flow over impermeable surfaces found in urban-areas, such
as concrete or asphalt, has been investigated by Izzard

(1944), Yu and McNown (1964}, Andersson et al. {1973) and
Nittim (1977). Such surfaces are characterized by having
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a roughness height and shape that varies over the surface
and the roughness elements form irregﬁlar patterns on the
surface, all in contradiction to Fartificially" roughened
surfaces. ’ :

been investigated by Nittim. The surface represents a

. road-surface that has been worn by traffic (k=~0.8 mm).

3

For Reynolds” numbers less than .about.10” the obtained

" friction factors are guite similar.to those from Nittim"s

*gphere® surface (k=2.33 mm}, though‘the latter shows a
greater scatter.. When the Reynolds” number is greater
than 103 the asphalt surface obtains significantly
smaller values of £ than the "sphere" surface. This
indicates that in the fully turbulent zone, where the
relative roughness is small, the traditienal friction
relation - £ increasihg with k/Yo'? holds.

0 So* 0t
o S¢=.03
o So=.06

tests by Yu and McNown

© o

[ > .
o
o o 3'31
Blasius = |
O <
10 - 102 163 0t

Re

Figure 5.3.6 Flow without rain-friction factor versus

Reynolds” number for an asphalt surface.
After Nittim (1977)

Yu and McNown made a number of tests with flow without

_rain on concrete. The tests (represented in figure 5.3.6

as a line) have friction factors in the fully turbulent
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zone about 80% greater than those obtained from Blasius”
. solution while the corresponding factor for the asphalt
L B N surface is about 50%. No information was available on the

s ’ ) : - roughness height of the concrete.

Tests on an asphalt surface made by Izzard show greater
friction factors than those found by Yu and McNown and
CNittim but agree reésonably with Phelps” results when
- R_<600. -

Andersson et al. tested aéphclt surfaces (Ab 8 t and
Ab 12 8) in the field by velocity flow measurements and
" i " found friction factors also in agreement with Phelps”

() o ; Lo results. Izzard obtained for R, >600 slightly larger
f-values than Nittim.

The effect of rain on ‘'Yu and McNown”s and Nittim”s
) surfaces are stown in figures 5.3.7 a,b. Nittim”s data
| k . o are very scattered compared to those of Yu and McNown.
L . : The greatest scatter is, however, found in the interval
. R <200 where Yu and McNown only have one test point.

Thelr results, in general, agree very well w1th Nittim’s,

f . "Nittim”s tests with rain agree reasonably with his test

" of the sphere surface exposed to rain, except at high
Reynolds”™ numbers where the greater roughness height of
spheres gives rise to a greater friction factor. The in-
fluence of rain can be recognized both in Yu and McNown’s
and Nittim~”s data. It should, though, be noted that in

) figure 5.3.7b all the filled and the half filled dots rep-

® S : resent unrealistic rain intensitites (greater than 380

1/s-ha). If these are removed, the influence of rain be-

comes mainly visible as a scatter. Yu and McNown were

also unable to quantify the effect of the rain intensity.

In their tests, rain intensities from 180 1/s-ha to 700 '
P . 1/s-ha are represented. Izzard”s investigations of rain

® - : dependence show the same general trend of increasing

i friction factor with increasing rain intensity, but all

his intensities are unrealistic (see above) .
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Figure 5.3.7 a,b Friction factor versus Reynolds” number
. for a concrete and asphalt surface
after Yu and McNown (1964} and Wittim
(1977), (1 um/s = 10 1/s-ha)

The following conclusions can be drawn from- the tests

considered in this section, (iun general agreement with
those of m"artificially” roughened surfaces):
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' ‘0 -No distinction can be made between a 1amina;‘and a

turbulent zone.

‘o At R, > 1000 values of f considerably greater than -
those corresponding for a smooth surface are obtained.

v e

‘o For R,>1000 a tendency for tk2 friction factor to
‘increase with increased roughness height is observed

{sections 5.3.3 and 5.3.4).

o At Re < 300 values of f below the "laminar values”

24/Re are obtained.

o The influence of rain is clear at high intensities,

but at realistic intensities only a weak trend is

observed. However, the scatter becomes very great at

low Reynolds” numbers.

5.4 Rollwaves

If the slope So is sufficiently steep, small disturbances

(which are always present -in a flow) will grow and after

a certain length so called rollwaves - a formiof unstable

.flow - will form and move downstream. The stability is

jndged by the-Verdenikov”s number V , defined by Chow

(1959)

A ap

Ve = P1-5 5T, (5.4.1)

where p is the exponent of the hydraulic radius in the.

friction relation (denoted cy in equation (5.1.2)).P is

the wetted perimeter and Fo the Froude number. Insta-

bility is assumed to occur when Vedernikov~’s number ex-

ceeds unity. For surface flow dP/dA is zero and for gutter-

flow it is approximately zero. If the Darcy-Weissbach

friction relation is used {p=0.5), then.Vedernikov~s

number can be written

=y2. .
v, =Y§'s ..
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: ‘ ! ) Using the Chezy formula with a Chezy coefficient relevant
" - ) N B . : for urban surfaces, the stability criterion becomes S°<
0,04 - 0.05. This coarse criterion agrees reasonably. with
data obtalned by Nittim for the smooth surface ~nd the
asphalt ‘surface. For rougher surfaces ‘the agreement is
not so gocd. No rollwaves seem to occur during heavy rain.

e et P 1 AT

4 ;
.. o o . " Rollwaves have a wave length -and period much shorter than f )
" ¢he waves that are the main subject of urban runoff simu- '
lation and cannot be represented by the momentum.eguation : .

(3.2.1b), see Yen et al. (1977). Accordxng to Nittim“s
data the most realistic way of considering rollwaves in
"  the analysis is by using an increased friction factor.
R For a relatively smooth surface and small Reynolds” num-
" bers an increase of the friction factor of more than 50%
may very well be obtained. At large Reynolds” numbers. and
surfaces with greater roughness heights, the influence is

considerably less.

5.5 wind forces

in the steady flow case, eguation (5.1.1) applied to suxr-.

face flow is written

s = :EB_E_:EE . (5.5.1)
o 25Y _ cee .5.

Using equation (5.2.1) the friction factor may be exp:essed
as a function of the shear stresses

’ : . 8 ’ - . . y
. . _ f = ;,7.—;' Tmp + Tms) eee (5.5.2) - "\ .

where the shear stress at the surface 1 is wind gener-

ms
ated. The wind shear stress is given by
™
. - . ’ 2 .
Tw = Tms = U CD-W eee (5.5.3)
A where the density of air py = 1. 29'kg/m3, the resistance
) coefficient Cp® 2.4 (according to Engelund (1969)) and W
T : . 71
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‘the wind velocity 2 m above surface. Thus

(5.5.4) at a wind velocity W = 6 ri/s is 0.1 N/m2. This

T, S 3~10’3-w2”- R , - ves {5.5.4)

is obtained. The wind shear stress obtained from eguation

can be compdared with the the bottom shear stress which
has values in the interval 0,01 - 1.0. The wind shear
stress may-évidently be ©of the same order as the bottom
shear stress. 1 : S

Saprnm ot

If the effect of wind is included in the Darcy-Weissbach”
friction relation, we get (for surface flow)

[e] .
; ... (5.5.5)
'5-(ﬂ)2
v

8g-S

o372
Q, =Y

££2.4-10

Strong wind will, in addition to the effect on the water
surface friction, have an influence on the momentum of
the raindrops. Surfaces in urban catchment usually have
arbitrary flow directions. Wind velocities over the sur+
faces also have, because of houses and other obstacles,
great local variation. It would thercfore not. be possible
to calibrate, or to feed with proper input values an
urban runoff model that takes the effects of wind into
account. However, in studies of the validity of models
using field data, wind may be treated as a source of
error. .

5.6 Summary and discussion

In the studies of the friction factor discussed in the '
previous sections, several distinct trends or relations
have been specified. Examples are Shen and Li“s friction
factor - rain intensity relation for a smooth surface,
and Phelps” observations of the influence of the relative
roughness, llowever, even if only those tests with rain
intensitieé, roughness heights and slopes relevant for
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" ‘Swedish urban surfaces are taken into account, the

variation of f appears to be very complex'and difficult
to interpret. The scatter 'in friction factor values is
large for flow exposed to rain, especially at low
Reynolds”™ numbers. Some characteristics may, however, be
noted;

o there are no . distinct laminar or turbulent zones

o at small Reynolds” numbers friction factors below
the laminar values are obtained

o at large Reynolds” numbers friction factors
considerably greater than those corresponding to
Blasius” solution are obtained

o the influence of rain on the friction factor is
small :

The investigations give no base for estabiishing a
relation which Quantifies the influence on the friction
factor, either of the relative roughness or the the rain
intensity. Howéver; the 'simple' friction relations pre-
sented in section 5.2 will be discussed and fitted to
test data.

So_
o 0.01
s 0.03
[} 0.06
93 0.016
o F--—{ Manning, s°=;g3v n.= 0.
] L05
+ F---— quadratic, So'-[g:: Kq=515
.
0.1
{
10

Figure 5.6.1 Comparison of the fitted friction-relation
. with Nittim”s (1977) and Yu and McNown”s

(1963) (shaded) tests on asphalt and concrete
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In fiqurevs.G;l the most relevant results from section
5.3 have been put .together. They are the Nittim“s asphalt
tests and Yu and McNown”s concrete tests {shaded). All
test points with unrealistically higk (i > 390 1/s-ha)

rain intensities have been removed from the plot, but
this could not be dode with yu ‘and McNown”s data. Typical

values of tne Reynolds” number for surface flow are less

than 900 while the corresponding numbers: for gutter flow

- are ‘greater than 900, The test points greater than €00 in

the figure are therefore believed to be reasonably repre-
sentative. for gutter flow. ‘

Considering the scattered results a suitable level of
_sophistication for a friction factor relation might be

: | c,

£o= cl'Re _ eee (5.6.1}
represententing a-straight Iine in the friction factor
diagran. The relation ié valid for the Chezy, Manning, L-
and quadratic,formulaﬁ. Comparing the tslopes' of the
different friction factor relations and the test results,
the L-formula generally seems to have the best overall
fit. However,.in the important in;erval Re < looolthere
are no grounds for rejecting the Manning - or quadratic-
formulas, provided suitable roughness coefficiénﬁs are
used. In figure 5.6.1 the quadratic relation (K_ = 515

and S, = 0.03) and the Manning formula (n = 0.016 and S,

= 0.03) are shown.

The friction factor relatidns are also characterized by
an'influence from the surface slope Sof see equations
(5.2.11 =.5.2.13}. This dependence could not be xecognized
in the series of test points. Each relation should then
be represented in the diagram by a band instead of a line.
The bands correspending to the slope interval given in
chapter 2 (0.01-0.65) are marked in figure 5.6.1. The
quadratic friction féctor relation is obviously more in-
fluenced by the surface slope. Both the relations may be
manipulated to give a friction factor relation indepenf
dent of So. This is done by using a slope exponent of
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6.55 and 0.67 in the Manning and quadratic formulas,
respectively (not used in this report).

The typical urban surface is not as plane and regularly
shaped as the laboratory surfaces discussed in this
chapter. The flow over the surface will, therefore, in -
some -parts form rills which more closely resemble gutter
flow. '

By comparing model sifmulations and corresponding flows
from field measurements more realiable friction co-
efficients should, in principle, be obtained. However,
field measurements'of surface flow are difficult to
accomplish and all those known to the author contain not

. only surface flow but also gutter flow and sometimes, in

addition, sewer flow. It is ‘then, in practice, difficult
to analyse. surface flow and gutter flow separately. Simu-
lations presented later in this report indicate, however,
that the Manning formula is an appropriate friction rela-
tion using. n = 0.016 in surface flow and-n = 0,013 in
gutter flow.
: ‘ \
In the simulations.of runoff from a small asphalt catch-
ment (430 mz), which are discussed in chapter 8 several
friction relations were tested. It was found that' the
typical turbulent friction models, Chezy, Manning and
Blasius formulas (b = 1.50-1.72), performed rather well.
The 'intermediate' gquadratic formula (b = 2) performed
not so well while the laminar relation (b = 3) performed
badly, evern for runoff with very low Reynolds” numbers.

Falk and Niemczynowicz (1979) anaiysed 13 Swedish urban
surfaces. and developed a friction relation. This is not
directly comparable with those discussed here but it
should be noted that the Chezy exponent (b-3/2) was used
to relate flow and water depth.

Jacobsen (1980) successfully analysed surface flow using
the L-formula (b = 1.83). He reported indications of a
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bettet flt in some cases using the quadratic relation.

Jacobsen uses the same basic equatlo
"a somewhat" dszerent nuimerical

ns as the author but
solution method. R

'jIn an urban runoff model where the governing equations

are solved by numerical ‘methods the selection of space
and time step has an influence on ‘the simulated hydro-
graph, which is very similar to the effect caused by a

change in roughness coefficient.
possible to scme decree to compensa
which. is too long by decreasxn

Lyngfelt (1978). Thus, fo

It is, therefore,

te for a space step
g the friction factor,

r different runoff models and

for different uses of the models different friction
coefficients may be relevant in otherwise identical

applications.

A traffic load on the surface changes the characteiistics

of runoff. In a study.of runoff from
intensity 500-2000 vehiclés/hour)

load increased the’ roughnes

- (1984).
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_é.»v‘_ NUMERICAL SOLUTION METHODS
OF THE KINEMATIC WAVE EQUATIONS

“only in some very special cases (c. f. chapter 4.2. 3). In

"..in many different ways, each one having its own possi~
. bilites and prcperties. Important properties are sta- -

6.1 General

The k1nemat1c wave equatlons have analyt1cal solutlons

the general case with an arbritary rain intensity input,
numerical solutlon methods must always be used. In these
the derivatives are apprcximated by finite differences
usually establlshed bistween fixed- gr1dpoznts in“the x-t
plane. The finite dlfference solutzon can be expressed

bility, consistency and numerical diffusivity. L

The main object of the numerical algorithm is, of course ¥
to produce. a solution as ¢lose as possible to the exact
solution of the ‘differential equations. If unsu1tab1e
algorithms and numerical parameters are used the devia-
tion from the 'exact' snlution can be great. ‘A thorough
knowledge of the properties of the nurmerical solution |
thod is, then, just as important as the knowledge of o

underlying differential-equations.

In this chapter numerical solution methods for the kin-
ematic wave equations will be discussed. The analysis is
mainly focused on the surface and gutter flow case (lat-
eral 1aflow) but is in many parts also generally valid.
The discussion is based cn the welghted box scheme, which

is a very general solution method

6.2 Finite difference schemes .
N

The structure and use of a finite difference scheme to-
qether with boundary conditions is best discussed with .
reference to the x-t plane. This plane is shown:in ' )
figure 6.2.1 with fixed grid points, upstream and down- . O\

stream boundaries.
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Figure 6.2.1  The x-t plane with fixed gridpointé'

Consider the problem of solving for the fwovunknown
variapbles (u,Y) at each’ grid point using the kinematic
wave equations. The ‘initial conditions at t=0 are '
assumed given along the channel reach. Because the

equations have no second order derivatives it is poss-

_ible to use the box-scheme where the differences are

established by only one time and space step ("one step"

scheme) ..

If the difference eguations are applied to the first box-.

grid points-(O,'O), (0, at)y, {(ax, 0), (ax, At) - and Q
or Y is given as upstream boundary conditicn, Q and Y in

the first internal gr'.d point (ax, At) can be determined.

Let the scheme now be successively applied in a down-
stream direction and water depths and flows calculated

stepwise
When the
one time
boundary
not able

at the points (24x, at), (3ax,

At) and so on.

scheme is finally applied to the last box -at

Leyel, values of Q and .Y at the
can be determined. The given so

to take downstream conditions into account. The

downsfream
thod is

iution

method is therefore valid cnly for supercritical flow,
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In figure 6.2.1 it can be séen that the box scheme in--
cludes two points at.the new time level. As the relation
between Q and Y is not linear this will result in an
implicit difference equation which must be solved by
some iterative technique. Numerical schemes containing
more than one point at the new time level are called

- implicit, The box scheme is a typical implicit scheme.

An expliciﬁ,scheme includes only one point at the new
time level and thus the unknown variable may be directly
solved. In figure 6.2.2, a two-step explicit scheme (con-
taining two Successive space steps) is given as an ex-
ample. Two-step schemes can be used in differentiating
second order derivatives, for instance the diffusive

term in'the ccnvective diffusion eéuation 32Q/ax2 {sec~
tion 4.3)..

{j, mat)
L 2 e

)

{j-1, )" 1, m}®

At

|Ax o

Figure 6.2.2 An example of a two step explicit scheme

Stability is an important property of the numerical
scheme. With an unstable scheme a solution will be
produced where the values obtained sgd@enly}grow in an
uncontrolled manner and often cause ié to breék down.
Implicit schemes are usually regarded as unconditionally
stable. Explicit schemes may become unstable for un-
suitably selected time and space steps. The so called
Courant condition is generally used as a stability
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criterion for explicit methods, Yevjevich (1975}

At 1 '
L ¢ : ee. (6.2.1)
5% v EVay) | |

In impligit methods, ﬁainly for stability reasons,
greater time and space steps can be used and these seems

“then to be the most effective from a numerical point of
‘view. The necessary iteration procedure in the non lin-

ear case reduces; however, this effectiveness and the

implicit scheme is not alwaysiadvént.ageons.

The box scheme, is for several reasons which will become
apparent in this chapter, the most interesting for dif-
ferentiating the kinematic wave eguations. It also forms
a base for analysis of and comparisons between different

well known solution methods.

6.3 The weighted box scheme - general properties
6.3.1 Finite difference eguations
,‘ - \

t

A

p . L] L] [ 4

' (i.mn).,ggin, mol)

( iim) .\—/.(j‘ﬂ, l‘l'l).
at )

o s o > X

|Ax I

Figure 6.3.1 Grid points in an arbitrary finite box
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iIn the kinematic wave eguations only the continuity

equation contains derivatives

90 = ) ' . '
20,38y ‘ . 421

Let this équation be épproximated by finite differences

using a box scheme, figure 6.3.1.

.If all gridpoints are equally accounted for we get

30 _ o omtl m. o _ Al p{ :

3x - (Qj+1 + Qj+1 Qj \j)/zAx ‘ oo (6.3.12)
oA _ n+l m+l _ .m _ AR

3 - ‘Aj+l + Aj Aj+1 Aj)/ZAt ) ...(§.3.1b)

This Qifferentiation defines a scheme which is centred
on the centre of the box. By the use of weighting fac-
tors in the differentiation it is possible to consider
the four gridpoints at different levels.

mel /"-\
+ .

-t-l
A

~1— _
o-d
L Ax l

1 >
1 X

at’
Toa

‘m.

;l xid

 Figure 6.3.2 The relation between‘the centfépoint and
weighting factors after Smith (1980)

30 _ m+l _ . m+l - mo_
... (6.3.2a

- Q?)]/Ax
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A mtl_.m - m+l
3% - [Q(Aj Aj) + (1 a)(Aj+l
i . ess(6.3.2b)
AT )]/At : :
G+1

This differentiation corresponds tc a scheme which is

'centred on a point in the box given by a-and 6 ‘as shown

in figure 6.3.2. The weighting factors can take values
0<a<l.0 and 0<<1.0.

