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ABSTRACT
This study deals with the modelling of stormwater runoff
in urban catchments. An analysis of the basic governing
equations shows that the kinematic wave equations repre­
sent a suitable approximation for urban runoff modelling
in.genera1.'1'heHanning formula was found to be a reason­
ably.valid frictiori relation for the modelling of over...
land flow. A .modified numeric.,l solution algorithm is
proposed which reduces the calculation volume in compari­
son with conventional methods.

Different approaches to discretization of the geometric
input data (size of base catchments) were investigated in
six small urban catchments « 1 ha contributing area) and
two large ones. From the tests it was concluded that:

o Independent of the model used and the bas~ catchment
size, the choice of input. parameters in .the base
catchmentrnodel (overland flowpdrameters) has a
significant effect on the attenuation of the outflow
hydrograph •

o The kinematic wave model is both simple to use and
adequate as a base catchment model.

o With this model, relatively big simplifications can
be made in the input data geometry with reasonably
well maintained performance, provided the catchment
characteristics are properly evaluated.

o The catclment characteristics can be evaluated using
relations derived from the kinematic wave theory,
assuming constant rain intensity.

In a separate study the ability of the Rational Method
to reproduce statistical peak flows was tested. Using a
time of concentration based on kinematic wave theory,
the method performed well.
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PREF~CE

Th~ i,nvestigations presented in-this thesis deal with
urban runoff modelling-and are mainly concerned with the

- rele1Tance of basic equations, nUl&erical solution methods

and discretization of geometrical input data. The work
has been carried out at the Department of Hydraulics,

Chalme~s University of Technology .and is a part of a
major research effort by the Urban Geohydrology Research

Group at the University.

Other studies in the field of urban runoff modelling
carri~dc.ut by thertlsearch group nave dealt with
s.elec_tion of storm input for the design of sewer systems,

optimizati.on-in the design of sewer systems, and storm

water quality.

All relations presented in the report are based on 51­

units. The Sr-unit for rain intensity and discharge per

uni t area (mb,) is not very practicaL Both in figures,
and when magnitudes of intensities are discussed the unit

litres/(second·hectare) 1 l/s"ha = 10-7 mls = 0.36 rom/h)
has been used. It is the most co~~only used unit ~mong

Swedish sanitary engineers. In describing magnitudes of
catchment areas, hectares have been used (1 ha .. 104 m2).

G~teborg, March 1985

SvenLyngfelt

1-":"-

/1
,

I . • __ ".

-I'
If
:1
I'

"

-"

.-:;::::"......:. <.
--: -.

'-

•
•



-.

• ..

•

••

•••
•

•

• •

ACKNOWLEDGEMENT

This work has been financially.supported by the Swedish

Council for Building Research (BFR).

I wish to express my gratitude to all colleagues and
friends who have contributed to the accomplishment of

this study.

My supervisor, AndersSjober<}I has encouraged me greatly
and given valuable advice during all phases of the work.

Parts of the field measurements have been ce.rried out in
cooperation with Viktor Arnell who has also given valu­
able advice in numerous discussions. Several students .at
the University have also made contributions to the field

measurements •

Gosta Lindvall and Steffen Haggstrom have given valuable

advice in the final work involved in this report.

Ann-l-1arie .Holmdahl typed, and patiently retyped the manu­
script. AlicjaJaniszewska drew the major part of the
figures. The language was corrected by Shirley Booth and
Appendix I was translated and typed by Ann-Marie Hellgren.

Thank you all!

Sven Lyngfelt

1
"

....

I

\
\
\

-
•'.

Preceding page blank III



•

•
LIST OF CONTENTS

VOLUME I

page

I, ....-.~ ..

I

II

V

IX

1

1

3

4

5

5

5

8

11

12

15

15

16

i7

20 I23

27
i

27

29

29 \
..1

32 \
.\

34

38

39

42

1
V ;Preceding page· blank

APPROXIHATIONS OF THE SHALLOW WATER
EQUATIONS
Simplification of the equation of motion

The kinematic wave approximation

The kinematic wave equations

Analytical solution of the kinematic
equations in case of only lateral inflow

Analytical solutions in some special cases

The kinematic wave including the
lateral momentum term

Kinematic shocks
Applicability of the kinematic wave equation

The shallow water equations

Initial and boundary conditions
Dimensionless shallow water equations ­
magnitude of the terms
Celerity and attenuation of waves

URBAN RUNOFF CHARACTERISTISCS

General
Precipitation.

Surface runoff

Gutter flow
Flow in conduits

4.2.5

4.2.6

4.2.3

4.2.4

4.1

4.2

4.2.1

4.2.2

4.

3.5

3.3

3.4

3.2

BASIC EQUATIONS FOR L~STEADY GRADUALLY
VARIED FREE SURFACE FLOW

3.1 General

3.