6.3.2 Numerical diffusion - consistency

It can be shown by a Taylor series expansion that the
weighted scheme ‘is a better approximation of the equa-

tion,
30 , 8A 320 .
432 +EE o+ Dn ; 5 =g s (6.3.4)
X
where
= -1). 4% - At )
Dn = (2a-1) 3 + (1 ZB)Ck 5 ces (6.3.5)

than of the continuity eguation, Smith (1980). The

effect of the differentiation caﬁ thus be intepreted as
an introduction of a diffusion component in the kinematic
wave equations (compare equation (4.3.5)). The diffusion
coefficient is a function of the numerical parameters

Ax, At, a and B. Different combinations of these para-
meters together with the flow-state (represented by ck)
results in different values of the diffusion coefficient
which may be both positive and negative. A negative
coefficient will give an attenuating wave movement which‘
cannot be described by the basic kinematic wave equations.
A positive coefficient gives an amplifying wave movement,
usually resulting in serious numerical difficu;yigst(see

below).

The second order derivative in equation (6.3.4) have
factors containing both &x and At. This is also true for
the third order derivatives (here not included in the
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equation). In ﬁhe 1imit when Ax and At -0 the ordinary

continuity equation is obtained. The numerical solution
is then conSLStent with the underlying differential
equation for any choice of and B.

Analysis of the diffusion coefficient and its influence
on the properties of weighted box models has been dis-
cussed by Smith (1980), Ponce and Theurer (1982} .ard
Kousis (1983).

6.3.3 Cléssification of weighted box models

Weighted box models can be classified according to the
properties of their diffusion coefficient as defined in

- the previous section. In this report three classes, named

a-, B-"and aB~-diffusive models, will be discussed:

corresponds to a diffusivity related only to the chosen
discretization in space. Of special interest is the com-
bination =0, B8=0.5. It will here be called the élngSEVg
box scheme though many other comblnatlons of a. and B8 -also
résult in diffusive solutions. The scheme corresponds to
the differentiation

m+l

3A/3t = (AJ+1 AJ+1)/At ees (6.3.6)

which is equivalent to the assumption of uniform water
depth in each segment Ax. The diffusive box scheme is a
frequently used solution method for the kinematic wave
equations especially in sewer routing (c.f. section
6.6).

lated to ‘the Qiscretization in time only and are obtained
for =0.5, 8>0.5. :
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a<l, 5, £>0.5. xmplles a positive contrlbutlon to. the

diffusion by both the time and space related components.
THis will decrease the influence of a single discretiza-
tion (in time or space). The case when 0<0.5, B<0.5

implies a negatiye contribution to the dif lusion by the

time step dependent term. Because of this term a rela-
tively greater space dependent diffusion can be accepted.

This model is then of_inte;est in connection with the

.-use of large space steps ' (reservoir models}).

A special case is the fuliy centred scheme given in
equation (6.3.1). This schere corresponds to a = 3 = 0.5
giving the diffusion coefficient zero, see equation
(6.3.4). It is commonly called the non-diffusive scheme.
The greatest possible diffusion for glven time and space
steps is obtained when.a = 0.0 and B = 1.0. This scheme
has been proposed by Li et al. (1975a).

In order to surVey the different models and their dif-
fusive properties, they have been put together in table
6.3.1. C

Table 6.3.1 Weighted box models

Model a - B D,

a-diffusive <.5 .5 (20-1) 8x/2

g-diffusive .5 >.5 (1-28) 8t- €, /2
L : <.5 >.5 20-1 1-28 ..

af dlffu51ve <.5 <5 =5 ax + T3 - btec)

Special cases .

Non-diffusive .5 <5 0

"piffusive box” 0 .5 i ~ax/2

Li et al. (1975} 0 1 -ij+ck-At)/2
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6.3.4 ‘Negative diffusion’ (D, >

The three classes of model given in
have a positive diffusion (Dn < 0).
ible to choose numerical parameters
with a negativg diffusion (Dn > 0).

Theoretically, such models should pr

waves, Numerical experiments show that hydrographs simu-

0)
the last section all
It is, however, poss-

that give solutions

oduce amplifying

Jated using a negative diffusion. scheme become uneven

with sudden unrealistic flow peaks (

shots). These dis-

turbances do not usually make the solutions break down
like disturbances can do in explicit schemés. Despite
the fact that the box scheme is implicit and thus

‘unconditionally stable', solutions obtaining shots will
be called unstable solutions. An example of such insta-

bility is shown in figure 6.3.3 together with a hydro-

yraph having a suitable attenuation.

i, @ (l/s:ha} ' ~- Rain intensity
+ A Suitable attenuated
solution (Dp<0!}

+ Non ~ diffusiv
solution (Dp =

100 +

x Negative diffusion
solution (Dn>0)

e
0)

32 timin) 40

Figure 6.3.3 An example of unstable solutions (with

shots) compared with

suitable attenuation (LS=20 m, ss=0.035,

n=0.016)

one having a
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The nondiffusive scheme has according to equation (6.3.5)
no diffusion (D = 0). Despite this the hydrographs simu-
l§ted by ;he model often become unstable in a similar
way to models with negative diffusion, see figure 6.3.3.
This can be explained by the neglected third order terms
in Dn (equation (6.3.4)) which give a positive contribu-
tion to Dn ;n many flow cases. The non-diffusive scheme
is therefore usually not used in kinematic wave routing.
Simulations by means of this model also show that D <0

' as expressed in”equationf(6.3.4l.cannot be taken as a

totally reliable condition for stability.

6.3.5 Positive diffusion (Dn <. 0)

Models with positive diffusion (D < 0) will produce
attenuated hydrographs. Th: basic perfbrmance of such
models is exemplified by the use of the diffusive box

Q*(Q/qL)
104 : Lax =2 186
R 4
‘ 2
]
K
05 4 \‘°
35
‘6@
\i_\(‘
dﬁﬂ
1 : . C ok Ve,
0.1 t‘ (Y2-t)
0 = R t —p——>
1.0 .15

0 01 . 05

‘Figure 6.3.4 Dimensionless rising hydrographs obtained
from the diffusive box model using various
values of Ax {after Lyngfelt (1978)).
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model in fiqure 6.3.4. Here dimensionless rising hydro-
graphs=genérated using various step lengths (correspond-~
ing to different Dn) are shown, togethe; with the ana-
lytical kinematic solution. Evidently, rather 'small
space steps have to be used in order to obtain a solu-
tion similar to the analytical solution.

The numerical diffusion influences the solution in a way
which is very similar to that caused by the acceleration

and pressure force terms in the complete dynamic equa-

tion. In figure 6.3.5, dimensionless rising hydrographs
generated using the complete shallow water equations are
shown, Woolhiser (1967). The attenuation is a function
of the kinematic wave numbers and Froude numbers.

a*arnst)

1.0 ¢ S
» / 3

05 1
0.1 ¢
o ” . : t -
0 o1 05 10 . 15

Figure 6.3.5 Dimensionless rising hydrographs
obtained by the shallow water equations
for various kinematic wave numbers and
F6=1 (after-Woolhiser (1967)) .

_Bccording to sections 3.4 and 4.3.2 the main part of the

'diffusion' in overland and sewer flow simulations is
generated by the pressure force term. It should thus be
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possible to estimate a suitable step length in the
diffusive box model by setting the numerical diffusion
coefficient Dnyequal to the corresponding coefficient D

in the convective-diffusion equation (section 4.3.1).
This will give :

Q : .
ax = 5o cer (6.3.7)
ok . )
-where Qb = flow per unit width or, using the Manning
fo;mulé ; '
=203 : el (6.3.8)

5 8 .
which is basicglly valid for surface or flow in a rec-
tangular channel. The equatiohs show that in order to
obtain the 'true® diffusion using the diffusive box
model in overland flow, step lengths below 0.1 -m should

be used.

6.3.6 Selection of numerical parameters

In overland flow where the kinematic wave number'usually'
exceeds 100 the optimal selection of numerical para-
meters is evidently one thatrgives a very small diffu-
sion, like that obtained by the complete shallow water
equations (see figure 6.3.5). For such a choice the
numerical solution will in fact be more accurate than
the underlying kinematic wave theory. In practical

" modelling, the numerical diffusion can not be determined

with sufficient precision to follow the true value and
must therefore be chosen to be greater in order to en-
sure that shots are avoided.

To obtain reasonably effective calculations, the greatest
possible step length should be used. The diffusive box

model appears from this point of view to be unsuitable : .-

and better numerical methods are found among the a-, B-
and af-diffusive models (see table 6.3.1). Thevadvantages
and drawbacks of using different numerical models have
to be analysed by means of numerical experiments which

is done in the next section.
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The selection of time step is also important and affects
the diffusion; In choosing a suitable time discretiza-
tion, both practical and numerical aspects have to be
considered. From a pfactical/economical point of view
the greatest possible timestep should be used. It has,
'however,'to be small encugn to preserve an appropriate
reproduction of the shape of hydrog;aphs within the
system. This demands Varyingvdiscretization within the
_system, which is not very practical. It is, furthermore,
desirable to keep the time step constant between differ-
ent tests in. the same catchment and preferably also
‘between different mcdel applications.

The choice of time step has, then, to be a compromise.
Referring"té rain intensity/runoff measurements in
cétchments of different sizes made in GOteborg and
Linkoping (see chapters 8 and 9) At = 30 s seems reason-
able for fast reacting catchments. In slower catchments
{areas greater than 2<3000 mz) a greater time step, At =
60 s, can be accepted. Greater time steps\may be of
interest in special cases where very great subcatchments
are used or long time periods are to be simulated. Ia
the simulations referred to in this report, the time
Step has been fixed at 60 s with the exception of the
smallest simulated catchments, where 3¢ s is used. The
analysis of the numerical parameters in the subsequent
sections are based on these two time steps.

6.4 The weighted box scheme - numerical experiments

6.4.1 Aim and scope of the experiments

The general considerations ygiven in: the last section can
not be used directly to chouse suitable parameters (a,

methods have to be based on experience from numerical
experiments, In this section a series of such experi-
ments is discussed. From this, a criterion for choices
of the weighted box parameters is presented, giving
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é:,st:able»axid suitably attenuated solutions.

As it would go t¢o far to investigate all possible para~
meter combinations, the test series has been limited to
cover a certain variation in flow length, rain intensity
and shape of the hyetograph besides the four ﬂumerical
parameters. The time step has, in-accordance with the
last section; been tested for 30 and 60 seconds. The
tested catchment is shown in figure 6.4.1 and consists
of a surface and a gutter. Four surface lengths vere
tested in tue interval 5-40 m and three surface s.opes
in the interval 0.005-0.04.

x
surface
20m
gutter
y L= — — —> =
L . s50m R
[ ind ."

Figure 6.4.1 ‘Test surface for numerical experiments.

Two cases of gutter length, Lq = 50, 100, and two cases
of gutter slope, S = .005, .02, were also tested.

A standard hyetdqraph was used in the tesis, see figure
6.4.2. It is intended to reflect one fast rising/re-

cession part and one relatively slow one. The peak inten--

sity was 100 1/s-ha (corresponding to a recurrence inter-
val of 4 months at five minutes duration). For the sur-
face length L =:20. m two alternative intensities were
tested, i = 25, 50 1/s-ha.
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'Figure 6.4.2 Hyetograph used in numerical tests
: ) o
® ) 6.4.2 Numerical models and experiments
| ) ) a and B were chosen in the intervals 0-0.5 and 0-1.0
; respectiVelyAin order to cover the three main model
cases dgfined in the last section; a-, 8 -~ and ag
diffusive models. The tested models are given in table
.6.4.1,
. Table 6.4.1: Tested numerical models : o
. \ ) .
N0 e |2 |03 .4 |45 e8] 50
-} .z2s 8" | as”
. . - o
® .35 as” | ag”
.5 a** 1 a a a 30}
.52 : f a8
.58 ag . 8
.60 aB 8
+«6S B8 i )
o .70 aB 8 :
.75 B ;
.80 8 A —
1.0 ]
: H
i
e 3
" . : : ”)Models with a negative contribution to the %
diffusion from the time dependent term 3
””)Diffusive box scheme ND = Non-diffusive scheme :
b 7
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The different models are marked in theé table by their
btefixes a, 8 or aB.

For each model given in table 6.4.1 a diffusive para-

" meter was chosen and varied for different flow cases.
‘Using small values of this parameter it was possible-to

stress the models to an unstable behaviour at the first
intense hyetograph peak. Hydrographs generated by dif-
ferent values of the diffusive parameter were then com-

.pared. In each flow case a 'critical' value was chosen

corresponding to the hydrograph having the smallest
diffusion but still with no tendencies to instability
(shots, see figure 6.3.3). These empirically obtained
values represent a diffusion, which from a practical
numerical point of view, is the closest possible to that

~of the complete ‘equations at large values of Ko«(figure

6.3.5). Below, they are called 'optimal' values.

In the numerical experiments it was found that at very
large values of the discretizaticn &x/L, difficulties
arose in propérly reproducing the shapes of the hydro-
graphs, this despite selection of 'optimal' diffusive
parameters. At step lengths having a Ax/L smaller than
1/4 this effect was negligible. The condition Ax/L < 1/4
was thus adopted as a general criterion besides the cri-
terion for ‘optimal' diffusion evaluated in the succeed-

ing sections.

6.4,.3" The a-diffusive models (o; 0.5)

In the a-diffusive models B8=0.5 which reduces the dif-

fusive term in eqhation (6.3.5) to
D = (20-1)- 3% ' (6.4.1)
n 5 .ee .4.
where 0<o<0.5. The equation shows that the space seep*ig'

an important factor in discussing the performance of
a-diffusive models. Ax was therefore chosen as diffusive
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. parameter for this class of models.

In testing various values of a and Ax it was found that
provided

0 < a < 0.5 (general condition for a-diffusive

‘ models) »

AX/1<1/4 {general condition for all weighted
box models)

(2a-1}+Aax = constant '

almost identical resulting hydrographs were obtained for
any combination of a and ax. All a-diffusive models may
thus be transferred to the diffusivekbox.model (0;0.5)
by increasing the space step (see table 6.3.1). Dis-~
cussions of the properties of the a-diffusive models

will, therefore, here be entirely based on the diffusive
tox model.

i,Qll/s'ha) i,Qll/s'ha)

100 4 oy axtm % =
‘ai08
+11.6

4 xi 5 1

o} 10
- +

50 1+ i

DT=30s DT =60s
Tte 4 8 Tte 4 8 tlmin)

Figure 6.4.3 a,b Hydrographs simulated by the diffusive

box model (L _=20 m,.Ss=.035, n=0.016
K°=230).

L .

In figure 6.4.3 an example from the test geries is
shown. The hydrographs are simulated by the diffusive
box model using different values of Ax. The storm input
is the first part of the standard hyetograph (figure
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6. h 2). In figure a the time step at = 30s has been used
‘and in b At=60 s. The hydrographs can be. compared with
'-.the dimensionless kinematic wave solution and the dynamic
wave ‘solution at K =100 glvcn in figure 6. 3.5 (t in
flgure 6.4.3 corresponds to t¥=1).

From the figure some observations may be pointed out:

o For at=30's an optimal value of Ax accordiné to sec-
tion 6,4.2 will be about 1.5 m. The corresponding
. value at At-60 s is about 4 m.

- 0 'The influence of the space step on the attenuation

'is very marked. When Ax is increased compared to: the
optimal value the attenuation grows and rapidly be~
comes too great. When Ax. is decreased below the
optimal value the hydrographs obtain shots despite
the model having a positive diffusion (D < 0 accord-
ing to equation (6.4.1)). :

0 The time step has a great influence on the attenu-
ation and therefore influences the selection of the
optimal space step. At ‘At=60 s shots are ogtained
at space steps which were considered optimal for
At=30 s,

The Qiffusive term (equation 6.4,1) includes neither the
time step nor the wave velocity. The influence of these
parameters on the attenuation must thus be explained by
effects of the third order Taylor terms in At. From the
expression of these terms given by Smith (1980) it is
evident that they are always giving negative contribu-
tioris to the diffusion (D > 0). This agrees, as shown
above, with test observatlons. The diffusive term D as
given in equation (6.4. 1) can therefore not generally be
used to estimate optimal step lengths.

The wave velocity c, may be written for flows with only
a lateral source,
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ey = k'(q-L) - 8, _ ess (6.4.2)
where q—lateral inflow intensity (= i in surface flow)},
I=flow length s -slope in flow direction, K, € and c,
are constants dependlng on rougrness and flow section,

see section 4.2.

In the tests it was found that the optimal value of Ax

‘yvaried with the lateral inflow. (rain intensity in
surface flow) and the slope in accordance with equation

(6.4.2). No variation with respect to L was observed. A
modified expression Cﬁx‘for the Courant number was
therefore tested

Ax _ Bt A ' . (6.4.3)

€ = k .-

where cﬁx is the wave velocity defined by equation (6.4.2)

using L=b&x%. Insertlng the optimal step length and corre-
sponding values of at and ckx for all test runs gave &
Courant number that was only slightly dependent on At

Cax = 1.64 wusing st = 30 s
clX = 1,76 using st = 60 5

The relations .can be used to estimate an optimal step
length which gives a suitable attenuation of hnydrographs
simulated by the diffusive box model. The optlmal space
step Axopt may be changed (preferably increased to a
convenient value) with maintained attenuation if the

a-Giffusive model is used. Based on the relation (2a~1)Ax>
= constant {see previous page), the corresponding a-value

- can be determined by

eq
(2aéq - 1) ax, -1 S (6.4.4)
(Za__,~- 1)-8x R M
opt opt

where a pt-o (diffusive box model) and &x eq is the
changed space step to be used together with a eq®

95

'
§
L
§
H
3
T
!




g
0
§

The general discretization condition must still be
satisfied: Ax < L/4. Transferring to alternative a-
diffusive models is of interest for two reasons; to

reduce calculation cost and to obtain a space step
which is a multiple of the actual flow length.

6.4.4  The B-diffusive models (0.5; 8)

In the p-diffusive models o=0.5, which reduces the dif-

fusive term (in equation (6.3.5)) to

D, = (1-28)- $%.c (6.4.5)

n x : see

where 0.5<f<1.0. The equation indicates that the time

' step is an important factor in simulations using g-dif-

fusive models. Since it is rather inconvenient to vary
the time step, B was selected as diffusive parameter in
this class of model.

In the tests it was shown that the performance of g-dif-
fusive models is practically. independent of the choice -
of s*ep length (Ax/L<1/4 must still be satisfied). This
is in accordance with equation (6.3.5) and indicates
that the third order terms in Ax are not significant,
unlike the third order terms in At (see a-diffusive
models above).

Table 6.4.2 Optimal 8 ~values (8x/L-< 1/4) .

at L 8

30 >15 .61
30 10 .66
30 5 .71
60 . >15 .72
60 10 .77
60 5 .82
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Optimal B-values obtained from the numerical experiments
were found to be functions of -the time step and flow

" length. In table 6.4.2 the relation between these para-

meters are- shown.