2.

2.1

2.2

2.3

2.4

2.5

1. INTRODUCTION

1.1 Orban runoff modelling

1.2 Scopecf the study

1.3 Arrangement of the contents

PREFACE
ACKNOWLEDGEMENTS

CONTEN'£S

SUl-IMARY

to

•

•

•

• •

•

•••

•

•••



••••
.._-,;",...---.--~------_. ---~ .. _.-:-_-.~._--

-

\

\

~
...

. ,
.. --

\ .

./

..-

,.r ..

.--- ~

/
I

./

I

77

77

77

80

80

82

83

85

86

88

89

89

91

92

96

98

91

100

58
58

38

62

66

70

71

72

54

53

53

45

50

45

45

NUMERICAL SOLUTION METHODS OF THE KINE~~TIC

WAVE. EQUATIONS

General
Finite difference schemes
The weighted bOlt scheme - general properties

Finite diiference equations -
Numerical dif~~sion - consistency
Classificatio~ of weighted box models

'Negative diffusion' (Dn > 0)

Positive diffusion (On < 0)
Selection of numerical parameters
The weighted box scheme - numerical
experiments
Aim and scope of the experiments
Numerical models and experiments

The et-diffusivemodels (<;l;0.5)

The 8-diffusive models (0.5; 8)

The et6-diffusive models (ct;6)
The Lax-Wendroff scheme
Classification of routing methods

Investigation Of f·riction losses in
surface flow

General
Flow over a smooth surface
Flow over "artifil.:Hllly roughened" surfaces

Flow over asphalt and concrete surfaces

Rollwaves
Wind forces
Summary a~d discussion

THE F~ICTIbN LOSSES OF OVERLAND FLOW

General.
Alter~ative formulations of the friction
relation

1he diffusive wave approximation
Bas~c equations - the diffusion analogy
Applicability of the diffusive wave
equations
Su~~ary and discussion

4.3

4.3.1

4.3.2

4.4

5.
i
5.1

5.2

5.3

5.3.1

5.3.2

5.3.-3

5.3.4

5.4

5.5

5.6

6.

6.1

6.2

6.3

6.3.1

6.3.2

6.3.3

6.3.4

6.3.5

6.3.6
6.4

6.4.1

i 6.4.2

I 6.4.3

6.4.4

~ 6.4.5
~ 6.5

I 6.6
II
jj

g

I VI

~

i

•

• •

•

•

•

•••

•

•

•••



...

•
-".

6.7.1

6.7.2

6.8

Numerical sol~tion of the diff~sive
..wave eq~ation - a comparison

The basic diff~sive eq~ation

The convective diff~sion eq~ation

S~lIUlIary

101

101
i

102

103

t.

\
I

'-­,
!

.---

1

I

VII

125.

134
137

139

144

147

125

124

131

111

121

125

113

118

130

130

120

120

106

106

107

107
106

109

109

BASE CATCHME..JT MODELS
Ceneral considerations
General characterization of the test
catchments andmeas~rements

f.1odelsand criteria for comparison
of r~noff hydrographs
Kinematic wave model sim~lation ­
comparisons with recorded hydrographs

Detailed geometrical description of
the catchments
Comparison between recorded and simulated
runoff
Simulations using simplified geometric
input data

General
Representation of catchments with nb S~~dr
net - the KW3, KW4G and KWGG models
Representation of catchments with a sewer
net - the KW6S, KW6S-S and KW4G-I models

Application of simplified geometric 'e1s
Sil"ulations by simplified geometric ludels

Simulations by the Time-Area Method

SUllUllary

RESERVOIR ANQ CASCADE MODELS

General
Reservoir models
Linear-nonlinear reservoir models

The Time-lag model
Cascade of linear reservoir models

Basic equations
The time of concentration, t c ' in the
Time-Area Method
~he time area diagram in the Time-Area
Hethod
summary

8.5.3

8.4.1

8.7

8.5.1

8.5.2

8.5.4

8.5.5

8.6

8.5

8.3

8.4.2

7.3.3

~.4

7.4

8.

8.1

8.2

7.3

7.3.1

7.3.2

7.1

7.2

7.2.1

7.2~2

7.

••

•

•

•

•

••.'

,.•
I ..-



Kinematic wave model simulation - comparisons
with recorded hydroqraphs 151
Simulations using different levels of base
catchment sizeu 152
Simulation by the Time-Area Method 154

Summary 156

REFERENCES

189

195

175

169

158
158
158
160

162

163
164

150
150

EVALUATION OFSTA~ISTICAL MAXIMUM FLOWS

General
Basic deterministic relations

The Rational Method
The time of concentration
Evaluation of the maximum flow
Tests ~ discussion

BASE CATCHMENT MODELS APPLIED

General

9.3

9.4

9.5

9.1
9.2

9.

LIST OF t'IGURES

LIST OF TABLES

LIST (IF SYMBOLS

10.
10.1

10.2

10.3
10.4

10.5

10.6

e.

•••

•

•

•

..-
VOLUME II

•
PREFACE

CONTENTS

I

III

APPENDIX I - TEST AREAS AND FIELD MEASUREMENTS 1

• •

APPENDIX II - SIMULATED AND RECORDED HYDROGRAPHS 18

VIII

e

•• . ..... _-----....:.._-

.
e'



I I

i

I .,1.••I "
f '

i

IX

The ~ine~a!i£ ~a~e_ a~proximativn is defined bya very
simple set of differential equations and boundary con­
ditions.~Themomenturnequation is reduced tc an unique
relation betwE:oen flow and water depth., Despite this, in
the general case the equations have to be solved by

nurnericalmethodr. In the case of constant lateral inflow
an analytical solution is obtained. It is then possible
to derive relations for the evaluation of the time of

concentration based o~ t~ekinematic wave model~ In the
model, the flow waves travel with the kfnenatic wave

velocity which is greater than the mean velocity ar.d

varies in both time and space. The kinematic 'lave model
aoes not ,takeba~kwater into account and in theory it is

not able to reproduce the dynamic attenuation of a flo\'!
wave.

The runoffl,)rocess in surfaces. gutters andse\'!ers i,s
described by one continuity ana one momentum equation,
the shallow water equations. These-are,not very practical
in application and a lot of compntation can be saved by
simplifying the basic formulation.By neglecting certain
teres in t~e momentum equation, simplified sets ofequa­

tion systems are obtained. A study of the influence of
different terms shows that there arc two approaches of

interest in urban runoff modelling, the kinematic and the

diffusive wave approximations.

SUNMAR~

\

-- The study deals ,dth modelling of the urban runoff

procesa. T.he ,main objectiveswp.re to make recommendations

for the selection of a basic ~oael and suitable numerical
solutions, and also tQ illvE::stigate the iraportanceof dis­
cretization of the geometrical input data and develop

usable bas,e catchment moJels. (1\ base catchment modelia
the smallest part into which the catchment is subdivided

and 4efinesthe sewer net modelled.)' Runoff from perme­
ilble surfaces is not cons£dered in the stu<ty.
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In the ~i!f~slv~~a~e_ approximation a downstream

bQundarycondition is needed. Then i~is possible to
analyse systems significantly influenced by backwater.
The model also reproduces the main part of the dynamic
attenuation of the wave.

In urban runoff modelling where the geometries usually
have to be simplified, it is difficult to formuJ.Clte the

relevant downstream boundary conditions (with the ~xcep­

tion of the main sewer line). Flow in lateral inflow
reaches, such as surfaces, gutters or sewers with lateral
inflow, is exposed to a characteristic (not dynamic
attenuation). This "attenuation" is generally more signi­
ficant than the dynamic attenuation and is properly re­
produced by l:he kinematic': wave model. From a theoretical

point of view the kinematic wave model appears to be
suitably sophisticated for base catchment modelling.

In the kinematic wave approximation the momentum equation
is represented by a friction relation. In the stUdy
results from reported investigations of friction losses
over rough surfaces have been put together. The study
gives no base for using differentiated roughness para­
meters at different types of surfaces in an ordin~ry

. urban catchment. Neither could a relation between the
friction factor and rain intensity be specified. Several
friction relations for instance the Danish L-formula, the
quadratic formula and the Manning formula, were compared
with the reported friction loss studies. They were found
to fit reasonably well to the test data, prOVided a
suitable roughness parameter was used. As a general rela­
tion for overland. flow, the Hanning formula· was selected
with a roughness coefficient n=0.016 for surface flow and
n=0,013 for gutter flow.

The numerical solution method commonly used for the
kinematic wave equations gives rise to considerable
numeri~al attenuation of flow waves. In order to keep
this to a level close to the dynamic attenuation very

x
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replacement of gutters with incre<ised surface lengths

assuming only lateral surface inflow to the
main sewer line
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f;lmall space steps havetb be used (AxIL < 1/15). For each
space step the solution is evaluated by an iterative
technique. By a slight modification of the solution
algorithm (the a-diffusive model) greater space steps may
be used with retained low numerical attenuation •

using the mean slope of the main sewer line

excluding minor branches in the sewer system.

By assumi!'1g·the wave velocity to .be constant in space,
time or both space and time, simplifications of the

soluHonalgorithm can be made. The nOn linear reservoir
model and the Time-Area Method are examples ·of the first
two alternatives; the Rational l>1ethod is an example of
the third. It was found th<it the performance of the
Time-Area Method in simulating real storm events is as
good using·a line<ir time-area diagram as using. diagrams
of any other shape.