In figure 6.4.4, hydrographs from - and B-diffusive
models using diffusive parameters according to equation
6.4.3 and table 6.4.2 are compared. The example demon-
stfates_how the discretization Ax/L can be reduced from
1/13 to 1/4 if the B-diffusive model is used instead of
the conventional diffusive box model. A similar reduc-

. tion may also be obtained by using - the a~diffusive model
if the a-value is increased according to equation (6.4.4).

i,Qfl/sha) : s ' B - diffusive model Ax/L=1/4
. 4 + a-diffusive model Ax/L=1/13
100 +— {a=0)

8 16 timin) 24

Figure 6.4.4 Comparison between g- and g~diffusive
models (Ls= 20 m, SS =0.035, n= 0.016)

It is obviously easy fo select the diffusivg parameter
8, as it is mainly a function of a geometric parameter.
When optimal g-values are used, the B-diﬁfu§ive model
shows a rather impressive ability to generate ‘suitably .
attenuated hydrographs, independent of the actual flow
case. Comparéd to the a~diffusive model, which has a

diffusive parameter more sensitive to changes in flow
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conditions, the f-diffusive model appears. to be more
’approprlate in the sense of both accuracy .and practlcal

application.

. 6+4.5 The qﬁ-diffusive models (a3;B)

In the ap-diffusive models the diffusion is governed by

both the time . and space dependent terms (equation 6.3.5).

There are two types of gf-diffusive model, each of them
interesting but for different reasons.

When a<0.5 and 8>0.5, the diffusion gets a positive con-
tribution from both the time and‘space dependen£ terms.
Thié seems advantageous_from.a general point of view as
the sensitivity to changes in both the flow conditions
and the time step is less than the corresponding charac=

" teristic for the a-diffusive and Bg~diffusive models

respectively. However, the sensitivity to changes in
tzme step is not very important (usually kept constant) -
and the B-diffusive models appear in comparison- to have

- the actual advantage. The ag-diffusive model was there-

fore only tested in a preliminary way, see table 6.4.1.
The model (0.4; 0.6) performed very well. It may be
noted here that the SWMM-model in the sewer routing
algorithm uses (0.:45; 0.55), Price (1980b).

When B8<0.5 the diffusion will be decreased by the time
dependent term. This gives the opportunity to retain an
appropriate diffusion when large values of Ax are used.
This is of interest in the case of reservoir models
where Ax/L-l. The model (0;0.25) was found to perform
very well in teésts at large values of Ax and appearé;
therefore, to be an appropriate base for a reservoir
model (c.f. secticn 7.2.3). It becomes, however, "un-
stable” at small values of Ax and .s therefore not
suitable as solution method for the kinematic wave
equations. In figure 6.3.3 such an "unstable" solu-
tion is shown (negative diffusion solution).
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6.5 The Lax~Wendroff scheme .

Consider a Taylor series expansion of the cross-
sectional area at (j, m+l)
m+l_ . 2%a  at? 3" e
A AP 4122 At + S5 . 5= + 0(At) eee (6,5.1)

J h] at at2 2 3

Comparlng with equation (6.3.6) we can see that the
diffusive box scheme corresponds to neglectxng second-
and higher order derivatives. In this section an example
of a scneme which. takes ialso the second order derivative
into account is discussed.

The continuity eguation can be expressed (Q=a-Ab)

3 3 ,..b ' ‘ ‘
3 - -tz (aR) - q) ees (6.5.2)

which leads to, see Rovey et al. (1977)

2 ' .
.a.._é = - .—a T he b-1 _L . b - - ig L
2" {ax [a bra” T (gxla(a’) q)] Bt] J.. (6.5.3)

where a= Kvs and b are constants in the friction rela-

~tion, equatlon (4.2.4). Inserting equations (6.5.2) and

{6.5.3) in eguation (6. 5.1) will give an expre551on which
only contains second ordér derivatives-in 4x-and which
provides the basis for the so called Lax-Wendroff scheme.

In the differentiation of the equation (6.5.1)  the "two
step" algorithm shown in figure (6.2.2) can be used. An
explicit scheme of second order accuracy is then obtained.
This algorithm has been tested in surface and-gutter flow
by Rowey et al. (1977). Using a "two step" scheme requires
special connecting equations at the boundaries x=0 and

x=L. Such eguations based on the characteristic equations

are presented by Rowey.

{ phe scheme is explicit and the solution ma§ become un-

stable. The Courant condition can be used as a stabili-
ty criterion according to Kibler and Woolhiser (1970).
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Aﬁplied to the kinematic wave approximation the condition

becomes
; v At 1 B . R A
® . . Y T R e (6.5.4) ‘
g ' Using equation (4.2.5), Manniﬁgfs formula and Q=i-L we
¢ have ' {
{
0.6 v |
At 3:n . ;
At o — vee (6.5.5) _ -
Bx © 5.(1.1)0-% 03 :

Inserting n = 0.016 and limits of i and L according to

chapter 2; at/ax lies in the interval 2-35. According to

this criterion At.should, in surface flow, usually be ' , ;

chosen below 20 seconds. There are obviously two main i . T
: - drawbacks using the Lax-Wendroff scheme for surface and :

o gutter flow; the algorithm is more complex and small

time steps must be used to obtain stability.

6.6 Classification of routing methods

The kinematic‘wave equations are the most used basic
o . o eguations in models intendéd for the routing of water
through sewers and channels. The numerical sqlution . ~.
requires only "one étep schemes" which ¢an be related to

the weighted box scheme (c.f. section 6.2). smith -(1980)

‘ ; 'analysed several well-known methods and found that they

.5 could all be regarded as wgiqhted box solutions with ;

different values of the parameters a and 8. Below, ]

values of a and 8 coriesponding to different methods are
given. .

B Models marked by SP refer to analyses by Smith (1980) or
® Price (1980b}. :

\

it should be noted that many algorithms in the table are : ; >
basically intended for, and mainly tested in sewer and i
channel flows.
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..,;.:;..—.,-;—_.?-wqmw_“.w s

w :
: |
L4 i
Model/reference . a B ~comments | ' s
- LT . -
"“ SRS S _ Reservoir routing (SP} 0 6.5 diff.box ’
SRR R Muskingum-Cunge (SP) weighting o ¢ - P
: ’ factor
Brakensieks models (SP) 0.5 0,0.5,1.0 j
. . SSARR (5P} - . 0 6.5 diff.box
®e | - swmM (sp) ‘ 0.45  0.55
: HYMO (sp) . 0.5 6.5
RRL. method . (SP) ] 0.5 diff.box
Li et al. (SP) 0 1 : ’ S .
MIT method (SP) 0 0, e<1
- i 1 1 e>1
w. .- where : ’ :
| : : - At on n+l, b-1 {
| : . N : 8 = a-b-4= (Aj+1 + Aj ) :
and
Q = a.Ab ‘
- 4 , NIVA (Lindholm. 1975)) 0 0.5  diff. box
® ‘ ‘ ILLUDAS (Sjdberg (1979)) 0 0.5  aiff. box
URSULA (Jacobsen {(1980)) . 0,0.5 0.5 mixed
6.7 Numerical solution of the diffusive wave
. equation - a comparison
6.7.2 The basic diffusive wave equation ) ' |
In.previous sections we have seen that diffusion is _%
“hardly avoided by using numerical solutions of the '
B _ kinematic wave. The guestion arises, could the basic
k diffusive wave equation be used directly. However, a
differentiation of these eguations includes lineariza-
tion and the resulting algorithm becomes a bit more ;
complex. A diffusive wave model (DAGVL-DIFF) has been 7
LT ) developed by Sjéberg (1981). The model is mainly in- ;
. - » _ tended for sewer routing Lut is also capable of simu— ,1\
lating surface flow and gutter flow. 7
- 101 -
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DAGVL~DIFF has been applied to the test surface and
storm event which were used in the previous section. The
simulated hydrographs were found to agree well with

.those obtained from the diffusive box model, Some simu=-

lations at very low slopes (So = . 0.001~- 0.0l) were .also
executed and found to correspond well with-the kinematic

wave simulations. An example of a simulated hydrograph

is shown in figure 6.7.1.

i,Q(U/sha) o Diffusive wave model ‘
4 : a Kinematic. wave model (g~ diffusive}

100 t ) : ——

50 T

1 + —a
T >

16 24 32 40 timin)

[ 3 3 I $ t r
T T

Figure 6.7.1 =~ Comparison between the diffusive wave
and weighted box solution (Ls=20 m,
Ss=0.018, n=0,016)

The close agreement between the solutions indicates that
the kinematic¢ wave solutions have a sufficient precision
in overland flow application. This agrees with the conclu-

sions from theoretical considerations made in chapter 4.

6.7.2 The convective-diffusion equation

The convective-=diffusion equation discussed in section
4.3.1 is a slightly simplified version of the diffusive
wave equation. It has one dependent variable Q and needs

a downstream boundary condition.
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If the wave velocity Sy is assumed to vary slowly with

respect to x the diffusive term may be written

2, 2
3x§ v Sk atax ‘

"giving a modified convective~-diffusive equation (see

sectipn 4.3.1)

2
30,30 _ _.D_ 30 ;
3t F % c, atex %9 eee (6.7.2)

With this manipulation the downstream boundary condition

can be rejected and the diffusive box scheme may be

used, Price. (1980b). With constant values pf Cy and D

the equation is, according to Price, identical to the
basic equation used in the fixed parameter Muskingum-
Cungelmethod.

The equation (6.7.2) was first presented by Price
(1980a,c) who also showed a suitable solution algorithm.
However, according to Price, this algorithm is compara-
tively tlme consuming and the use of the equatxon before
the basic diffusion equation is questionable in both
overland and sewer routing.

6.8 Summary
This chapter has mainly focused on numerical solutions
of the kinematic wave equations. These egquations may be

‘'solved by a one step scheme. A very general outline of a

one step scheme is given in the weighted box scheme
which is defined by .the numericalhpérémeters a, B, At
and Ax. The weighted box scheme includes most numerical
solution methods for the kinematic wave equation and is
therefore a suitable base for classification of and
comparisons between different so’ution methods.
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i fhe solution algorithm gives rise to a numerical

" diffusion which is governed by the chosen numerical

" parameters. The numerical diffusion affects the solution
mainly by éttenuating the simulated hydrograph. Based on
the way the diffusion is generated the weighted box
models have been classified in three groups; the a-, B-
and aB-diffusive models. Each class is characterized by a
diffusive parameter which is chosen to give a suitable

diffusion.

Using a: 'optihal' value of the diffusive parameter a
solution :s obtained which is close to the exact soiu-
tion of the kinématic wave equations. In fact it is
often even closer to the solution obtained by the
complete shallow water equations. In practical applica-
tion it is advantageous if the optimal diffusive. para-
meter is easily estimated and does not have to be
changed between different storm or decign events.

In order to obtain an insight into the properties of the
three classes of model, especially the variation of the
optimal diffusive term, a series of numerical experiments
was performed. It was found that the diffusive purameter
8 in the B-diffusive model was significantly: dependent’
only on the time step and flow length, From the experi-
ments a table relating B, At and L was put together from
which the optimal B-value 'is directly obtained (table
6.4.2). As the time step is usually not varied in '
practical applications the diffusive parameter can be
chosen once and for‘all for each overland flow element.
The B-diffusive model was thus considered to be the most
accurate and, in addition, the most easily used model.
It has therefore been used as overland flow model in the
simulations discussed -in chapters 8 and 9.

It should be noted that the drawbacks of the o~ and
aB-diffusive models which make the B-diffusive model
advéntageous have noc been absolutely quantified. These
models may, then, in many cases be sufficiently accurate
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though the g-diffusive is easier to adapt and more

accutate.

The most commonly used solutlon method for the klnematic
wave equat1ons is the so called diffusive box model. It .
is prxnczpally an a-dszusxve model and uses impracti- ' §
cally small space steps compared to the B-diffusive

model. In the experiments it was found that these could

be inCreased substantially by increasing the a-value.

Independent of which model and diffusive parameter was
used, it was found that a minimum condition of -discreti-
zation, AX/L < 1/4 has to be satisfied in order to
preserve a proper general shape of the ‘simulated hydro-

graph.
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7. ‘RESERVOIR AND CASCADE MODELS

}
7.1 ' General

In the preceding chapter various numerical solution
methods based on the kinematic wave equations were
discussed. They all (except for Ax/L=1) work with a
celerity that varies in both time and space. In this
chapter, simplified solution methods based on the
kinematic wave equations but with restrictions on the
wave velocity are discussed. Models of this category are
not classified as kinematic though the relationshib is
evident and the solutions sometimes show good agreemert

with thebkinematic solutions.

A further simplification of the kinematic solution is
obtained in one of two different ways; the celerity is
assumed constant, either in time or in space. In the

first case the nonlinear reservoir model is obtained and

in the second a cascade of reservoir modeis, One- example
of the latter is the well known Time-Area Method. Both
models appear, from a theoretical point of view, quite
coarse. The "sophisticated" solution methods given in
Chapter 6 imply sheet flow on a rectangular surface. This

is usually a very coarse approximation of the real runoff.

In the light of this fact a simplified solution compared
to the kinematic might be appropriate in practical appli=-
cations.

Assuming the celerity invariant in both time and space is
the ultimate simplification of the kinematic wave solu-
tion. As a routing method this approximation is denoted
the Time of entry. It is also the assumption underlying
the Rational Method which is discussed in chapter 10.

The simplified models above represent well known and
traditional solution methods in urban hydrological ana=~
lysis. During recent years these have been subject to
several studies giving new aspects of application and
selecfion of input data, see for instance Kidd et al;
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(1978); Falk et-al. (1979), Lyngfelt (1981). In addition
the Time-Area Method is included as overland flow model
in the NIVANET and ILLUDAS models; two of our commercially

most used urban runoff models, Lindholm (1975), Sjdberg
(1979). It is then of interest to discuss these methods
both from a more theoretical point of view which is done

~in this chapter and with practical simulation as a base

{chapter 8}).

7.2 Reservoir models

7.2.1 Linear-nonlinear reservoir models

The traditional reservoir model is based on the contin-
uity eguation and a relation between the reservoir volume
and the outflow. The equations may be written

At in ~ “out ees (7.2.1a)

c2

L-a = cl*Qout) oo (7.2.1b)

where Qin and ¢ are inflow and outflow respectively,

L-A is the resegggir volume and ¢, ‘and c, are constants.
This model is identical to the diffusive box (a=0; §=0.5)
solution of the kinematic wave eguations if ax/L = 1 is
used.’ The reservoir model may be interpreted physically
as assuming uniform flow (constant velocity) along the

"reservoir length" during a time step.

The linear reservoir model (c2=1) corresponds to the
assumption of constant velocity in both time and space.
This médel will be discussed together with the Time-Area
and Rational Methods.

The non-linear reservoir equétions must basfcally be
solved by an iterative technique in the same way as the.
diffusive box scheme (see section 6.2). Because of this
little 'is éained in simplification of the numerical model
and reducing calculation cost when the reservoir model is
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use# instéadﬂgfia distributed model. It is then desirable

* to use a numerical scheme with an explicit form in con- :
nection to the nonlinear. reservoir modelling, This cas. : : . - ) ,f(
‘. N ’ - be ‘done in_two'ways; by manipqlation of either the fric-
v tion relation or the box scheme parameters. The first
A : method has been proposed by Lyngfelt (1979). An example

of the second way is the so called Time-lag model which
is discussed below. '

The non-linear reservoir is. a very common overland flow

model in urban runoff simulations. It is, for instance
used in the SWMM—,YCTH- and MAGRUR-models, see Huber . e
(1977{,-Arne11 (1980), Bengtsson (1980). It can.also be
used in the NIVA model, Lindholm (1975) and . in the
‘Wallingford procedure, National Water Council (1981).

s

7.2.2 The Time-lag model

The Time-lag model is derived from the nonlinear reser-
voir equations by the introduction of a time lag in the

o . "friction" relation : :

: ' 2 \ '
. Lea = CI(Qout) vee (7.2.2)

By making this change, a very simple explicit solution of : ;

the nonlinear reservoir equations is obtained. The model

o . was developed and introduced by Falk and Niemczynowicz P

(1979) who use a time step'and time lag of one minute.

It can be shown that the Time-lag model as solution

method is identical to the implicit algorithm a=0, g=0.25
provided Ax/L=1 and At/t=2. Because of this similarity it -
should be possible to analyse the Time-lag ﬁodel in terms '
of stability and diffusivity in the same way as other box

scheme alcorithms.

By numerical experiments it was shown that the model
" - ) . could be stressed to an unstable behaviour with "shots"

at the recession part of the hydrograph (see figure
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6.3.3), This occurs, however, only on occasions when
heavy storms, steep slopes and short flow lengths are
combined. Only a few tests wére performed, but those

indicated that the stability criterion Dn < 0 (see sec—

tion 6.3.2) combined with the Manning formula might be
used for the model. The stability of the model may
according to this criterion'be increased’by using the
time step 30 s. This will, however, also affect the

numerical attenuation.

According to chapter 6 the numerical scheme which is the
base of ﬁhe Time-lag model has advantaées wi{h respect to
the attenuation forviarge 4x. The Time-lag model is there-
fore, in addition to its practical aspects, theoretically
well suited as a reservoir model. Falk and Niemczynowicz

" have, by an extensive measuring -program, established

empirical relations for the parameters in the Time-lag

model for paved surfaces. < 700 m2.

7.3 Cascade of linear reservoir models

7.3.1 Basic equations

In section 4.2.3 the linear friction relation (b=1) was
discussed. It was found that using this relation is ident-
ical to assuming the kinematic wave velocity invariant in
time and space. This is also evident looking at equation

(4.2.6).

Consider the friction relation in fhe'general form (com-
pare equation (4.2.4))

Q=a@P cee (7.3.1)

In the linear case the constant a appears to be the
kinematic wave velocity. Applied to surface flow a very
simple form of the solution is obtained according to
equation (4.2.14)

R




t .
Q(L,t) = [ a-B.i(r)dtr eee (7.3.2)
tO

‘with the conditions Q(0,t)=0 and to=0 if t<t, and where B
_'is the width of the surface. The solution implies integra-

tion along the characteristic between to and t (see fig~

ure 4.2.3)..If the velocity and width are assumed to be

functions of the space coordinate x only'we obtain
QL,t) = [ a(x)"B(x)-i(t)dr Cee. (7.3.3)

o

which implies a time invariant value of the velocity
a(x)=dx/dt to be specified at each point of *he surface.
This corresponds to characteristics having a constant
shape independent of the starting point tor which in turn
means that the integration time is constant, t—t°=tc.

Conisequently, it is possible to define a time for the
wave movement between any point on the surface and the
downstream end, x=L. This 'relative time' is here denoted
(t-1) with t=t—tC for x=0 and t=t for x=L., An arbritary
surface. element dAc, for example, at X=X, may then be
specified by its 'relative time' (t—tl) as well as its
coordinate; dAc(x1)=dAc(t-Il). If the element is approxi-
mated by a rectangle with width B(x) perpendicular to the
flow direction we have

dAc(t-T) = dx-B(x) voe (7.3.4)

.

Equation 7.3.3 may then be written

£ aa (t-1)
QL,t) =  f —Sg—— - i(1)d(z) ee. (7.3.5)
t-t E o

c

which is a continuous expression of the so called
Time-Area Method. The method is obviously analogous with
the kinematic wave approach on a surface whose width may
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vary. in the flow direction and a wave velocity which is

only a funétion of the distance from the downstream end,
see also New;on-Painter (1974) and»Lyngfelt {1981).

In order to solve eguation i7.3.5), the storm intensity
vafiatioh i(t) and the relation dAc(T)/dT, 0<r<tc, must
be known. In the Time-Area Method the latter is given by
the time of concentration t. and the time-area diagram.
Thé time-area diagram is a dimensionless relation between
thé cumulated area - (contributing area) Ap/Ac and the time
;/tc where ApéAc when t=t . Usually the time-area diagram
is discretized in 10 segments, each one representing a
part of the surface and a wave velocity. Applying the
eguation (7.3.5) 'to a catchment should then be interpreted
as using a series or cascade_of linear reservoirs.

The evaluation of the two 'parameters' - time of concentra-
tion and time-area diagram determines the performance of

the model and will be discussed in section 7.3.2-7.3.3.

The Nash cascade model is a model based oh a cascade of
linear reservoirs, Sing (1977). \

0 7.3.2 The time of concentration, t_, in. the

Time-Area Method

The time of concentration was defined in section 4.2 by

L, i
t. = g = dax . . » eee §7:3.7)

k
where cy is the kinematic wave velocity. Using this
definition, a constant rain intensity i and the Manning
formula we obtain for surface flow

3/5
{n-L)

[e] = FUOPy >

(7.3.8)
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" and for gutter flow (V-shéped)

”[ ] n3/4.(2 1/24_2)1/2_1‘;/4
t = cee
cly S3(8_ (i-L, y174 - _

(7.3.9)

where L and Lg are flow lengths of the surface and the

‘gutter respectlvely and z the slope factor of side walls.

A sewer line having many inlets along the reach may be
regarded as being lateraly fed by water. It is, however,
not possible to evatuate a rélation corresponding the
equatlons above for: sewers because.of the analytically
complicated relation between flow and water depth. The
relation for gutterflow (7.3.9) may, however, be used as
an approximation for the sewer line if a greater value of
2z is used. A more suitable expression'of the equation for
this case is" i '
034 @21/z42) 2 L

[tc]g " a a )1/4 g/a e

¢7.3.10)

where AC is the contributing runoff area.

Equivalent or similar relatiohs also based on the
kinematic wave concept, have been presented by several
investigators such as Morgali (1970), Singh (1975},
Lyngfelt (1981) and Akan (1984).

When the Time-Area Method is used for simulation of
runoff from a storm event with constant rain intensity,
the corresponding time of concentration is -easily
evaluated by the relations given above. It should,
however, be noted that even for this simple storm event
the approach is not entirely relevant as the recession
part will have.a considerably lower wave velocity. It can
be shown using the kJnematlc wave equations that the flow
at the time te after cease of rainfall is 17% of the
maximum flow (prov1ded the duration of rainfall is

greater than tc).
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Using the Time-Area Method for a storm with varying rain
intensity, a répresentatiVe intensity value must be
selected before the time of concentration can be calcu-
lated. A suitable intensity value should be one giving a-

" properly delayed main flow peak. Such an intensity can be

expected to have values near the avérage intensity over a
time equal to te during the most intense part of the

"'storm. Fox a tc evaluated in‘thié way,. the Time-Area

Method would produce inaccurate flow values from less
intense parts of the storm. '

The kinematic wave concept is theoretically the most
sound4basis for evaluation of the time of concentration
used in the Time-Area Method. However, the relations have
to be tested by comparative simulations between the Time-
Area Method and the kinematic wave model.. Such simula-
tionsb(discussed in the next chapter) should also give an
idea of the gepefal performance of the Time-Are¢a Method.

~7.3.3 The time-area diagram in the Time-Area Method

In the Time-Area Method the 'flow velocities" are assumed
to be constant in time but to vary along the flow direc-
tion. The time area diagram reflects the relative veloci-
ties. Each diagram will then represent only one specific
flow case giving a characteristic shape of the simulated

hydrographs.

Consider the two hypothetical time-area curves in the
figure 7.3.1. ’

The convex curve (b) will, if applied to a storm'with
constant rain intensity result in a basically correct
shape of the recession of simulated runoff hydrograph.
The rising'part obtains, hOWevef, an- incorrect shape, see

figure 7.3.2. -

A better resemblance to the rising part is obtained with
the S-curve (a) given in figure 7.3.1. This diagram will
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Principal shapes of runoff hydrographs
obtained by the Time-Area Method (curve b)

and the p-diffusive model (kinematic wave)

not, however, give a suitable shape of the recession

which is shown in figure 7.3.3.

The rising and recession can be regarded as two extreme

cases of flow state and corresponding time-area curves

have, as a conseguence, extreme shapes. simulating runoff

from a storm with continuously changing rain intensity a
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Figure 7.3.3 Principal shapes of runoff hydrographs
: obtained by the time area method (curve
“ta)) and the B-diffusive model (kinematic

wave)

time-area curve which is a mean of the two extremes

appears most appropriate.

A time-area curve giving the 'best fit' for the rising

parative simulations with a numerical kinematic wave
model and the Time-Area Method. Corresponding ‘best fit'
curve for the recession part may be obtained analytically
from the kinematic wave theory. In figure 7.3.4 these
curves are given together with the "mean" curve, which
“has been slightly modified in order to fulfill the re-

quirement of full areal contfibution at t=tc.

The ‘mean’ curve will obviously bhe very near the linear
time-area diagram (deviation < 5%). In runoff simulations
from a single surface there is evidently no theoretical

reason to use a non-linear time-area diagram.
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—o— . Best fit’ tiu'ye-area curve
for the recession part

.——._ ‘Best fit’ time - area curve
for the rising part -

. v, .
—.—  Mean time-area curve

A cp'l A

—— -lLinear time - area curve

tite

Figure 7.3.4 Time-area curves giving ‘the ‘best fit' of
: the r151ng- and recession parts of the
runoff in surface flow

Time-area curves may also be developed for a catchment

with one surface feeding a gutter, In this case the time

area curve will be influenced by the relation between the

time of concentration for the surface [t ] and that of
the gutter [t ]g' If [t ] is great compared to [t ] or
[tc]g great compared to [t ] the time-area curve for
the rising part will be very 31mi1ar to. that for surface

,flow. For a given catchment area A it can be shown that

& }has a minimum for a certain surface length. It was

'found that the time-area curve for this case gave the

greatest deviation from the linear one, see figure 7.3.5.

The corresponding time-area curve for the recession part
‘was obtained by numerical simulations. It is shown in
figure 7.3.5 together with the 'mean® curve between the
rising- and recession curves. This mean curve evidently
diverges more from the linear than the correspondlng one
for surface flow. The 'surface-gutter' curve is believed
to apply to the ordinazy *surface-gutter' catchment while
the surface runoff curve (tiqure 7.3.5) applies to cases
where the relation [tc]s/[tc]g is extensively greater or

smaller than unity.
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area -curve will principally be a function of the struc-

ture of the system. In figure 7.3.6 time area curves made

Figure 7.3.6
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Time area diagrams obtained by numerical
simulation of the rising part of constant
rain intensity storms for four residential
areas, after Lyngfelt (1981)
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i (1981)} The diagrams have been obtained by numerical

“expected to have a-basic shape according to that given

_concept but use a simplified representation of the wave

up from five great urban catchments are shown, Lyngfelt

simulation (kinematic wave model) of the rising part of
constant rain intensity storms.,

The areas have very different flow charaéteristics and -
the curves consequently diverge a lot though the S~shape
is general. No definite conclusions of the relation be- i
tween the time area curves and the characteristics of the i
catchment can be madevftom the figure. The relevance of
the: curves for the recession part has not been studied.
The recession part time-area curves can, however, be

in figure 7.3.5. ’

7.4 Summary

In this chapter reservoir models and models based on a

cascade of linear reservoirs have bcen discussed. These
models have a clear relationship with the kinematic wave

velicity. The non-linear reservoir model and the Time-Area
Metho.. are the most commonly used overland flow models in
commercially available urban runoff models. . '

veloped by Falk, Niemczynovicz (1979). The model has been

successfully tested on small urban paved surfaces. It has : i
a simple numerical algorithm and can be used for manual :
calculations. As the model parameters are based on urban |
runoff measurements from paved surfaces < 700 m-2 the ) ;
Time-lag model has not been tested as baée catchment

model in this study. o .

The Time-Area Method can be regarded as a model basad on
a cascade of linear reservoirs. It is a traditional method
which is still mych used. The method is governed by two
‘parameters', the time of concentration and the time area

diagram. One set of these parameters represents in fact
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only one specific flow case. Applying the method to a

storm with'cohtinuously varyinq rain intensity, the para-
meters should be chosen to give the best fit at the main
runoff peak. The methdd_can therefore be expected to give

an unsuitable performance. in other parts of the simulated
hydrograph.

The class of models discussed in this chapter will sim-
plify the. calculation routines ccmpared with the kinematic
vave appréach. However, problems with parameter estima~
tions arise and the pﬁﬁérical kihematic wave model appears
to be more generally applicable in basecatchment modelling.
The model tests in-the followinq chapters will thus .con-
centrate on the numerical kinematic wa e model. Simula-
tions by the‘Time-Area Method will, however, also be per-

formed and discussed,
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8. BASE CATCHMENT MODELS

‘8.1 - General considerations

In earlier chapters the analysis was based on surface-
gutter-systems with regular geometry and constant slope. -

.This is usually not the case for real urban catchments.

Theoretically it may be possible to use a three dimen--
sional model and an extreme discretization in space and
thereby obtain a more'acéurate physical description of
the runoff, Chow et al. (1973), Constantinides et al.
(1981). Howévei; such a description requires a very large
amount: of input data and the work spent on collecting -
these data is unreasonably large compared with the
improvements in the results.

In practice it seems reasonable to limit the deéscription
of the surface to a maximum of five or six parameters.
This means that, in reality, even for a small uniform

‘.surface the physical description of a surface-gutter

system becomes very approximate. Despite this several
'investigators have reported relatively good performance
of models based on the two dimensional kinematic wave
theory, Langford and Turner (1973), Woolhiser (1975},
Rovey et al. (1977), Lyngfelt (1978}, Jacobsen (1980).

The storm water from a surface is normally collected in
collector sewers with minimum dimensions. These sewers
are often long and thus significant in the runoff system.
A separate surface connected to a street inlet is very
seldom greater than 1000 m2 and is normally less than

500 m2. However, suitable sets of input data are obtained

only when base units of surfaces {base catchments)

greater than .say 5000 m2 are used. Then, in practice,.the:

base catchment flow model must, in one way or another,
represent both several separate surfaces wiﬁhvzdiffefenpv
characteristics and upstream collector seheré}lfhé '
discretization of input data (size of base catchments)
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has been discussed by ‘several investigators; in most
cases discussions have been based on the specific

properties of the SWMM model, see for instance Proctorjz

and Redfern (1977) and Zaghloul (1981). The use of an

aggregated base.catchment wi;h a simple geometry and a
time of‘COnceqﬁraﬁiQngQQual to ;hat of the real catchment

is a general épproééh, éppliéable‘to many runoff models.

~This approach will be used below and has earlier been

discussed by Jensen (1981), Lyngfelt (1981) and Marsalek
{1983).

In this chapter a number of different approaches to base

catchment modelling are investigated. The discussion is
based on six urban catchments where storm runoff and rain

Iintensity have been recorded. The runoff from storms has

" been simulated using different models and discretizations

of the geometric input data.

The main objectivé.of the simulations is to investigate
th the geometrical input describing the base. catchment
can, .and should be, simplified. The work is focused on
the numerical kinematic wave model (theB -diffusive model
as described in chapter €) but the Time~-Area Method is
aléo tested. :

Below, the test catchments, measurements and models are
briefly described, before the simulations are presented.

8.2 General characterization of the test catchments

and measurements

The rain intensity and the funoff have been recorded in
six urban catchments for a number of storm events. The
catchments are. all different and cover a range of
conceivable base catchment characteristics. The catch-
ments have been investigated with respect to geometric

~ parameters such as confributing area, slope and so on.
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In order to give a general impression of the catchments,

the main characteristics are summarized in table 8.2.1.
A more detailed description is given in appendix 1I.

The gégchmgng ASPH_ is a part of a street feeding an
inlet. It is the bnly’catchment with no sewer system.

The catchment PCON is a parking area and consists of the

’top floor of a two storey car park and a collector sewer
along the bulldlng.

The catchment PASP vis a.parking area with a uniform,

small slope and three inlets to the collector system.

Table 8.2.1 Main characteristics of the catchments

Catchment Area Number Slope Number Length Slope

) Ac(mz) inggts (i?m) joggts sizérs (m?m)
m

ASPH 430 1 .044 - - -
PCON 1700 7 .014 0 107 .036
PASP 3900 3 .008 1 110 .010
AASP 9700 8 .010 0 254 .0025
SASP 3000 10 .030 2 355 .007
3 530 .022

coMp 3100 20 Co-

The gﬁgcﬁmgng AASP: is part of an airport surface. It is
the biggest test area with large surface flow lengths.
The slope of both the surface and the sewer system is
small, and consequently the characteristic time of con-

centration is comparatively 1long.

pavements and a few additional surfaces (no roofs). The
surfaces are connected to a sewer system whlch pr1nc1pa11y
follows the streets.
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surfaces; roofs, parking areas, streets and pavenénts.
The surtaces are connected to a sewer system which is
longer and has more joints than the other catchments.

In table 8.2.1 tha catchments have been arranged accord-
ing to the complexity of the runoff system. There is

“obviousiy no relation between contributing area and this

complexity. Most of the surfaces are of the bitumen type
but concrete paving. (PCON) and roof-felt (COMP) are also
represented.

Rain intensity and runoff have been measured with the
objective of obtaining a record of several separate storm
events for each catchment. The measurements are briefly
described together with the éatchment characteristics in
appendix I. '

The rainfall-runoff volumes of the separate storms were
plotted for each catchment. A linear regression line was
fitted to each data set by the method of least squares.
From the regression line the contributing runoff area was
calculated as the slope of the line, and the depression
storage as the intercept on.the rainfall volume axis,
Arnell, Lyngfelt (1975), Arnell (1980).

The contributing areas were all found to be equal to or
less than the corresponding areas which had been estimated
by areal measurements in the field. In five of the areas .
the difference was less than 10% (and for the two smallest
there was no difference)}. In the SASP catchment a differ-
ence of 18% was found.

The obtained dépression sforages were found to be between

0.4 and V.5 mm in five of the catchments. This value
agrees with expected values regarding actual slope and
unevenness of the surfaces, Falk, Niemczynowicz :(1979).
In the AASP catchment a much lower value, 0.25 mm, was
obtained. This may be explained by the extremely even
surface and the smooth asphalt in the catchment.
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8.3 . Models and criteria for comparing runoff

- hydrographs
All simulatiens in this report have been performed by the

. runoff model CURE, Lyngfelt (1985). The model was mainly
developed in order to make it possible to compare differ-

ent numerical and geometric models. In this part of the
study the model was used as described below.

The surface depression storage loss' is subtracted from
the very first part of the rain. The surface and gutter
flow is routed by the B~di£fusive model (kinematic wave

‘.approach) described in:'chapter 6.4.4. The flow in sewers

is routed by the traditional numerical solution of the
kinematic wave;equatign'(diffusive box model, section
6.3.2). The capability of the ‘model to make simulations
using the Time-Area Method is also used.

In each catchment between 3 and 8 storm events have heen
used in the simulations. The obtained hydrographs have
been used for comparison§ with recorded hydrographs and
between different model approaches. !

The storm water is routed through the catchment without
any losses except the surface depression storage (no

~infiltration, no overflows). The differences in perform-

ance between models will thus appear only as differences

- in shape between the resulting hydrographs. The compari-~

son between the performance of one model relative to
another must then be based on these differences.

The discrepancies between two hydrographs can be de-
scribed by several parameters, for instance, the integral
or biased integral square error, the absolute error of
peak  flow values, or the time lag of peaks. Each of them
show, however, only a part of the differences and none of

" the parameters or set of parareters can replace the
_survey obtained by.Simple visual inspection, Geiger

(1984).
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- The discussion of the models has been based on both

visual inspection, and a simple statistical analysis of
the hydrographs. The statistical parameters used are

the mean and the gtandard'deviation of the ratio
between flow peaks, Xp,and ap, respectively

the mean absolute error in peak flow values, ep.
The parameters have been used in several similar studies,

see for instance Arnell (1980).

8.4 ‘Kinematic wave model simulation - comparison

with recorded hydrographs

8.4.1 . Detailed geometrical description of the
catchments

For each of the six catchments a set of input data corre-
sponding to a very detailed geometric representation of
the runoff system was. built ﬁp, the DET mocéel. In prin-
cipal each surface, gutter and sewer within the systems
is represented -~ a discretization beyoﬁa what ié usually
realistic in urban runoff modelling. values of lengths,
slopes, etc, have been evaluated by field investigations.
Surface roughnesses are selected according to chaptér S.
For the AASP catchment, which has a very smooth and even
surface (appendix I), a lower value was chosen (n=0,.012}).

.In the PCON and SASP catchments, the basins at discharge
measuringbstations were found to act significantly as
retention storages during low intensity storms. A retea-
tion storage model was then included in the DET-model.

8.4.2 Comparison‘between recorded and simulated runoff

The input data set with a high level of discretization
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'was used together with the kinematic wave model to
samulate runoff from the six catchments. The simulated
hydrographs thus obtained were compared with the.corre-

sponding recorded hydrographs.

The 51mu1at10ns were executed using three different

"~ versions of the detailed input data set. In version 1, a

contr1but1ng area corresponding to fleld investigations
was used., In version 2, the area was obtained by regres-
sion analysis of precipitation - runoff volumes as de-
‘scribed in section 8.2 (fit of volumes for each catch-

ment). Both versions include depression storages obtained

from the regression analysis.

In the PCON and COMP catchments the volume fitted con-
tributing area was found to vary significantly between
storms. This causes deviations between the simulated and
the recorded runoff volumes which have no connection with
the discussion of the performance of the kinematic wave

model.

Thé degree of wetness at the beginningvof the individual
storm is not known from the measurements. The depression
storage model used is, in addition, believed to give-a
rather coarse description of the initial runoff process

for low intensity storms.

Version 3 of the input-data sets was based on depression
storages, individually chosen for each storm in order to
obtain a volume fit for the first part of the hydrograph.
In addition, an individually volume fitted contributing
area for each storm was used in the PCON and COMP catch-
ments. Hydrographs simulated by this version of input
data are plotted in appendix II.1.1 {also in figures
8.4.1 and 8.4.2).

It should be stressed that the only dlfference between
the data sets used is in the choice of ‘depression storage
and contributing runoff area. All data describing the

126




60 4+

20 1

catchment with regard to geometry, surface roughness and
joints are all according to the DET model ({section
8.4.1}).