The detailed model was used. to test the effect of differ­
ent degrees of simplification of the catchment parameters
and to test the Time-Are<i l>1ethod. It was found that the
performance of the kinematic wave model is still very
good even for quite great simplifications of the catch­
ment geometries such <is

Recorded rainfall and runoff irom six small catchments
«1 hectare contributirg area) were used to test the
kinematic wave model. It was found that the kinematic
wave model based on a detailed descriptiori\ of this catch­
ment reproduced the runoff process reasonably well.

The simulations by the Time-Axea Method showed that
reasonably <iccur<ite v<ilues of single flow peaks may be
obtained. However, the general shape and delay of the
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simulated hydrographs were not in level with those of the

kinematic wave models.

Independent of which model is used the main difficulty
is to choose input data, such as surface length, slope

or time of concentration, in order to get properly
attenuated hydrographs. in the study the choice was based
On the evaluation of representative times of concentra­
tion by kinematic wave .based relations. As the evaluation

15 approximate there is a risk of incorr~ct attenuation.
'l'herisk of large errors is greatest for the simplest
models (theKW3 model and the Time-Area Method). A closer
evaluation of the time of concentration would in~rease

the accuracy of the models. However, a more sophisticated
way of estimating this time i~ not meaningful when. the
basic idea is to develop a simplified method of creating

input data for the models •

The optimal geometr1c simplification for the kinematic
wave model, regarding both the demand for simplicity in
input data and accuracy, is described by the KW6Smodel.
The model is built up of a sewer with the length and mean
slope of the main sewer line in the catchment. The sewer

is lateraly fed by a surface with length ana slope
corresponding to an estimated time of concentration which
is representative for runoff to the main sewer line.

I
l
L
I
t
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The te~ted runoff models were also applied. as base catch­
ment models in two urban catchments with total areas of
15 and 19 hectares. Three levels of subdivision into base
catchments were tested where the finest division corre­

sponds to sizes round 0.5 ha.

The simple KW6S model was applied as base catchment model
at the three different levels of subdivision. Using
greater base catchment sizes the performance is not quite
as good. However, there are no drastic changes and it is
obviously possible to obtain a very good performance
using quite large base catchments, provided the catchment
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These catchment characteristics can be evaluated
using relations derived from the kinematic wave

theory assuming constant rain intensity.

Independent of model and base catchment size, the

input parameters in the ba$e catchment model .(over­
land flow paramet.ers) has a significant effect on the

attenuation of the outflow hydrograph.

The Time-Area tlethod does not perform quite as. well as
the kinematic wave IT.odel despite the fact that the same

amount of catchment data is required. Though . the I~odel

properly used has a performance which is acceptable in

many applications there is no obvious argument for its

use.

The kinematic wave model (KW6s-model) is both simple

to use and adequate as base catchment model.

With this model relatively great simplifi<.... tions

of the input datagecr.letry can be used with
reasonably well maintained performance provided the
catchment characteristics are properly evaluated.

The Rational Method is the traditional method in urban
drainage design and is used to evaluate single design

flow values. Basically the method relates the distribu­
tion functions of 'rain intensity and runoff in a catch-

From the tests with base catchment models it was

concluded:

characteristics (the representative times of concentra­
ti,on) are properly evaluated. It should here be stres$ed

that as the base catchment area incteasel:ltheeffocts of
nlaking misjudgecents in this evaluation increases. It was

also found that when the main sewer system contains

several long branches these have to be included in the

input data system and should not be replaced by one main
'sewer lino.
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XIV

Bilsed on the results of the study, tee following recom­
mendations are gi",en for use in urban runoff modelling:

\
(6x/L~bout 1/10).

A numerical solution method with the smallest

possible artifici.al attenuation (preferably the
f3-diffusive model) should be used. If the con­

ventional solution is used, ~x should be small

The Manning formula is a suitable friction
relation which, in the model proposed above and

for ordinary applications, should use the
roughness coefficient n=0.016 and 0.013 for

surface and gutter flow respectively.

By using a model as recommended above, quite
complex runoff system geometries may be replaced
by simple ones. This is true provided that the
equivalent parameters in the simplified geometric

model are estimated on the basis of equal times

A distributed kinematic wave model is the
~ost suitable model for all parts of the run­

off system.

It is advantageous to keep the time step
constant beween different applications. For

typical Swedish conditions and appllcations

At=60s is an appropriate value.

me,nt • The relevance of the inethodwas tested by compari­
sons with distribut~on functions evaluated for a nu~ber

of catchments. The distributions were obtained from simu­
lations oia series of historical storms by a detailed

runoff model (the CTH-model). The method was found to
perforinwell when a time of ~oncentration evaluated by
relations based on kinematic wave theory was used (also

used in base catchment modelling) •

•

.,..

•

•

•

•••

•

•

·-

.'