A visual inspection of -the simulated and recorded hydro-~
graphs shows thét‘they coincide>fairiy'well with respect
‘to general shape and delay of peaks. Tne main impression
is, then, that the runoff process is reasonably well
described by the model. Sdmetimes a very good performance
is obtained, as_fox example, that shown:in figure 8.4.1.

i, Qll/s ha) ; :
! A o ; rPASP - catchment_lv ’

—— Hyetograph
—4— Recorded hydrograph
—+— Detailed simuylation

29 40 timin) 60

Figure 8.4.1 Recorde¢ and simulated runoff from the
: PASP catchment (input data version 3)

There are, however, parts of many hydrographs with great
discrepancies between simulated and recorded values, see
for example figure 8.4.2. With regard to continuity and
realistic flow velocities in the runoff system it can be
concluded that several of the discrepancies must have
causes other than the performance of the model.

A simple statistical analysis of the relation between
recorded and simulated flow peaks were performed for

' comparative purposes. Trends such as, for example,

increasing deviations with increasing catchment area or
complexity were not observed. In table 8.4.1, the mean
ratio Ap, standard deviation % and absolute error €p
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—a&— Recorded hydrograph
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Figure 8.4.2 Recorded and simulated runoff from the
COMP~catchment (input data version 3)

defined in section 8.3 are given for the two sets cf
input data, one using not volume fitted data and the
other using volume fitted data for each catchment. The
flow peaks shown in appendix II:1.1 were used with the
exception of those in three low intensity storms where
the performance of the retention storage model was not
acceptable  (the characteristic retention storage area
varied between different storms). Five recorded flow
peaks with great deviations from the correspogding
simulated hydrographs were also excluded (as recording
errors were suspected).

Table 8.4.1 Heaﬂ ratio Ap standard deviation o, anhd
absolute error for not volume fitted data
and volume fitted data for each catchment.

Input data Number  Mean Standard Abs.error
of peaks ratio dev.
X € %
“p % . p
No volume fit 30 1.08 . 0.21 - 15

{Version 1)

Volume fit for :
each catchment 30 1.00 0.15 11
(Version 2)
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" If the five “error peaks" are included in the fitted data

set, the standard deviation and absolute error are
increased to 0.26 and 18% respectively. '

From the table it dén be seen that thekdeviation between
recorded-and simulated flow peaks is reduced by the use
of volume fitted contributing areas. Typical is the
general over estimation of flow peaks (lo = 1.08) using
not volume fitted data. Although- the ver{son 3 hydro~
graphs give a general impression of better performance
thanbthe version 2 hydrographs, corresponding statistical

parameters are the same for the two versions. : '

The differences between recorded and simulated hydro- ; J
graphs shown in appendix II.1l.1 and table 8.4.1 may be
explained by ) : :

o error in measured rain intensity. - runoff
values )

o error in or insufficient description of the
runoff system input data

o 1insufficient accuracy in the model
description of the runoff process.

The two first points include sources of errors such as
bad representation of the real rain intensities over the
catchment, increased/decreased contributing area during
parts of the storm event or water leaking into or out of
the sewer system.

The errors in ‘rain intensity and runhoff values are

‘difficult to evaluate. A general level of the total

error in the intexval % (10-20%) can, however, be assumed
for both rain intensity and runoff values. These errors
have been discussed by Arnell (1980) who used measuring
devices similar to those used in this study. He estimates
a total error of about ¥ 15% for rain intensity values and

corresponding error for runoff values of X (10-15%).




In'a study of the performance of 12 different models,
Colyer (1977) found the 'best' models to have a mean
ratio )X _ in the range of 0.95 to 1.05, a standard devia-
tion o of 0.15 -« 0.20 and an absolute error_ep between
10 and 20%. The model used here obviously has a perform-
ance at a level'similar to Colyer”s 'best' models. .

As discussed above, there are many séurces of "errors"
thch are not connected with the performance of the
model. It is thus probable that a large proportion of the
deviations indicated by the table 8.4.1 and those found
by Colyer are caused by errors in measurements and in-
sufficient knowledge of the properties of the real catch-

ment. Because of this, defined judgement of the perform-

‘ance of models and also comparisons between models based

on recorded runoff appear dlelcult.

In summary, the discussion in this section illustrates
the difficulties in performing representative field
measurements and also the difficulties in judging the

performance of models. The comparisons indicate, however,

that the kinematic wave model, using detailed geometrical
input data, describes the runoff process well, provided
that proper estimates of the contributing area and  the

depression storage are: used.

It is believed that the influence of the choice of de-
pression storage values and depression storage model is
much less marked in the case of design storms than in the

analysis above.

-~

8.5 Simulations using simplifiéd geometric
input data

8.5.1 General

Tc use a very detailed description of the catchment in

the input data such as the DET model input is usually not
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'reallstlc in practical applications of runoff models. The

geometr;c representatlon of a catchment has to be more
generalized to reduce the effort of generating input

data. It is characteristic of the kinematic wave model
that ‘it can simulate the velocity variations along the

‘runoff Syste@ (a spétially distributed model). These

variations are partly governed by the geometry (runoff
system structure and successive cross—-sections of flow).
Simulations made with the kinematic wave model using a
simplified fepresentation of the runoff system geometry

’ appear to be meaningful 6nly when this geometry is chosen

in such a way that the real spatial velocity distribution

‘becomes represented in a reasonably appropriate way.

In the preceding ‘two.sections, different simplified
geometrical representations of the base catchment. are
discussed. A number of geometrical models are defined
which are characterlzed by the number of free parameters
used such as surface flow" length slope and - so on, it is
basic for all simplified models that the catchment area
and the timeé of concentration are maintained from the
real catchment.

. | N |
There is no real basis for selecting roughness values in-
dividuelly for each type of impermeable surface. Another

-parameter which is mostly is difficult to choose individ-

ually is the side wall slope of the gutter crossvsection.
These parameters are thus not regarded as free in the
geometrical models. ’

8.5.2 Representation of catchments with no sewer net
- the KW3, KW4G and KW6G models

The simplest possible geometrical description of a catch-
ment is glven by. flguxe 8.5.1a, where the runoff is
modelled by sheet flow over a single surface without
change of flow section. The catchment is represented by
three parameters - catchment area A, surface fiow length
Ls and slope S5g - and the model is here denoted KW3.
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 Including a gutter along the surface with the standard
%section gives an essential improvement to the catchment
model while the catchment parameters are only.increased
by the gutter slope S_. The model is here denoted the

KW4G model, see figure 8.5.1b.

Gutters are often fed by lateral inflow from two sides
and manholes sometimes collect water from two gutters.
Neither of the geometric models above is suitable in
these qases.,A.repiesentation according to figure 8.5.2
covers these cases including the KW46 model, and will
generally be more flexible. However, the number of
geometric parameters is increased to six, and the model

is called the KW&G model.

Parameters: Ag, Lg, Sg Parameters: Ac, Lg, Sg. Sg

Y . T L4 14

(a) Model: KW3 {b) Modal: KW4G

Figurz 8.5.1 Representation of base catchments by
: three and four parameters in the
kinematic wave model.

The KW6G model is usually directly adaptable to a giveh
single surface while the KW3 and KW4G models reguire.
adjustment of the parameters length, slope and/or rough-
ness to maintain the characteristic time of concentra-
tion. For instance, if the gutterflow is replaced by an
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Parameters « A, La. Ly, By, Sg. Sg

= - .
bk
te -—-—» =
| 3 ' —
‘k 8s "'
~ Modet : KW6G

Figure 8.5.2 Representation of a base catchment by six
parameters. in the kinematic wave model

1ncreased surface flow length, this equlvalent length
[L ]eq is (derlved from equation 7, 3.8 and 7.3. 9)

. 43/5 3/4,5/3 - o
[t) og = @2 + e r)/® .. (8.5.1)
where cl'is a parameter containing rain intensity, rcugh-
ness, slope and shape factor of‘gutter flow section. The
relation implies maintained surface slope and roughness
for the equlvalent surface (KW3 surface].

Inc;easing the surface flow length will result in an in-
crease. not only of tc but alsc of the water volume stored

on ‘the surface. This increase of volume is directly pro-

" portional to the time of concentration., Therefore, nmain-

taining tc_by adjusting the length, slope or roughness
will have the same effect on water volume stored. The two

.conditions, maintained time of concentration and main-

tained stored water volume, may not be satisfied at the
same time. Any of the three parameters, or combinations
of them, may then be used to satisfy the first condition,
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Whether the increased stdf&ge volume on the surface
cotrespgnds to the ‘loss' of volume in the system caused
‘by.neélectxng the‘gutter, depends on its shape and slope.

- A test of a few representative surfacc-gutter catchments

indicated a reasonably maintained storage volume for the

equivalent surface.

8.5.3 'Representation of catchments with a sewer net
- the KW6S, KW6S-S. and KW4G-I models

In normal application the base catchment includes several
singlé surfaces and a connecting. sewer system.. There
are, of course, numerous approaches to obtaining a sim-
plified geometrical representation of such a catchment.
Below, some geometrical models. are described which have
been used in the simulétions. They include some of the
main principles on which a simplified geometric model’ may
be built, for example, lateral inflow along the sewer
lines, standard values of surface-gutter system (the
KW4G-model) or a standardized network system.

A very simplevgeometric description of a base catchment

containing a sewer is according to the KW4 model with the
gutter section replaced by a sewer, figure 8.5.3. The

. Parameters: Aq, Ls,Ss, bm.Sm.Dm

/ Model : KW6S

Figure 8.5.3 Representation of the catchment by the
KW6S model
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- ) . . sewer represents the main sewer line of the system and is ; '_ ~.
N characterized by its length L, slope S = 8H/Ly and '
’diameter Dm. The surface flow in the model represents the

surface-gutter and sewer branch flows in the real catchment.

1£ the surface flow. length L, and slope S are regarded »
~-as free parameters, they may be evaluated in the same way g
" as for the Kw3 model. In this case, the delay caused by

flow in sewer branches may bevadded,according to sectiocon

7.3.2. As the width of the surface (A, /L’) will deviate

from the main sewet line length, the geometrxc model

’assumes the lateral inflow to the sewer to be evenly

distributed along its length. The model, here called KW6S

is governed by six free parameters,

‘catchment area A,
equivalent surface length L_
equivalent surface slope S,
| length of main sewer line L

| _ mean slope of main sewer line S

diameter of main sewer line Dm

' . The discretization level of the geometrical model of the
" catchment is increased if a number of KW6S units are
applied to the catchment, see figure §.5.4.

Let one representative value for each of the parameters'
o surface length‘ Ls' surface slope Ss' sewer line slope sm
and sewer line diameter D_ be used for all units. The i /
number of free parameters then becomes 4 + 2+ n where n i 7/
is the number of applied units. The two parameters which ) . H
v are varied between the units are the contributing area
‘. ‘_ ) . ) and the sewer length.

) ke st b e

If, in addition, the sewer slope and surface lengfh are

‘considered individually for each unit, the number of free
i parameters will be 2 + 4 - n. Thisvgeometriéal model is

- here called KW6S-S. Its level of discretization is mostly -
® : o governéd by the number of KW6S units applied.
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Figure 8.5.4 Example of a model structure containing
only Kw6S units, the KW6S-S model

An alternative way of using only a few free parameters
Qnd still having a discretized sewer net is to define
permanent sewer. structures. Examples are shown in fiéure
8.5.5 with a fixed number of inlets and distances between
them. To each of the inlets identical KW4G models with
characteristic values are connected (contributing area is
(total area)/(number of inlets)). \
The system is defined by 10 parameters

sewer structure according to figure 8.5.5
total catchment area Ac

length of the surface Ls

slope of the surface Ss

gutter flow slope Sg

length of main line Lm

mean slope of main sewer line Sm

length of downstream sewer Lg
diameter of sewer Dm

length of sewer branch Ly

and is here called the KW4G-I model.
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‘, ‘ The KW4G-1 mode! | } _

Lo ' Parameters : Ac, Ls, Ss,Lg:Lm: Sm: Ol dsLpnumber of side Lines , _ |
. 1: (:) ) (:) ) .(:> | : | . - |
@ - * . ® : ' ' ' .

B !
tm|
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Figure 8.5.5 Four alternative sewer structures. To each
of the inlets identical KW4G models are
connected.

. . : : 8.5.4 Appiication of siinplified geometric models

For each of the six catchments, sets of input data have
been built up according to the simplified geometric
models discussed above. The main characteristicé of the
simplifications are;

o simplified representation of the sewer net geometry
{the Kw4G- I and KW6S models)

. 0 ‘use of mean slopes of the sewer net (the KW4G-I and
KW6S models)

o' replacement of gutter and sewer flow by surface flow
{the KW6S-S, KW6S and KW3 models)

o use of representative surface/gutter/sewer reaches ;
‘ (the KW4G-I model) H :

The free parameters of overland flow in the almpllfled o
models have been adjusted to maintain the representatxve i ' 'j .7

time of concentration from the real base catchment. For

example, corresponding time used to evaluate Ls or SS in
._ A : the KW3 model is
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" [tc]éq =[e.), + [tc] /2 + [tc]p)z cer (8.5.2)

where [t )é is obtalned from a representatlve surface,
{t ] from correspondlng gutter and [ ]p from the main
sewer line of the base catchment. The choice of [t ] /2

_is .a compromise con51der1ng the fact that the upstream

part of -the surface is-drained through the full length of
the gutter while the downstream part is not drained by
the gutter at all. If the main sewer line of the base
catchment is considered as being mainly laterally fed,
the.same pringiple_i; app;iéd,v[té]p/Z,

The calculations are based on the t, relations given in

‘section 7.3. In the simulations it was found that-appro=

priate-values of the side wall slope are z = 0.02 (gutter
flow) and z = 0.27 (approximation of sewer flow) . Rough-
ness parameters were chosen according to the DET modei in

‘section 8.4. A mean of the maximum intensities from th.e

storms used in the simulations in each catchment was vsed
as a représentative rain intensity (one value for each

catchment}.

In order to show how the different geometric simplifica-
tions affect the volumes of input data ‘and .calculations
the numbers of routing units and free parameters used are
given in tables 8.5.1 and. 8.5.2 respectively. Correspond~
ing information for the Time-Area Method (TAM) has been

added for comparison.

A routlng unit means any separate surface, gutter or

sewer reach to which the routing model has been applied.
The number of routing units is then a relative measure of

_ the calculation viiumes of the geometric models.

The tables show the great difference between the detailed
and the simpli‘ied geometric models both‘rega;ding calcu-
lation volumes :nd volumes of input data sets. It can also
be seen that the use of the KW4G-I model is only justified
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compared to the‘KWGS-S model, in catchments with more

compléx sewer nets.

Table‘8.5.1 Number of routing units for different 4
: test area and geometric models .

. Model : ‘ . i
Catchmen DET = KW6S-S  KWAG-I KW6S TAM

ASPH 3 - - - 1
PCON 13 2 - 2 1
PASP 18 4 9 2 1
AASP 37 4 6 2 1
Sasp 90 8 11 2 1

2 -1

coMp : 36 10 11

pable 8.5.2 Number of free parameters used in different
: . test areas with different geometric models

w ;
Catchment DET KW6S-S KW4G-I KW6S TAM

ASPH 6 - “\ - 3
PCON .52 6 - 6 3
PASP 72 18 10 6 3
AASP 148 18 19 - 6 3
SASP 360 - 36 10 6 3
COMP . 144 - 42 10 6 3
8.5.5 Simulations by simplified geometric models

The geometric models above can all be regarded as simpli-
fied vetsions of the detailed model DET. Nothing is added
to the description of the runoff process. and it is thus
natural to compare the performances of the simplified _
models and the detailed. Comparisons with DET medel hydro-
graphs instead of -recorded ones also improves the making
‘'of comparisons between the simplified models.
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Simﬁlated hydrographs: are show@ in appendix II 1.2. In
the,small street catchment,(AéPH), only the overland flow
models KW4G and KWw3 have been tested; in the small very
regularly shaped parking area catchment (PCON), only the

_KWGS and KW3 models. All models used in the two catch-

ments show very good performance, generally better than

.in the larger and more complex catchments.-

In the four largest cétchments, the KW6S-S, KW4G-I, KW6S
and KW3 models have been used. The main impression. from

visual inspection is that they perform well, with hydro- -

graph shapes very similar to those'of theidetailed model.

The simplest model KW3 and to some extent also the KW6S

model, tend to have hydrographs with deviations in shape
in some cases. Generally, all model simulations made for
the AASP and SASP catchments show not guite as good per-
formance as for other catchments. It should be noted that
storms with éomparatively low intensities have been used
for these catchments.

The five highest flow peaks simulated in each of the four
largest catchments have been used to estimate the statis-

‘tical parameters A_, o and ep. In table 8.5.3 the

P P
parameters are given for each of the models used.

Table 8.5.3 Statistical parameters for the simplified
" geometrical models compared with the
DET-model. (five peaks in each of the four
greatest catchments)

Number of
Mode} _ Ap °p EP(%) peaks
KW6S~S 1.02 .07 5.7 20
KW4G-I 1.02 .10 8.1 20
KW6S. 1.01 .09 6.9 20 .
Kw3 0.96 .13 11.5 20

" Characteristic of the models” performance is the varia-

tion in the attenuation of the hydrographs. While scme
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are too little attenuated givihg flow peaks which are too
high and too. fast, some are too attenuated with too low,
delayed peaks. The ratio between flow peaks Ap is a good
measure of the attenuation. For all catchments together

_ this attenuation appears balanced according tc table
‘8.5.3‘(the}xw3-model gives a mean underestihation of

‘peaks ‘by about 43). The VAriatiop of the attenuation

between the catchments and models represented by Ap is

shown in table 8.5.4.

The difference.in A_ is obviously .smallest for the most

“detailed model (KW6S-S) and greatest for the simplest

geometric model.

Table. 8.5.4 Variation intervals for A, for the
] simplified geometric models (five’peaks in
each of the four greatest catchments})

Model smallest greatest Difference
' *p *p

KW6S~-S 0.94 1.06 0.10

KW4G~1 0.87 1.06 0.19

KW6S : 0.90 1.1l : 0.21

KW3 0.82 1.12 0.30

Looking at each catchment separately, it is clear that
all models can give both too small and too great attenua-
tion. This is an indication that the estimated times of
concentration on which the selection of all input data
which influences the attenuation is based, are not repre-
sentative for all storms. A more precise evaluation of
these times would probably increase the accuracy of the
models (or decrease the differences in table 8.5.4). How-
ever, a more sophisticated way of estimating the time of
concentration is rather pointless when the basic idea is
to simplify the creation of input data for the kinematic
wave model. '
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nThe influence of the” selected tlmes of concentéatlon on
the attenuation was tested in one of the catchments (theb
COMP-catchment). The parameters 1n the models were
shifted to correspond to a 30% less and a 30% greater

" time of concent,ation compared to the basic value. In
table 8.5.5 X values from the test have been put to-
gether for the different models.. '

The effect of the parameter variations on the attenuation

depends not only on the properties of the nodel but also
the properties of the catchment and hyetograph. The
figures in.table 8.5.5, should therefore be regarded only
aé'exaﬁp;es of a variation. . ‘

In the table it is seen . that, with the exception of the
KW6S-S-model, the interval between maximum and minimum
flow values. increases as the geometricel discretization
becomes ‘coarser. )

Table 8.5.5. :The effects on the attenuation of varying
- the parameters in the models (corresponding
to a variation in (tc)

Model Ap(0.70 tJ) A (1.30 t) Difference

P

KW6S-S 1,13 0.92 . .21
KW4G-1 1.05 0.99 .07
KW6S 1,09 0.95 .14
KW3 . 1.19 .31

0.87

The time of_concentration for the sewer net is included

in the parameter variation fc¢ -

the KW3 model but not for

the others. These can thus be expected to be less sensi-

tive to errors in the estimation of the time of concen-

tration. As shown in the table, the KW3 model has conse-

guently the greatest difference between the peakflows

from the two sets of parameters.

A sensitivity test using parameters correzponding to

0.5t and l.St
c
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. mean ﬁdrlthe KW6S-S, KWAG-I, KW6S models and to 0.5 for
i the KW3 model. : s

i,QWsha) [COMP -catchment] Kwes
/ ,
8o+ '

Figure 8.5.6 ' Sensitivity of thé KWé6S~model corrésponding
to 0.7tc and 1.3tc

i,0{Ushal - [COMP - catchment| KW3
A ’ ——— 1.0~ tc
80 T : g 07 . tc
‘ ’ . ) —x— 1.3~ tc
40+

mn? | Nag/

20 40 t(min)

Figure 8.5.7 Sensitivity of the KW3-model correspondin
to 0.7tc and 1.3tc :

In figures 8.5.6 and 8.5.7 the sensitivity to a‘change in
parameters corresponding to 0.7tc and 1.3tc are shown for
the KW6S and KW3 models (the corresponding DET simulation
is shown in appendix II:1.3).
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fhe standard deviatiovbo and the absolute error ‘e _in
table 8.5.3 °eflects the ability of the models to rgpro~
duce the flow peaks of the detailed model. The parameters
may thus be used for comparisons between the simplified
models. It is clear from the table that the standard
dévigtion and the absolute error increase as the used
geometric input data becomes more simplified. However,
the differences are not very marked and no drastic
changes in the perfdrmances are obtained by making the
simplifications; In particular the KW6S model appears to

have. a good performance considering its relative simplic-

ity.
According to the study, the performance of the detailed
kinematic¢ wave model is reasonably well maintained

-~ assuming lateral inflow to the main sewer line:
- using the mean slope of the main sewer line
~ excluding minor branches from the sewer system

8. 6 Simulations by the Time-Area Method

The performance of the Time-Area Method has been examined
in much the same way as the simplified kinematic wave
models in section 8.5.5, that is by making comparisons
with the detailed model (DET). The time of concentration

~was chosen as the time from the most distant surface to

" the downstream end using the relations given in section

7.3.

Several time-area cufves were investigated. Attempts to
select a non-linear time-area diagram to get a "best fit"
for each simulated hydrograph wezo .ot successful, though
parts of the hydrographs (for example the rising part)
could be improved in comparison w th the linear~diagram
hydrographs. This result is consistent WLth that of
section. 7.3 where the theory of the Tlme—Area Mmethod. was

. discussed. In figure 8.6.1, an example of the effects of

‘using different time-area curves is shown .
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Time-Area Method
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Figure 8.6.1 Example of effects of using different
T time-area: curves :

We can.see how the shapes of the hydrographs are changed
by the time-area curve. It is also evident that the delay
and levél‘of the peaks is influenced by the curve. A
general methed for estimating the time of concentration
must then be based on one selected time-area curve. As
the best general performance was obtained using the
linear time-area diagram together with the way of esti-
mating of the time of concentration given above, this .

method was used throughout the study.

In appendix II:1.4, hydrographs simulated by the Time~-
Area Method are shown. A statistical analysié of corre-~
sponding flow peaks was made in the same way as in sec~
tion 8.5.5 and is summarized in table 8.6.1.

According to the table the peaks are on average undexr-
estimated by about 7%. Regarding the standard deviation
and absolute error the method appears to be as good as
the kinematic wave models with an acceptable ability to
reproduce a balanced attenuation of single peaks. How-
ever, looking at both the general shape and delay of the
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‘hydrographs, the deviatioh from the DET- model is more

marked than for any of the kinematic wave models.

'Table 8.6.1 Statistical parameters for the Time-Area

Method compared with the DET-model (five
. peaks in each of the four greatest

catchmen;s)

: ) Number of
o 9% epl¥ T peaks
.93 .10 9.2 20

The Time-Area Method was.also found to‘be morée sensitive
vo variations in the general level of rain intensity.
This is indicated in the catchment which has the greatest
variations in maximum rain intensities between different
storms (29 1/s-ha to 108 1/s-ha). In this catchment {(the
PASP-catchment) the Time-Area Méthod has a standard
deviation about three times greater than the kinematic

wave models.

The influence of reducing and increasing the time of
concentration by 30% was also investigated as in section
8.5.5. Corresponding values for the Time-Area Method are

given in table 8.6.2.

As we can see, the effects are at the same level as for
the KW3-model. In the figure 8.6.2 an example is given of
the effects of the variations on the hydrograph shape.

Table 8.6.2 The effects of varying the time of .
concentration in the Time-Area Method

Ap {0.70 tc) Ap {(1.30 tc) leference

1.13 0.86 0.27
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Figure 8.6.2 ' Example of variations in hydrograph shape
caused by variations in time of concentra-
tion

8.7 . summary

. The kinematic wave model has been applied to six catch-
ments, using different simplified geometric models. In

addition, the Time-Area Method has been investigated. The
geometric models have all been compared with a kinematic
wave modei using a very detailed geometfic description of
the catchment. This detailed approach has been compared
with recorded runoff from a number of storms. The com-~

. parison with recorded runoff indicated uncertainties in

the measurements and model performance of some catch-
ments., However, it was concluded that the detailed model
reflected the runcff process reasonably well. The valid-
ity of the kinematic wave model has been documented by
several investigators, for example Jacobsen (1980).

The effects of using simplified geometric déscriptions of
the catchments for the kinematic wave model were investi-
gated by making comparisons with the detailed kinematic
wave model. It was found that the performance of the
kinematic wave model ‘is still very good, even for great
simplificetions of the catchment geometries such as

T PORRE:




~ - replacement of gutters by increased surface

lenqths
- assuming only lateral surface inflow to the main
sewer 11ne

C- usinq the mean slope of the main sewer line

- excluding minor branches in tne sewer system.

The simulations by the Time-Area Method showed that

reasonably accurate values of single flow peaks may be
cbtained. However,,the'general shape and delay of the
simulated hydrographs were not as good as those of the

kinematic wave models.

1a runoff simulations from catchments built up of several
base catchments, the general performance (shape and delay

- of hydrographs) of the base catchment models is as

important as the ability to reproduce flow peaks. The

kinematic wave models should then generally be. preferred
as base catchment models. These models are also specially
favourable in cases when input data can be calibrated by

" runoff measurcments.

Independent of the model uéed, the main difficulty is to
chonse representative irput data which give suitably
attenuated hydrographs. In this study the choice has been
based on ah ev: luation of representative times of concen-
tration by the relations based on kinematic wave models
ngen in section 7.3. As the evaluation is approxzmate,.
the probability of an unsuitable attenuation is intro-
duced . The probability of large errors is areatest for
the simplest models (the KW3 model and the Time-Area
Method) . A more precise evaluation of the time of concen-
tration would possibly increase the accuracy of ‘the’
models. This, hcwever, requires a more sophisticated way
of estimating this time which is pointless as the basic
idea was to develop a simplified method of creating input
data for the kinematic wave model.
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The most suitable geometric simplification for the
kinematic wave model, regarding both the demand for
simplicity in inputdata and accuracy is tne KW6S model.
The model is composod of a sewer with the length and mean
slbpe of the main sewer line in the catchment. The sewer

is laterally fed by a surface with length and slope

corresponding to an cslimated time of concentration which
is representative for runoff to the main sewer line.




9. . . -BASE CATCHMENT-MODELS‘APPLIED
b.l General

in the 1ast chapter the discussion concerned mainly threél
‘catchment models, the KW6S and the KW4G-I models and the

Time-Area Meéthod. These have been applied to two urban
catchments, Bergsybn and. Linkdping 2, which are consider-
ably greater than the catchments used in chapter 8. The
catchments 'and measurements are described 'in appendix I.

The Bergsjon catchment is a mainly steep residential area

~with a flat central part. The runoff ‘area is about 15

hectares, 5 of which contribute ‘directly to the runoff in
the storm water system. A characterlstlc time of concen-
t-ation for ordinary storms is about 6 minutes. The sewer
system has a tree shape with four main branches.'

The. Link®ping 2 catchment is a residential area with.
small slopes. It .is about 18 hectares in size with 5.7
hectares contributing directly to runoff. A characteris-
tic time of concentration for ordinary storms is about
12 minutes. The sewer system is built-up of two major

branches.

Three levels of subdivision into base catchments have
been used. The finest division corresponds to base catch-
ment areas of about 0.5 hectares (directly contributing

area) .

The dzscu531on of the performance of the models are here
based. on comparlson between hydrographs in the same way
as in the previous chapter: The recorded flow is compared
with hydrographs simulated by a detailed kinematic wave
model (DET), and hydrographs simulated by simplified
models are also compared with those from this detailed

. model.
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9.2 . ' Kinematic wave model simﬁlation -

comparisons with recorded hydrographs

The recorded runoff hydrographs ware compared with hydro-
graphs simulated by the detailed kinematic wave model
(DET-model) .” In this model, in principle every -surface,
gutter and sewer within the system is represented, How-
ever, the available information of the runoff system in
Bergsjdn and'Linképing 2 was not quite as detailed as in
the six catchments in last chapter. The application of
the models tovBergsjﬁn and Link8ping 2 is therefore more
like a realistic case. ‘ ! B

In appeﬁdix I1:2.1, simulations of five storms from Berg- :
sjon and four storms from Linkdping 2 are presented. The
contributing areas ﬁsed in each catchment were obtained
from regression énalysis of storm volumes rgcorded over

- 22 months (Bergsjdn) and 12 months (Link&ping 2; two

summer - autumn reasons). They were found to be 75% and
90% of the impermeable surfaces in Bergsjdn and Link¥ping
2 respectively, Arnell (1980).

A visual inspéction of the hydrographs shows that the
simulated ‘and recorded hydrographs coincide reasonably
well with respect to general‘shape and delayibf peaks.
There are, however, parts of several hydrographs with
marked deviations. There are also, for some storms, de-
viations between recorded and simulated runoff volumes.
Probable explanations for the deviations have been dis-
cussed in section 8.4.2 and are not repeated here.

A statistical analysis of the relation between recorded
and simulated flow peaks was performed for the hydro-
graphs presented. No marked differences in the statisti-
cal parameters were found between the catchments. The
result is then summarized for both catchments in table
9.2.1.

As shown in the table, the model gives on average flow
peaks which are slightly too attenuated for both catch-
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Table -9.2.1 .Mean’rAQio ‘Xp, standard deviation o_ and

absolute error ep for recorded and
'simulated flow peaks in Bergsjdn and
“Linkbping 2.

Number of Mean ratio ‘Standard dev. Abs. error

peaks f a Xp  °p o €p §
18 © o 0.96 0.3 - 1

ments. This can be compared with the‘analyéis of the six
"small" catchments in the last chapter where the DET
model gave peaks which'were too little attenuated. The
standard deviationvénd absolute error are smaller com-
pared with the six catchments. Compared with Colyer”s
conclusions previously mentioned (section 8.4.2), the

model performs well.

The .same two catchments have previously been used by Ar-~
nell (1980) to test a runoff model (the CTH model) of
about the same level of sophistication as the DET ‘model.
Comparing the two hodels the standard deviation and abso-
lute error are smaller for the DET model than the CTH
model. This may be explained by the fact that the CTH
"model does not take gutterflow into account. It should,
however, be noted. that the statistical measures are
partly based on different flow peaks which may have an
influence on the deviations. i

9.3 Simulations using different base catchment sizes

Three levels of subdivision into base catchments have

been investigated

- nine base catchments (L1)

-~ one base catchment for each main sewer hranch
(four in Bergsj&én and two in Linkdping) (L2}

-~ the entire catchment as one bése'catchment (L3)

The KW6S-S model has been applied to each catchment and
each discretization level. They will be denoted here as
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" the KW6S-L1, KW6S-L2 and KW6S-L3 models for the three
levels respectively. The first level corresponds to base

catchments of about the same size as those investigated
in the last chapter, 0.3~1 ha (contributing area). The
second‘levgl means four base catchments in Bergsjdén and
two in Link&ping 2. The KW4G-I model was applied to the
third level (L3)}. The input data sets have been based on
iepresentative times of concentration and the different
models compared with the DET model. The different steps
have been perfokmed in the same way as in last chapter.

The siﬁﬁlated.hydrographs'are shown in appendix II:2.1.
The main impression from a visual inspection is that the
models perform well with hydrograph. shapes very similar
to thosé of the DET-model. The best simulations are ob-
tained from the KW6S-~Ll model, but those from the KW4G-I

and KW6S-L2 models are also very good. The simulations by

using the KW6S-L3 model are also good in the Link&ping 2
catchmgnt, but become too little attenuated in the Berg-
sjon catchment (Ap = 1.09), see also appendix II:2.3.

From the statistical analysis of the flow peaks it can be
concluded that the models generally perform better in
Bergsjon than in the flatter Linképing\2 area. In table
9.3.1 the statistical parameters are summarized for both
catchments.

Table 9.3.1  Statistical parameters for simulated flow
peaks in the Linképing 2 and Bergsjdn areas

. . A [} € (%) Number of
aodel P p P ' peaks
KW6S-L1 1.01 0.05 3.2 18
KW65-L2 0.98 0.07 5.5 18
KW6sS-13 1.04 0.13 9.9 18
KW4G-1 - 0.99 0.07 4.3 ' 18

The table shows that a balanced attenuation is obtained
for the models. The standard deviation and absolute error
have low values in general. These parameters increase
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;with a decreasing level 6f diséretization, indicating
" that more discretized models perform better.

§ The most marked difference is between the KW6S-L2 and

. KW6S~L3 models. This deviation is most probably caused
by the approximating of the sewer system to only cne
main sewer line, which in both Bergsj®n and Link&ping 2
appears to be a coarse approximation. It should also be
noted that the KW4G-I model performs almost as well as
the KW6S-L1 model despite the fact that it is based on a
very standardized network system. '

The influence on the attenuation of the selected repre=-
sentative times of conCentraEidn on the attenuation was
inveséigated in Bergsjdn. The parameters in the models
were shifted tou correspond to 30% less and 30% greater
time of concentration compared to the basic chosen value.
In table 9.3.2, kp values from this test are put together.

Table 9.3.2 AP values for different times of concentra=-
tion in Bergsjon

Model Ap (0.7 tc) xp (1.3 tc) Difference
KW6S-L1 1.05 0.96 ) 0.09
KW6S~L2 1,11 o 0.94 ’ 0.17
KW6S~L3 1.17 0.92 .0.25

RKW4G-I 1.08 0.96 0.12

As shown in the table the interval between the mean peak
flows for the two choices of parameter increases with
decreasing discretization of the catchment. The effect of
an improperly estimgted representative time of concentra-=
tion is obviously greater for more simplified'éatchment

descriptions.

v9.4 Simulation by the Time-Area Method

The Time-Area Method used as base catchment model was
examined at the two levels of discretization Ll and L3,
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as defined in section 9.3 (9 and 1 base catchments). The
‘ simulated hydrographs were comparxed with the detailed
‘kinematic wave model DET &dnd the times of concentration
were evaluafed in the same way as in chapter 8. Only

linear time-area diagrams were used.

In appendix II:2.4 hydrographs simulated by the Time-Area
Method are shown. These show generally a more marked de-~
“viation from the DET-model than thosé simulated by the
kinematic wave model. The hydrographs are too little at-
tenuated and delayed. Compared with the Time-Area Method
hydrographs analysed in last chapter, they show a better
performance with regard to general shape. It should be

noted that the former are, on average, too attenuated.

In table 9.4.1 the statistical analysis of flow peaks
from the two catchments are summarized. The models cor-

responding to levels Ll and L3 are denoted TALl and TAL3,
respectively.

Table 9.4.1 ‘Statistical parameters for the Time Area
Method compared with the DET-model

Model A o € (%) Number of
- P » P P peaks

TAL1 1.07 6.15 10.4 ” 18

TAL2' 1,06 0.13 9.9 18

The standard deviation and absolute error are generally
greater than the corresponding values for the kinematic
wave models, There is very little difference between the
two discretization levels and the TALl model has obvious-
ly a worse performance than corresponding kinematic wave
model at this base catchment level, thé KW6S-L1 mode1.
This is probably due to the .fact that the sewer lines of

‘thé branches are represented in the KW6S-Ll model by

routing units, which is not the case in the TALl model.
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The influence of reducing and increasing the time of con-
_ ceﬂtration by 30% was also investigated in the Bergsjoén
atga. Corresponding values for the Time-Area Method are

given in table 9.4.2.

Table 9 4,2 Variation of the time of concentratxon using
the Time<Area Method in Bergsjdn

Model ‘. xp»(O.? tc) Ap (1.3 tc) Difference
TALL o116 '0.98 0.18
TAL3 - 1.18 . .. 0.97 0.21

The interval betweenvmean peak flows for'the two choices
of‘parameters dre, as shown in the table, about the same
for the two base catchment levels, Compared with the kin-
ematic wave models the Sénsitivity at the first level

(L1) is considerably greater. At the third level (L3} the
sensitivity ié of about the same order for the two cate-
gories of model. This is most probably caused by the dif-
ference invrepresentation of sewer lines mentioned above.

9.5 Summary \

The runoff models presented in last chapter have been

applied as base catchment models in two urban catchments
with total areas of 15 and 19 hectafes, respectively.
Three levels of subdivision into base catchments have
been used where the finest diviéion corresponds. to sizes

around 0.5 ha.

The general impression of the performance of the models

applied to these areas is much the same as in chapter 8.
The models based on the kinematic wave appear to perform
well( better than those based on the time-area relation-

ship at comparable discretization levels.

A simple geometric model (one sewer laterally fed by a
rectangular surface - the KW6S model) has .been applied as
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“base catchment model at the three different levels of
subdivision. Using greater base catchment sizes the per-

formance is not quite as good. However, there are no
drastic changes and it is obviously possible to obtdin a.
very good performance using quite great base catchments,

' provided the catchment characteristics (for instance the

time of concentratlon) are properly evaluated. It should
be stressed here that as the base catchment increases the
effects of making misjudgements in these evaluations in-
creases. It.was also found that when the main sewer sys-

tem contains several long branches they must be repre-

sented in the input data 5ys€em and shculd not be re-

“placed by one main sewer line.

The Time-Area Method does not perform quite as well as
the kKinematic wave model despite the fact that the same
amount of catchment data is required. Though the mojel
properly used has a performance which is acceptable in
many appllcatlons there is no obv10us argument fox its

use.

It can finally be concluded that:

- Independent of the model used and base catchment

size, the choice of input parameters in the base

. catchment model (overland flow parameters) has a
significant effect on the result.