.,.
",'

•

'.
.'.
•

•

·-

••
•

I

I
I

!'
-.: I

I

of concentration in the 'real' and simplified
geometries (using kinematic wave based rela­
tionsl. One example of a suitable simplified
geometric model is the Kw6S model.

The Time Area 101ethod (though not reconunended
here) should be used with a linear time area
diagram anda.time of concentration evalua.ted
by kinematic wave based relations.

The Rational Method is a suitable method for
calCUlating flow rates in the preliminary design
stage of a network system, in small or 'simple'
systems, and also for checking the input data
for more complex models. When this method is
used, again, the time of concentration should be
evaluated by kinematic wave based relations.

Particular care should be. taken in estimating t c
when this time is short.

xv

'. --- , ,__. ~_._._' ~ ..... ".'*.9" "_*:ii!\'-'



•••• /
I .,

1. I~TRODUCTrCN

••tiit§WfP5P@~~HI_#.,¥;;:gMM;;lfiii";¥Afk£J%"i'#$ffilKM;;;j4q.¥R.hW.'¥A¥%¥Q.,'

j
I•••

.lr
1.1 Urban runoff modelling

The user working. in the field of urban drainage design

must be able to handle =.ocels intended for both detailed
analysis and ~aking roush estimates. Regardless of the

problem to·be solved tr.e r.:odellir:g work should be per­
formed in four main steps

Detailed runoff models have been shown to be very useful,
especially in the analysis of existing systems and in the

design of complex systems (containing detention basins,
overflOl1ls, cO:lstricticr.s ar.d so on). In the design of

"simple" nE:t\'lOrk syste~s and for estimates and checks,
the Rational Nethod is still an important alternative
model.

The analysis and design of urban drainage systems was

traditionally, and is still often, executed using the
Rational Method. That method, however, has for a long

time been regarded as too approximate for many applica­
tions. With theintroducticn of computers into the
calcUlations, several advanced runoff models have been

developed and brought into use among consul~ing engin­
eers. At least five advanced models for the design and

analysis of urban network systems are now in commercial
use in Sweden. These models use traditional hydraulics in

a systematic '·-lay giving a very accurate and detailed
description of the flow through the drainage system for

a prescribed storm input •

1Preceding page blank

o selection ofa suitable model

o transfczmaticn of the "real" catchment into
the "input data" catchment .

o selection of the hydrological design event

o interpretation of the output obtained fron:
the computation step.
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The's~cond step is very important and may be accomplished
at mary qifferentlevelsof precision. Crucial for the
suCcess of this step isa thorough knowledge of the

properties of the model in use. This is also very import­
ant in the last step. An advanced interpretation of the

performance of a. simple model is always better than a

poor interpretation of the performance of an advanced

model.

Every detailed runoff nodel is built up of two main

submodcls.One treats the col...ectionof stormwater on the
surface including the tran~pcrt to the sewer network

system: The other describes the transportation of water

within the network system. In available runoff models a

wide range of app.roach is used for overland flow routing

from the Time-Area Hethod to the kinematic wave approxima­

tion.

The model user is in practice ~ot able to describe the
catchment geometry with every pavement and roof in

detail. In generating the model input he has to !:limplify

and this he does by defining a~a!n_s~w~r~n~t~o£k. The
upstream enJ~ of the network are connection points to
what will here be called base catchments. These will

normally contain several different runoff surfaces,
gutters and small diameter sewers.

The base catchment is reprec;ented by a simplified ge~

ometry and the runoff from it by a model containing an

overland flo\. routing element. The important 9:eQm~t£i.£al

~i~c£e!i~a!iQn_of the catchment in the model· input is
thus given by the definition of the main network. As the

network is usually well specified,thEo main appro.xima- .
tions and difficulties will be.in the modelling of, runoff

from the base catchment. Essential for the effective and
precise use of urban runoff models is a balancedgeometri­
cal discretization and a sound base catchment modelling.
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1.2 Scope of the s~udy

The scope of the st.udy is to

o discuss various approaches for overland flow'
models

o discuss different levels of geometric
discretization

o develop a methodology for base catchment
modelling. .

The first point includes discussion of both basic equa~

tions and numerical methods of solution.

Generally the study is based on theoretical considera­
tions and numerical experiments based on field data. This

rather fun<iamental approach is considered t.o make t.he
result.s generally applicable to any runoff model in use

today •

In runoff simulation the primary result is a runoff
hydrograph. This hydrograph is characterized by itS
volume and :>hape. For a given storm the runoff volume is
governed only by the prescribed runoff areas and the
retention storage and not by the properties of the model
(with the exception of systems containingoverflowsl.
comparisons between different models and geometric '
discretizations will therefore be focused on differences

in hydrograph shapes.

All simUlations in. the report have been executed assuming
that there is no influence from permeable urban .surfaces.