- The kinematic wave model (KW6S model) is both
possible to use and effective as base catchment
model.

- wWith this model relatively great simplifications of
the input data geometrxy can be used with a reason-
ably well maintained performance, this provided the
‘catchment characteristics are properly evaluated.
That may be done using relations derived from the
kinematic wave equations, assuming constant rain

intensity.
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10.; EVALUATION OF ‘STATISTICAL MAXIMUM FLOWS‘
10,1 : Generalv

In many cases it is of interest to make only a fast and
simple evaluation of maximum flows in a couple of key
points in the sewer system. This may be done by the so
called Rational Method. The method was formerly the only
available design tool and then much criticized foribeing
too approximate.vlt is easily applied but may, as all
strongly simplified models, give very misleading results
if it is improperly used.

The_RafidnaL Method is commonly regarded as an empirical
modél. There is, however, & clear relation between ;he
model). and the basic eguaticns used in this report, as has
been pointed out by Newton-Painter (1974). Despite- the
relationship to the Time-Area Method the Rational Method
is basically guite different from all the previous dis~
cussed models by being a statistical method for maximum

“flows. rather than a routing method.

In the following sections some theoretical and practical
aspects of the method will be discussed in order to dis-
cuss the relevance of the underlying model. An alterna-

tive method for evaluating design flow rates based on the.

traditional Rational Method is also proposed.

10.2 Basic deterministic relations

Uéing the Time~Area Method corresponds, as shown in sec-
tion 7.3, to applying the kinematic wave equations with
a wave velocity that is fixed in time but not in space.
The discretization of the time area diagram defines the
space step in the equations used. Fixing tne wave veloc-
ity in space as well corresponds to a straight line in
the time area diagram. This approximation reqguires no
spatial discretization and may be regarded as a reservoir
model (linear). The solution takes the form
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t o ‘ .
Q(t) = a-B: [ ilo) do cer (10.2.1)

to-

(see equation 7.3.2)).The wave velocity may be written
"a=L/tc where L is the length of the surface and t, the
“time for the wave movement over the surface. According

to section 4.2.2, t-t°= tc giving

. t .
Qt) = LB [ ilo) do vee (10.2.2)
. ' c : ’ .

t-tc
This relation corresponds to an averaging of the inten-
sities over the time L For each storm event a maximum
value  of the average intensity can be found

inax = [E_ f i(“)da] . eee(10.2.3)
' t-t max

The maximum flow is obtained as

i anx =L-B-i o eas £10.2.4)
The model (equation (10.2.4)) expresses the deterministic
reiation underlaying the Rational Method. The relevance
of maximum flow values obtained by this model depends
mainiy on ’

o how well the'timevtC is estimated
o. the divérgence in "real® rain intensities
from the maximum average intensity i

.
Hager (1985) has shown that the variation of rain inten-
sities in an interval egual to the time of concentration
has little influence on the peak flow value for a rectangu-
lar surface (effects of delay were not negligible).
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. o , :"‘ SRR ¢ The results from this theoretical study can not be genef#'

alized‘to'an‘arbritary urban catchment but gives an indi- -
{ " cation of the possibilites of the basic model. '

®: - o © 10.3.  The Rational Method
S ‘The design of a network system is basically a statistical
. o R ’ problem. In principle, one possible way to balanceé pipe
size against fisk is to design the system for each storm
in a long series of rainfall events (perhaps 30 years) .
e ; . The return period for the different flows is calculated -
' - : ’ ' and a choice between risk levels with corresponding pipe
v A sizes ‘can be made. Design methods based on statistica1
analyses of simulated discharges have been proposed by

¢ ; : : Johansen (1979) and Arnell (1982).
. o ) .A more practical but also more approximate approach is ) ; |
= based on storms generated by statistical parameters,- 3

design storms. By using such a storm a design flow is
evaluated which is assumed to have the same return period

as the storm.

. . ’ o The traditionally useéd statistical storm is the Maximum
: Average Inténsity storm (MAI-storm) which is defined by
and corresponding averaging

PR —

its average intensity imax
time ({(duration time td), compare equation' (10.2.3).

. EBach historical storm can be described by a series of
‘ MAI-storms with different durations. From a series of

e 1 s AR S

historical storms, freguencies of MAI-storms can be
evaluated. For each duration a distribution function for
the intensities can be plotted. Examples of such- func- ]

tions‘obtained from a two year series are given in figure
10.3.1 (after Arnell, Lyngfelt (1975)). The three rain

Y ) distributions éorrespond to the durations tg = 6. 9 and

‘2// ’ 12 minutes. The frequency is here given as the inturn
/. ' period in years (T). The distribution of maximufn dis-
; : : charges from a residential area (15 hectares) during the -

- - same period is also shown in the figure. i
e %
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2 W3 o W2 1 2 3 [years]

Figure 10.3.1 ‘pistribution functions for MAI-storms and
maximum discharge (after Arnell, Lyngfelt
1975)

Assuming parallel intensity and discharge distributions
we obtain

Qay (T) = €y 5(T, ty) vee (10.3.1)

where Qmax(T) and i(T, td)~are flow and MAI-storm distri-
butions, T the return pericd, td the duration timz and <
a constant. As we can see, all the chosen MAI-storm dis-
tributions diverge slightly from this assumption. The
storm distributions get closer to the flow distribution
with increasing return period. The same tendency can be
found in other catchments analysed in a similar way, see

Shaake et al. (1967} and Arnell et al. (1980).

1f the time of ‘concentration is used as the duration of
the MAI-storm, the corresponding intensity distribution
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wxll have a ’steeper‘ slope. In a study of f;ve catch-

R ‘; - o *A_ments it was found that the distribution i(T,t o) was

always in better accordance with the flow dxstrxbutxon
" than ary distribution i(T,td) usxng ¢onstant duration.
It was also found that the constant ¢y (équation 10.3.1)

.' « R . was close to the estimated contributiny area A , Lyngfelt

»

w4

Qpax (T = A i te) o v o

(1981) ., The relation becomes

(10.3.2)

® ) s - where t_ is a function of i.

10.4 ' The time of concentration

The traditional way of prusenting MAI-storm distributions
for a series of historical storms is the intensity dura-

L o tion frequency diagram (IDF-diagram). In Sweden IDF-

o

curves have been established at six locations. In figure
2.2.2 the IDF-diagram “'sed in GOteborg is shown.

: . The curves are characterized by having steep grédients

o g o . ' for the durations of interest in urban drainage design
. (5-20 minutes). Overestimating the time of concentration

by, for example, five minutes may very well result in an

underestimation of the discharge by more than 20%. The

time of concentration is thus a significant parameter and

the estimation of the parameter is of great importance in

) - the application of the method.

Relations for estimating of the time of concentration
based on the kinematic wave concept are given in section
7.3. In chapters 8 and 9 they were used‘in model analysis
and found to give appropriate values for the Time-Area

o Method using a linear time-area diagram. The expressions

_ ;0.25
tc—Klll

B bt T it
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for surface-gutter and sewer flow may be summarized by

0.4 ... (10.4.1)
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where K,y andé K, includes catéhment parameters such as
slopes, lengths and roughnesses. The parameters may be
_evaluated from equation (7.3.8) - (7.3.10).

Lyngfelt (1981) evaluated by regression analysis an em-
pirical relation which gives values of t. close'to_those
obtained by the relation (10.4.1). The regression is

based on catchments having contributing areas greater
than 1.6 ha, '

10.5 Evéluation of the maximum flow

The IDF-curves may be expressed by the relation

B - ;;%5 +c cee (10.5.1)
where a, b and ¢ .are parameters which vary with location
and return period. Using the Rational Method we are look=
ing for the rain intensity corresponding to the time of
concentration -estimated by equation (10.4.1) which is a
function of the rain intensity. The intensity is obtained,

together with the time of concentration, by solving the
eguation system- :

ier, e = a/(t_tb)+c ... (10.5.2a)

t= Kll(i(T. tc))o'25+K2/li(T¢ té))0.4 +es(10.5,2b)

This may be done by using the regression equation

- a 0.25
tdpey = Kll[—Tz—;—— + C] +
c¢’'n
+ K,/ [___E__ + c‘] 0.4 .. (10.5.3)
| (t), :
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The 1ntensxty i(T, t ) is 6btained from eqdatlon 10.5.2a .o v
for a given t and the maximum flow by egquation 10.3. 2.-

10 6. Tests - d1scussxon

The Ratlonal Method relates the dlstrlbutlon functxons of
rain’ 1ntensxty and. flow in .a catchment. It is therefore
only possible to xnvestxgate the relevance of the model

' 1n catchments where such functions have been established.

Arnell (1982) used.a detaxled runoff model and a series

of historical storms to evaluate distribution functions
for discharge and rain intensity in 30 catchments with
different characterxstzcs. All of them are ‘subcatchments
in the areas LinkSping 1, Linkdping 2 or Bergsjtn, sze
Arnell et al. (1980}, The evaluation was done in order to
compare : -different design storms used in design of sewer
nets by detailed runoff models. iIn figure 10.6.1 the
sewer network of Bergsjtn is shown with calculation

points.

Flow rates evaluated by the Rational Method, as described
in the last two sections, were compared with Arnell”s
distribution functions. The ‘method was found to perform
with about the same accuracy as the detalled model usxng
a design storm. Three_examples are given in figures

©10.6.2 - 10.6.4.

When a detailed runoff model is used in design, the flow
is repeatedly simulated for different durations of the
design storm until a maximum flow is obtained. With this
procedure there is not a petfect" fit between rain 1in-
tensity and response time of the catchment, as there is
the case in the Rational Method as described above. This
fact is believed to compensate for the coarse deter-
ministic runoff model included in the Rational Method. It
also emphasizes the importance of including the rain in-

tensity in the estimation of the time of concentration.
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" Figure 10.6.1

Peak flow

—— N

The sewer network of Bergsjén (after
Arnell (1982))

BERGSJGN PIPE 9
0301 [m¥s])
; x
. x
0.20 T
- o
] x *
ox : N
] x x = Historical storm
x o= Rational - Methed
4 3 ’ .
x ;3
z
00
] .Return period- o1
172 2 3 4 S 10 [year)

Figure 10.6.2 The distribution function for the

discharge in . point 9 in Bergsjdn (see
appendix II) af’=2r Arnell (1982) with
the Rational Method points included
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Peak flow BERGSJON PIPE 24

0601 [m¥s]
0501 - x x
wod %
: L x *
. o* :
0301 « ® S x = Historical storm
o ' oz Rational Method
] x :
® x
x
. x
0oy
. : . - Return period .
2 - -2 3 405 10 [yeor]

‘Figure 10.6.3 ‘The distribution function for the

discharge, in point 24 in Bergsjdn (see
appendix II) after Armell (1982) with
the. Rational Method points ‘included

"201‘ Peak flow BERGSJON PIPE 73
- {m¥s
x
x
o
x x
1.01 o x
x 3
) x -+ x = Historica! storm
o, T o= Rational Method
® * »
® x
& *
050
Return period ST
172 1 2 3 4 5 10 [years]

Figure 10.6.4 The distribution function for the
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discharge in point 73 in Bergsjdn: (see
appendix II) after Arnell (1882) with
the Rational Method points included
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The Rational Method appears surprxsxngly capable of ‘esti-

- ‘mating statxstxcal desxgn flows. It should, however, be
istressed that the method as it .is uged here ‘requires
,much the same amount of input data as the kinematic wave
- models. In-addition it is usually advantageous tc have

the entire hydrograph and-not only the design flow as a
basis in the desxgn situation. Runoff systems with reten-
tion storages or overflows are examples where routing
methods must be used. The Rational Method is a very suit-
ahle method’ for calculating flow rates in the preliminary
design stage of a network system, in small or simple. sys-

. tems and also for checking the input data to more complex

models. When this method is used, the time of concentra=
tion should be evaluated by relations based on the kin-
ematic wave theory (see gection 7.3). Partlculat care
‘should be taken in estlmatxng te when this time is short

(< 10 minutes).
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. LIST OF SYMBOLS

SI-units are generally used. If not the unit is spécified

in the text. :

mu
o UUBU

cross-section of flow

dimensionless cross-section of flow A/A,

_cross-section at: stationary f£low.

contributiné catchment area -

par£ of contributing catchment area

parameter in the non-linear friction relation or
parameter in.the IDF relation (section 10.5)

amplitudes at section 1 and 2 (section 3.5)
width of charnel '

one of the gutter flow.lengths in the kW6G
geometrical model . .

exponent in che non-lineaf friction relation or
parameter in the IDF relation (section 10.5}

characteristic number :1 and 2 {section 4.2.5)

resistance coefficient

Courant number

modified Courant numberv(section 6.4.3)

wave velocity or parameter'in the IDF-curve
relation

dimensionless celerity (c/Vo)
kinematic wave velocity
diffusion coefficient

dimensionless time at which the lateral inflow

ceases (section 4.3.1)

diameter of the main sewer line

.

numerical diffusion coefficient

diameter of sewer

Froude number

Da:cy—WeiésbaCh friction factor
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acceleration due to gravity or
index for gutter flow variables

rain intensity
maximum average rain intensity (section 10.2)
maximum average rain intensity distribution

sbace step j and j+1

‘friction and shape parameter in the non-linear

friction relation
kinematic wave number

friction(pérameter in the L-formula

friction parameter in the quadratic formula

effective absolute roughnéss‘

length in flow direction

’catqhment length in the KW6G geometric model

length. of branches in the KW4G~I model
(chapter 8)

length of downstream sewer in the KW4G-I model:

length of gutter in flow direction
length of sewer

length of surface in flow direction
ienéth of main sewer line

time step m and m+l

Manning”s coefficient of roughness

‘wetted perimeter

exponent of the hydraulic radius in the
friction relation (section 5.4) or
index for sewer flow variables
flow rate

dimensionless flow rate 0/0
maximum flow distribution:

stationary flow rate

e s s AR

s

S i e e e e

5
H

FRBNPIICYY PFTN




n 0 n
SO

Y

maximum flow rate. obtalned by the
Ratlonal Method

surface'flow per'unit width

inflow and outflow rates to a reservoir
(sectxcn 7.2.1)

lateral inflow
dimensionless lateral inflow (q/q,)

st#tionary}iateral inflow

_¢onstant lateral inflow
“‘hydraulic radius

_Réynolds’ number

slope ‘in flow dlrection

.fr1ct10n slope

gutter slope in flow direction
slope of sewer in flow direction

nean slope of main sewer line (Lm/AH)

surface slope in flow direction
index for surface flow variables
return period (chapter 10)\.
time

starting time for a characteristic at upstream
boundary (section 4.2.2)

dimensionless time (t VOILY

time of concentration

time constant in lateral inflow

velocity of lateral inflow, cross-sectional mean
dimensionless velocity of lateral inflow U/Uo
velocity of lateral inflow at §tationary flow
velocity of-rain ' -

velocity in gutter, cross~sectional mean
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" velocity 'in sewer, crogs-sectional mean

“velocity in surface flow, cross-sectional mean

velocity of flow, cross-sectional mean
dimensionless Qeiociéy of flow V/V,
Vedernikovfs number

ﬁfétionary velocity of flow

velocity of wind o

space coordinate

cross-sectional water depth

‘dimensionless watérdepth Y/YO

stationary cross-éectional water depth
water depth in gutter flow section
water depth in sewer flow section
zonesvin the x~t plane (figure-  4.2.3)}
slope factor of side walls (tana = z)

numerical pafameter (weighted box scheme)
slope angle of channel

equivalent numerical parameter {a-diffusive
model)

correction factor for the cross-sectional

velocity distributions or
numerical parameter (weighted box scheme)

élevation between two points in the sewer system
time step .

space step

logarithmic decrement = 1n(a2/a1)b

mean absolute error in compared peak flow values
parameter in the MIT model (section 6.6)

length of sinusoidal wave

mean of the ratio between flow peaks

kinematic viscosity of water
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density of water

density of air

_integration variable

wave. number

standard deviation of the ratio between
compared flow peaks :

integration variable or
time-lag in the Time-lag model (chapter 7)

. mean shear ‘stress along the wetted perimeter

mean shear stress along the surface

shear stress of wind

angle between main and lateral flow vectors

angle between rain velocity vector and surface
flow velocity vector
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' Thls part, Volume II, of the report contains two appen- 2
"dices. In the first, catchments and rain intensity runoff i
measurements used in the simulations are described. In 3
appendix II, simulated hydrographs are presented. The %
documentation in this volume gives an important back- 3
ground for tne discussion in the chapters 8 tc¢ 10 in %
Volume I. Regarding appendix II it was considered suit- E
able to gather all hydrographs into one place in the .
report. i
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TEST AREASiAND FIELD MEASUREMENTS'

: I:1. Introductlon

Measurements of rain intensity and runoff in urban catch-
ments have been performed over a number of years by the
Department of Hydraulics in cooperatlon with the Depart-

- ment of Sanitary Enqlneerlng. “The 01rcumstances and ob-

jectives have varied between different locations causing
differences in measuring techniques, sampling periods,
evaluations, etc. In this appendix, catchments and v
measurements which have bLeen uséd in'chapters 8} 9 and 10

" (Volume I) are described. The catchments which have had

,similar measuring techniques applied are described to-

gether.

In section I:2 the largest catchments used in the analy-
sis are described. These have been used in earlier analy-
ses for instance Arnell & Lyngfelt (1975), Arnell (1980),
Lyngfelt (1981) and Arnell et al (1980).

In section I:3 the smaller catchments are described. The
measurements have been published as Master of Science
Theses; Ericsson et al (1978), Johansson et'al {1961) and
Nordgvist et al (1982).

In section I:4 the three smallest catchments are de-

" scribed. The measurements in these catchments have been

performed using a central sampling unit, Lyngfelt (1975).

@
K4
i

I:2 Test areas larger than 1 ha

I:2.1 General

Two large runoff catchments have been used in the report.

These are mainly residential areas with some central
buildings. With respect to building structure, topography
structure of sewer net, etc., the areas are very differ-
ent, For instance, the slopes of the main sewer systems
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are 12 and 45°/00, respectively, in the two areas.

The areas chosen may be regarced as typical for Sweden in
all respects except for the available information and -

‘quality of the sewer system. In these respects the areas

are proHabiy better_than the average.

1:2.2 .The Bergsjén catchment

Bergsjsén (15 ha) is a housing area NE of central Gote-

korg. It is situated about 90 m above sea level and is

quite steep, although it has a flat central part. The

-runoff catchment is well delimited by a road and a moun-

tain ridge. The suburb was built during the GOTs and. con-
tains buildings with three and six storeys. In the area
there are also two parking decks and a business location.