The assumption is applicable to the majority of Swedish
urban catchments and runoff cases. It is based on experi­
ence from a series of field measurements made over the

last ten years in Sweden, see for instance Arnell and
Lyngfelt (1975), Falk and Niemczynowicz (19i8) and Arnell

(1980) •
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1.3 Arrangement of the contents

The'report is made up of three main parts:

"

•

•

•••
•

•

....

• •
•

The !iEs~ part deals with the properties of the basic
differential equations for fre.e surface flow including

the diffusive and kinematic wave equations. Friction
relations are also discussed and a literature review of
friction loss investigations of surface flow is given.

The ~e.£o!ld part deals with numerical methods of solution

for the kinematic and diffusive wave equations. Inconnec­
t.ionwith these methods,'further simplified, overland flow
models, such as the Time-Area Method and reservoir models,

are analysed.

The ~h!r~part deals with the problem of geometrical dis­
cretization and representation in base catchment modelling.
The analysis is mainly based on comparative numerical ex­

periments •. Simulated hydrographs are 9iven in appendiX I I •

The basis of the study is a series of field measurements
in urban areas and a specially developed runoff model.
Details of this work are given in several reportS and

also in appendix I.

To give a backgr0und to the mathematical analysis, an
attempt is made in the next chapter to describe the char­
acteristics of urban runoff, such as rain intensity, vel­
ocity of rain drops, surface/sewer flow and catchmentl

network geometry.
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2. URBAN RUNOFF CHARACTERISTICS

2.1 General

Storm water rllnoff in urban areas is a complex· process
which is governed by many hydrological and geometric
variables such as rain intensity and surface slope. The
selection and application of urban runoff models requires
a thorbugh knowledge both of the processes involved and
of th~' 9'0verning variables. In this chapter these charac­

teristics are described from a rather general point of
view. For some variables values which are typical for

Swedish conditionfi are also given.

Some runoff characteristics, such as wave velocity and
friction,a~~ discussed in connection with the correspond­

ing mathematical rel,>resentation in later chapters.

The runoff process is divided in~o 2~~E!e~g_E12~- and
!12~_~!!_!:!:!~-~~~~;: !!~!:' where the overland flow is related
to all water movement above ground. The overland flow is

divided into ~~;:Ee£~_E19~ and ~~!:~;:_!12~,\where9utt~r
flow designates all flows that;. collect surface flow, .for

instance gutters, rills or roof collectorS.

2.2 Precipitation

Precipitation is the origin of runoff .and influences
overland flow in several ways. The most important vari­
ables are rain intensity i, rain drop velocity Ui and the

direction of rainfall~.

The rain intensity has a very marked variation with time.

A typical pattern for a storm event is given in figure
2.2.1. The averaging time he~e is one minute. On this
scale very high intensities, greater than 150 l/s.ha

(54 mm/h), may temp~rarily occur.
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Figure 2.2.1 Typical intensity variations for a
storm event
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Figure 2.2.2 IDF-diagrarns used in Goteborg,
after VAV (1976)
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intensity duration frequency diagram (lDF~diagram) is
based on averaged intensities in a long series of storms

-using different durations, see figure 2.2.2. The diagram
gives an idea of the time scale of rain intensities.

Analysis of the characteristics of ruaoff hydrographs
indicates a suitable averaging time of one mirute for
typic~l applications of runoff models. A representative
interval for rain intensities used in runoff models is 5

- 150 I/s·ha.

Jtain intensities measured by a raLl gauge are only valid

for the area of the gauge itself. However, in practical

applications these point values are used for a catchment

surrounding the raingauge. The introduced error will
depend on the properties of the storm and the catchment

area. As the catchment areas used in this study are quite
small .(0.04 - 22 ha) the error should not be signiticant,

Niemczynowicz (1984).

Lints et al. (1941) analysed the sizes of raindrops for
different types of rain and rain i!1tensities. They found

that the drop diameter increased with rain int~nsity.

According to their study the majority of drops have
diameters between 1 and 3 mm; in the intensity interval
given above. The raindrops have normally reached their
terminal velocity when they hit the ground. This velocity

intensity i
velocity Uj

~ . .1

~·~-Q.=i'L
I

Figure 2.2.3 Water surface at constant rain­
intensity and rain velocity vectors
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depends on thedropsize and varies between 4 and 9 m/s·.

,
When the l':aindrops are falling vertically the .angle
between the surface and velocity vector (see figure
2.2.3) is determined .by the slope of the surface. If wind
forces are acting on the raindrops they also will be
given a horizontal velocity component. A wind velocity of
6m/s will give a value of ~ around 450

• The ~()re intense
storms are seldom connected with strong wimis and 45

0
is

believed to· be an extreme value.

2.3 ~face runoff

The surface flow is characterized by tne velocity Us and
the water·depth Ys in each flow section; It is governed
by the storm variables and the geometric parameters

length Ls,slope. 5s ' and surfa·ce roughness •

\

Figure 2.3.1 water surface profiles when the rain
intensi ty is constant and the time
t < t • (The scaling of water depths
is no! realistic).

Certain properties of surface runoff are caused by the
source of flow being entirely lateral, see figure 2.3.1.
From the start of rain, '/ater surface profiles similar
to those of figure 2.3.1 (A-B-E- A-C-F- A-D-G) will
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develop successively. !fthe time taken for water
particles from the upstream part of the surface to reach
the outflow section is denotedbytc , the profileA-H
will be fully developed at time t=tc after the onset of
rain. Whent<t the part of the surface that has not·c
been reached by water from the upstream end will have
uniform water depth (profiles B-E, C-F, D-G).

Typical recession wat~r profiles when the rain has ceased
tt>tc ) are shown in fig~re 2.3.2. The water depth is
qradually decreasing with time allover the surface (~-D"

A-C .. A-BI.

•••
•

I
~

I
Fiqure 2.3.2 Water profiles when i=O and t>t

(The scaling of water depths isc
not realistic)

.'...

This two-dimensional representation of surface flow with
constant slope is called sheet flow. The water profiles
are valid provided the influence from the downstream
boundary is negligible. This is the case for ordinary
urban runoff surfaces and the water depth then normally
increases downstream (aY/ax>O). Typical values are 0.5­

3 millimetres. Corresponding flow velocities are 0.01 ­
0.4 m/s.

Evaluation of Reynolds' numbers representative for
surf~ce flow indicates laminar flow. This is, however,
turned into a turbulent state by the impact of raindrops
and by the unevenness of the surface. As the rain recedes,
with the decreasing waterdepth, the flow m.ay, however,
take on a laminar character.
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Very often urban surfaces have a main slope that is not
parallel to the boundaries, see for example figure 2.3.3.
In this case and others with irregular surfaces, strips
along the direction of mean slope have different lengths.

I ~ ~
------~

Street - ~ ~ ----­
Gutter _~_-=====_-ll!l~
Pavement .---- ~ ~

When rain starts to fall over the initially dry imper­
meable surface it first wets the surface and then ·fills

up all the.depressions. This part of the rain volume,
usu·hly denoted depression storage. will evaporate when

the rain ceaseS. ~he magnitude of depression storage

depenlis basically on the "roughness" of the surface
(asphalt, concrete etc.) and the large scale depressions.

These are the effects of settlings and the lack of
prec~s~on in laying the surface. Several investigators
have analysed the depression storage, see Pecher (,1969,
1970), Arnell and Lyngfelt (1975), Kidd(1978), Falk et
al. (1979). For impermeable surfaces most investigators

suggest. a depression storage ranging from 0.4 to 0.7 mm
for surface slopes greater than 0.01.

Figure 2.3.3 A part or a street with gutter,
pavement and inlet

The main part of the ~torm water is collected on imper~

meablesurfaces such as. ro.ofs, streets and parking areaS •
Normal flow lengths Ls.are 5 to 3umetres.In special
eases (for instance at airports) greater lengths are
accepted but rarely exceed 70 m. The slope 5s is usually
around 0.03 or more and very seldom less than 0.01. The

most importa~t.reasonforusing relatively large slopes
on surfaces is to avoid the risk of pondin9 caused by

local settings.
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Thl,ls cross-sections perpendicular toth1s direction will

have different water-depths. These differences introduce

velocity components perpendicular to the direction of the

mean slope. In addition the cross-section is not actually

plane which also introduces such components and make the

moving water form rills. The water depths are often of

the same order as the the irregularities caused by the

surface material, for instance asphalt has local differ­

ences in level of several millimetres. Furthermore the

water is accelerated or retarded because .of local di=fer­

encesin slope in the direction of flow.

Surface flow is obviously far more complex and irreguJar

than that described here as sheet flow. In practical

modelling it is, however, impossible to get closer to the

physical behaviour of surface flow than this assumption •

:2.4 Gutter flow

The gutter flow is characterized by the mean flow velocity

Og and the water depth Yg~ It is governed by the surface

flow and the geometric parameters length Lg , slope Sg'

cross-sectional shape and roughness.

The gutters, in the same way as surfaces, are exposed

only to lateral inflow as source. Therefore the develop­

ment of the water depth in the gutter is, in principle,

the same as that described for surfaces.

Normal flow length is 30 to 60 metres but a length up to

100 metres may exist. The slope is generally i~ the r~nge

given for surface flow but sometimes smaller slopes are

accepted and a lower limit would be around 0.005. The

cross-section of roof drains are well defined, rectangu­

lar or circular. The gutters at the side of the pavement

or rills on a large surface have usually the same side

wall slope as the surface. A standard side wall slope

would then be around 0.03. The cross-section for these

flows will become relatively wide and have properties
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Silllilar to those of the downstream end.surface flow.