] P
’
' . N i
. {
Surface - Area - Part of - Average v :
material 104 pZz the total slope ¢
area : 3,
2 %0 ) ‘ 4
Aspahlt, 4.2 27 29 r
concrete : et
Roofs 1.6 1 30 ’
Rocky areas 0.6 4 - .
Lawns 3.4 22 65 H
. .. —
Forest areas 4.3 28 100 H .
Remaining 1.3 8 o= & /
areas . 5
T R ., o
Total 15.4 L 109 A

Scale

0 100 200m

Y Runoff gauge
¥ Rain gauge

_Figure I:2.1 The BerQsjén catchment, after Arnell
(1980} . '
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o The catchment is drairie'd.ﬁby a separate urban stox‘_‘:mwateir ;
-system. The structure of the sewer net, measuring points A E
' and the sizes of different types of surfaces are illus~ &
. . ' : ' . £ p
- trated in figure I:2.1 {(see also Stromvall et al (1976)}). E 3
o g
DA : " . I:2.3  The: Linkﬁping 2 catchment i ;
Link&ping. 2 (18.5 ha) is a part of a larger catchment, - ' 3 1.
: Lin_kiiping 1, Arnell (1980). The area is flat and contains
.v RO S - ~ link houses, villas and school premises. The catchment is
: Sﬁrfa?:e o Area = Part of bAverage g
¥ _material -7 ,44 2 the total. slope E:
v. L area- ’ 3
: % ' %0
. Streets/ : ‘
sidewalks R -~ : :
asphalt 3.3 18 5 -50 LINKOFING 2
) Roofs: - 3.0 16 50 = 1000 ;
’ i i o Lawns 8.9 48 10- = 30
: ) L : Bushes and ' ‘ ‘e 1
. forests ‘ 3.3 18 - . ;
o ‘ e ' Total .  18.5 100 . . D
.
®
‘ ., e d B
e : SN 0 100 200m
B - . \\ :\.': | EENOREION [N S —
_ e Y Runoft gauge
< : : ; Rain gauge
® S ' Figure I:2.2 The Link&ping 2 catchment, after Arnell
‘ . : ' (1980) . ' ‘
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drained by a separate ‘urban stormwater systen. The struc-~

- ture of the sewer net, measuring p01nts and the distribu-

tion of dlfferent types of surfaces are illustrated in

figure I:2.4,

I:2.4  Rain intensity - runoff measurements
Measurements in both areas are~basicailyvmade in the same
way with a rain gauge at one point in the catchment and a

idischarge~measuring weir at the outlet. In Link&ping 1

two preéipitationﬁrecorders were installed and the flow

was recorded in two points inside the catchment area.

The precipitation was measured by an instrument of the
siphon type, which gives an accumulated precipitation
curve -on a- chart recorder. The resolution in time is 1-=2

minutesAand in volume 0.05 mm.

The runoff was measured with different types of sharp-.

crested weirs. In Bergsjén, a pond was constructed at the

outlet of the sewer system and in Linkdping 2 the weir
was installed in a manhole. The manhole arrangement was

~calibrated by model tests in the laboratory (Johanison et

Water level gauge

Recorder

Overflow

Figure I:2.3 Recorder and equipment for water level

measurements.
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al, 1981). Water level measurements were made by ultra-
sonic water level gauges (ln Bergsijon a floatlng gauge)
and were recorded on a chart recorder (resolutlon 1-2
m1nhtes), see flgure I:2.3. '

As th¢ raih intensity and runoff were recorded separately

it was not possible to get'perfect time coordination.

Most of the obtained records were digitized and stored
~ for computer evaluation (Arnell & Lyngfelt, 1975; Arnell "
et al, 1980). From these records, values of rain inten-

31ty and flow (in 1 minute 1ntervals) for separate storms
were evaluated and used in the model simulations.

‘Arnell (1980) "analysed the sources of error in the

measurements andvfound a total error of about *15% for
the rain intensity measurements and *10-15% for the run-

~off measuremeénts. This estimation can be regarded as an

‘upper limit for errors in volume for separate storms. The

error in single (or some) precipitation intensities and
flow values might,. however, be more than 15%.

\
From the rain intensity and runoff records it was poss-
ible to estimate the contributing runoff area and the

average surface depression storage. Those parameters were

calculated by regression analysis of rainfall and runoff
volumes for all separate storms, see Arnell & Lyngfelt
(1975) and Arnell (1980).

I:3 Small_test areas

I:3.1 General

When discussing different approaches to base catchment
modelling, it is of interest to compare simulated runoff

" with the corresponding measurements in small areas. A

series of measurements has been made in such catchments.
In this section three of thenm, whére measurements and
evaluations have been made in a similar way, are de-
scribed. ’

#
3
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‘ B 'fi‘h.e measurements 'we:e concentrated 'in a short perio& of
o B B _the summer in order to obtain 5-10 separate, intensive b
S -.  storm events. - : S
’ ’ ) . B . : “ .3
Q. ‘:1
}" : , - X:23.2 The airport surface AASP ;
; » k

-The runoff area is one part of the so.called freight

| apron at Landvetter airport (20 km E of G&teborg). The

i ' f 1 h surface is situated at the side of the runway and is sur-

i ' 'rounded on two sides'by.permeable‘surfaces (grass and
crushed stone respectively). The other sides are ridges
that delimit the surface from other parts of the freight
apron. From the ridges the surface slopes towards a low
point line and the collecting sewer. The water is col-

o lected in 8 inlets 30 m apart, see figure I:3.1. The
greatest flow-length of the surface is about 65 m and the
average slope is 10°/00. The collecting sewer has a dia-~

meter of ©300 mm and the slope 2.5%/00. The total catch-

ment area is 10 130 m2.

t Hangar

Runoff gauge V"
O————0

1 Rain gauge
Asphalt .
surface ©

— — — Water divide on the surface

« Border for the catchment — NGiifiiiiiiil ‘|
® - v NG
‘ Scale . \

0 SOm '

——

o Figure I:3.1. The aifport area AASP.




The area consists of even and eaSily defined asphalt o
* surfaces. The location is advantageous as the area has
- low traffic load. The runoff area with measurements are
also described by Nordqvist et al (1982).

I

3.3 ' The parking place PASP

The parkihg lot PASP is situated at Landvetter airport
between two administration buildings. The area is de-
limited by these buildirqgs and thé‘kerbstone towards a
grass area. At the entrance and exit the area is limited
by ridges, see figure I:3.2. Prom the ridges the area
slopes towards a low point line and theAcollecting sewer,

~ At the upstream end of the sewer net there are three in-
lets, 30 m apart. The ruhoff area is quite evenly sloping
with the gteatest slope .measured being 11°/oo. The
greatest flow length is about 30 m. The diameter of the
sewers is $300 mm, and the slope is 10° /oo, The runoff
areca is 4 260 m .

Building ' |

Grass v
Asphalt surface

Building

Rain’
g:uge * Scale: _
S~vRunoff 0 10 20 30,
gauge [l " — ]

- ———  Water divide on the surface
————  Border for the catrhment

Figure I:3.2 The parking lot PASP,
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- - The traffic load on the surface ‘is low, and the area was
' not used as a car park during the measuring period. The
 runoff a;:ea, w1th measurements, is also described by Jo-

h ‘ hansson et al (1981).
o - . |
i I:3.4  The street surface SASP

The run‘ofvf area is situated in a housing area in central
Halmstad The rufibff surfaces consist of street surfaces,
. v : dralned separately to a percolatlon pond. The streets are
traditional with pavement and roadway (slope around 3%).
The surfaces are in general well dellmlted by kerbstones .
and houses. The collectlng sewers have the diameter

©225 mm. The average slope in the network system is ‘
around 7°/0o. The sewer system was reconstructed when the
percolation pond" was built. The structure of the system

is shown in figure I:3.3. The runoff area is 3 670 n2
i
ol _
| ]
— - \
l’ H
‘ TS ‘' =—"—<Falckens vag, .
® —
5 "V~ Runotf gauge
gg;%olation . g Rain gauge
Scale
® ’ Y S0 m
Nt L [ !
| . Falkennargsgatan X
1 C
: f%

Qe Figure I:3.3 The street surface SASP.

Mapping and precipitation-runoff measurements were made !
® * as a part of the analysis of the function of the percola- ;

tion pond (Ericsson et al, 1978).
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I:3.5 Rain intensity - runoff measurements » s

Me_asurement. of rain intensity and discharge. in t:he three
. areas were made in almost the same way as the measure-
ments described in'seétion II:2 and the same equipment

was used as -well. Although the catchments are small the

characteristic times of conéentrafion'are long, for two

Iy Wor

of them longer than corresponding time in Bergsjoén. For
these areas the resolution in time can be regarded as.

acceptable. In the smallest catchment this resolution is i
too small., However, in this case the measuring pond

showed sbignificant influence on the attenuation of run- ; ;
off. In view of this attenuation the resolution in this
area can also be regarded as acceptable.

$300

(a) | ¢80 | ~ (b)

SASP: 41000
PASP:92000

B B
. {

Py ": f Figure I1:3.4 a The measuring point at the AASP catchment. !

) : :

- |

b The measuring point at the  PASP and SASP %

* w catchment.
o § The discharge measuring weirs have in all cases been

located in manholes in the sewer system. The two

v!m.‘we:l

e

measuring points at the airport were prepared for

i
5




° ‘ : meésurefnent by increasing the manholé diameter in one
R . case and, in the other, by enlarging the incoming pipe.
-~ f " - fPhe measuring points are shown in figure I:3.4.

. None of the weirs have good inflow conditions. All
o . , m_easur'ing‘ points were calibrated by using fire-hydrant
- water and fire-fighting water from a fire engine. Thus

- calibration flow corresponding to at least 80% of the
-highest runoff measured were obtained. The accuracy of
flow values should therefore be at least as good as the ) i

Jr——

L] | a2
: one for large area measurements.

In each catchment the participating impermeable surface -
and depression storage was determined by linear regres-

sy cran o T e s w3 b h

® ' sion analysis.
I:4 Small test catchments in Bergsjdn
® . I:4.1.  General

In Bergsj6n initially five small areaé were chosen for a

close study:

® : _ * A small asphalt surface (street area)

* A roof surface (one half of an apartment house)
* A parking deck of concrete

* A grass surface

: . ,
:. * A part of the catchment consisting of several roof
<4

® * and asphalt surfaces : :

The main objective was to get a basis for.testing differ-

’ ent runoff models. During the first meas_uring season

b there was no runoff from the grass surface although it

. : was very large and .had a steep slope (more than 1000/00) .
& The study of this surface was then suspended.

PRPRCDORE ICPRRECI CIC MRS IO PRSSNTW Y PRVCONE S S Y
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' The “roof surface” catchment con51sts of half the roof

surface of . a roughly 100 m long block of flats (area
about 800 m ) with a collectlng sewer at the ‘side and the
measuring point at one gable. A closer analysis of the
runofﬁICOnditions showed that this system was heavily
influenced by the‘cpllecting.sewer{'There was a depres-
sion about 10 m upstream of the measurement point, from‘
which significant backwater effects were obtained. The
test catchment was therefore not used in the final model
simulaticns. |

‘Analysing the runoff from small Surfaces‘requires a

higher resolution in time compared with the measurements

described previously. Therefore a special data collecting
sxstem was built with a central unit where all data were'
registered on tape, see below, Lyngfelt (1975).

I:4.2 The street catchment ASPH

The area consists of a part of a road surface and a pave-
ment that is drained through a gutter towards a gully.
The guftef length is about 50 m. The runoff area is

430 m2, eee figure I:4.1.

Grass
<<:\\\\\\\\\ A Street ™
. P - —_—
"= Pavement — Y Runoff
: .gauge
Grass :
Scale
0 20m
Figure I:4.1 The street catchmenc ASPH.
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The water d1v1de at the upstream end might be expected to

'vary a little with the flow during a rainfall. Therefore

a dxv1d1ng asphalt line was laid along this divide. Thls
also continued over the gutter to prevent inflow from the

. upstream gutter..

‘Thé catchment consists of a coarser asphalt material than

in the ones described in the preceding chapter and is

~also considerably more "uneven". The slope is also

greater ~ around 44°/o0.

I:4.3 The parking place PCON

The catchment consists of the upper floor of a two stofey
car park and the area is thus well defined. The deck is
drained by six inlets at one side of the rectangular
deck. The surface material is rough concrete, the flow
length 14 m and the slope 14°/00. The collecting sewer
goes along the long side of the deck to the measuring
point and is thus relatively long, just more than 100'm,
see figure I:4.2. The sewer diameter is $225 mm and has

the average slope.36°/oo. The runoff area is 1700 m2.'

Runoff
gauge

U - —560——004—-—»0

f Parking plccé I

Figure I:4.2 The parking place PCON.:
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I:4.4 The composite catchment COMP

The citchmentvis a part of Bergsjén (see I1:2,2) and can
be regarded as representative for Bergsjon itself as well
as a small urbén catchment in general. The composite
catchment has several guite large surfaces, a roof area
of about 1400 m2 ahd a parking area of 700 mz. The other

areas attached are mainly road surfaces,; pavements and

-foot paths. The sewer system has the diameters 9225 mm
"and 300 mm. The average slope in the system is 22%/0c0.

The structure of the system is shown in figure I:4.3. The

total area of the catchment is 3430 mz.

Figure I:4.3 The sewer system and runoff areas in the
composite catchment COMP.

I:4.5 . Rain intensity - runoff measurements
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The choice of runoff catchments is to a great extent
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'ﬁ;governed by the possibility of finding suitable places
' for discharge measurements. It has not been possible to
‘create any ideal measurement. condltlons in Bergsjon, but
_since the catchments are quite small, it has been poss-L
'1ble ‘to calibrate the discharge welrs with the aid of

flre—hydrant water.

The sharp crested measuring weirs were made of metal,

'V-shaped in three cases and rectangular in one. The angle

of the‘V—shaped weirs were adjusted so that the two year

- rainfall, calculated according to the Rational Method,

could be registered for an overflow height of 25 cm.

The measurement weirs in the PCON and COMP catchments

were installed in existing manholes, $900 mm, see figure

i:4.4. The weir was placed at such a level that discharge
mappe was aired, and the influenced area upstream of the

s'weir was small. The lowering of the magazines during dry
" weather was small due to careful jointing and the low

evaporation in closed systems.

The measuring weir of‘the ASPH catchment was placed in a
gully. A metal box was constructed to get as slow an - in-
flow as possible towards. the overflow. A pefforated'metal
sheet with holes was placed in the middle of the box to
distribute the water o?er the cross section, see figure
I:4.4. ‘

The measurement system consists of point level gauges
placed in the measurin, stations and a central, regis-

‘tering unit. The point gauge is motor-driven and ¢on-

nected to a potentiometer, see figure I:4.5.

The central unit consists of a data logger (Epsylon) re-
cording the data on magnetic tape and a clock unit, see
figﬁre I:4.5. Each measurlng sequence 1is started by the
clock unit which gives a pulse to the gauge motor to lift
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. é weight (for 7 seconds) and then 1OWer 1t to the water
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surface. Wwhen the weight reaches the water surface the
motor power is cut off. The measuring sequence is ended
with a pulse from the clock to the data logger, to record
the potentiometer values.

ASPH - su;face

Figufe I:4.4 The discharge measuring stations at Berg-
’ sjén. V

The demand for high resolution in time for the records
results in iarge amounts of data. To reduce the amount of
data a spec1al level gauqge was placed at_ the measuring
point of the asphalt surface. When the water level at
this point exceeded a fixed value, a sampling interval of
30 seconds was used. Below this level the interval was 10
minutes.

The central unit was placed.in a manhole at the centre of
the catchment and signal cables were drawn from the




v

‘ . ' ' gauges in the sewer net. In this way the sampling system
@ : .could be placed beneath’ the ground which is an advantage
when the risk for damage is considered. '

The measurlng weirs wvere calibrated by flre-hydrant

water. The flow was measured by flow meters connected to
the fire-hydrant heads. At each measuring point the : : '
response was régist_ered by the cata logger for five dif-

® . ' ferent flows. Thus a direct correlation between the
Lo digital unit of the data logger and the flow was

achieved. As the calibration was made also for the

i . greatest flows, the calibration curvé was used directly
‘ v : ~at the evaluation and no analytical relation between
water level and flow was ‘evaluated.
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- Figure I:4.5 Measuring system for the small datchments
. Vin Bergsjon. :
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aII o SIMULATED AND RECORDED RUNOFF HYDROGRAPHS

In order to facxlltate comparlsons all hydrogzaphs have
been gathered in thigs appendix. The plots are lelded
into two main groups, IX:1l and II:2, correspondlng to the
simulations in chapters 8 and 9, respectively.

Within each group hydrographs simulated by a specific"
model have been put together for all catchments and
storms. '

As the rain intensities and storm durations vary con-:
siderably between storms it was necessary to use dlffer—

‘ent scalings. The runoff rates are expressed in the same

unit as the rain intensity [1/s-ha].
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In this section the hydrographs from the six catchments
discussed in‘chapter 8 are presented.

RN

'II:1.1 - Comparison between the recorded and simulated

runoff
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recofdec-l-’simulated ,hydrogréphsA, continued
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. recorded-simulated hydrographs, continued
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- recorded-~simulated hydrographs, continued
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‘ . : v reCordéd—sirﬁulatedfh;%drdgra;:;hé‘, ‘continued
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. recorded-simulated hydrographs, continved

|
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. recorded-simulated hydrographs,

continued
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recérded—éimu}ated hydrographs, continued
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.‘ - recorded-simulated hydrographs, continued
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recorded-simulated hydrographs, continued
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Comparison; the detailed kinematic wave model,
KW6S-S model, and KW4G-I model '
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KW4G-I model hydrographs, continued
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. ] KW6S-S and KW4G-I model hydrographs', continued
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KW6S-S and KW4G-I model hydrographs, continued
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KW6S~-S and KW4G-I model hydrographs, continued 4
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1I:1.3 Comparison: the detailed kinematic wave model, : !
HEEe, . . !

KW6S model and KW3-model (KW4G used in the {%SP'H

catchment)
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' KW4G and KW3 model hydrographs, continued
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. ’ ~ KW6S and KW3 model hydrographs, continued , t
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KWGS and KW3 model hydrographs, continued
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KW6S and KW3 model hydrographs, continued
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KW6S and KW3 model hydrographs, continued
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'KW6S and KW3 model hydrographs, continued .
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~KW6S and KW3 model hydrographs, continued
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., . ] KW6s and KW3 model hydrographs, continued |
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! KW6S and KW3 model hydrographs, continued
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II:l-'.4 Comparison: the detailed kinematic wave model
and the Time-Area Method

1,Qll/sha) ASPH - catchment -

— Hyefograph-

—&— Detailed simuliation
—~+— Time -~ Area Method (linear)
Time - Area Method (S -shape)

Lo T
q
T N - o
‘5. ) 10 15  t {min)
ASPH - catchment| —— Hyetograph
—&— Detailed simulation
i,Qll/s'ha) —+— Time - Area Method (linear)

A
80+

Time -Area Method (S-shape)

SRS AT AT

e s £




. Time-Area Method, continued
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Method, continued
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Time-Area Method, Continued
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‘Time~Area Method, continued
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Time-Area Method, continued
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II 2 : Hydrographs from Bergsgon and Llnkbplqg

. i
4In this sectlon the hydrographs from the two catchments

. Bergsjdn and Linkdping 2, discussed in chapters 9 and 10,

- are presented.
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11:2.2 Comparison; the detailed kinematic wave
KW6S~L1 and‘ KW4G~I models
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 KW6S-L1 and KW4G-I model hydrographs, continued
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KWGS—L~2 and KW6S-L3 model hyarégraphs, continued
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. TAL1 and TAL2 model hydrographs, continued
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