Considering thegeollletricaland hYdrological factors
given above, gutter flow should be lllainly turbulent.
Lalllinar flow may occur at the upstrealll end at low
intensities. Typical lllean velocities are 0.4 - 0.8 lll/S.

The lateral inflow to the gutter will have a velocity
vector with a direction angle .~ as defined in figure
2.4.1. At ~ = 900 the 'surface flow vector is perpendicu­
lar to the gutter flow. This direction angle depends on
the slopes of the gutter and surface,5g and Ss respect­
ively. (Ss is here the surface slope perpendicular to .the
gutter) •. For small .slopes tan ~ ... Ss/Sg which corresponds

to values of ~ in the interval 10° ~ 85°.

Figure 2.4.1 Gutter flow with lateral inflow

The gutter flow is collected in inlets, which do not al­
ways have the required capacity, in which case parts of the
flow will pass the inlet. Illlportant properties of the inlet
are the grating and the, inflow velocity, Eskenazi (1984).

2.5 Flow in conduits

The flow in conduits is characterized by the lllean veloc­

ity Up and the water depth Yp ' It is governed by the
inflow and the geometric parallleters length Lp ' slope Sp'

diameter Dp and roughness.
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The sewers in an urban drainage system are geometrically
bette:.: defined. than_ the part above·ground. This is true
in both the analysis of existing systems and the design
of new ones. The flew section is also better defined. The
sewer~ are connect'd by manholes in order to simplify
inspection. Between the manholes the sewer is usually
straight and has constant slope. The distance between
manhole$ rarely exceeds 100 m. The slope is primarily

governed by topography and consequently varies within a
wide range of values. In order to avoid sedimentation a
minimum slope of 0.001 to 0.005, depending or. the diameter,
is used, VAV. (1976). This '.imitationof slope and the low
friction factor of sewers causes relatively high veloc­
ities and often supercriticalflow. Typical flow veloc­
ities are 0.5 - 1 ml$. Of special intere$t in this report

are sewers connecting gullies or down pipes to the main
sewer system. Standard diameters in this part of the
network system are 200-400 mm. These sewers are compara­
tivelylong and run with. small water-depths, both factors

which significantly affect the runoff hydr6graph.

Despite the use of minimum slopes sedimentation in sewer
systems 1.S not unusual. This. affects the runoff with
respect both to capacity of sewers and attenuation of

flow w~ves, Berg (1983).

Figure 2.5.1 Network system of the band and the tree
type
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The network system may be characterized by two basic
structures, the tree and the band types, see tigure
2.5.1. The two structures may of course be combined to

give more irregular types.
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•• 3. BASIC £QUATIONS FOR UNSTEADY GRADUALLY

VARIED FREE SURFACE FLOW

••

•

•••
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3.1 ~~

In application, the modelling of storm water runoff par,not
be accomplished in great detail. Simplifying assumptions
have to be accepted in the formulation of the differential
equations anJ. in their numerical solution~as well as in
the geometrical description of the catchment. Despite the
fact that the complete basic equations are almost never
u,sedin urban runoff modelling, it is necessary to discuss
their properties in order to understand the simplified ver~

sions.

The movement of water over surfaces, in gutters and in
sewers caused by rain CCln be regarded <;lSurtste<;ldY, spa­
tially varied, free surface flow in a prismatic channel.
A flow with these characteristics is described by the
shallow water equations, which are two partial differen­

tial equations derived from the laws of conservation of
mass and momentum. The equations are based on several
assumptions which appear to limit their application,
Yevjevich (1975). However, the equations have been found
to be valid for a wide range of unsteady flow cases. The

shallow water equations have been verified in natural
channels as well as in man made channels, see for in­

stance, Yevjevicn (1975) and Brausert (1971).

The derivation of the shallow water equations can be
found in several reference!:, fOr example, Eagleson (1970),
Ligget (1975) and Sjoberg (1976), and is therefore not
presented here. In this chapter their basic properties

and relevance to urban runoff are discussed •
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.j 3.2 - The shallow water equations

The equations 4escribe the continuity and dynamic prop­

erties of the flow. If' the lateral inflow is considered

they may be written

\-/,

•
q ••• (3.2.la)

\

16

In the derivation it is assumed that sinn~tann and
cosn =l, which gives a resultingerror less than about 1%

for tana<O.OS. Morris (1979) analysed this approximation
fo,:: a range of overland flow cases and found no signifi­

cant effect on depth and velocity profiles.

•

•••
•

•

.'"

••
•

where (as also given in chapter 2)

x coordinate in flow direction

t = time
Y Y(x,t) water depth
A A(x,t) cross-sectional area of flow

o O(x,t) flow rate
So tan n = bottom slope, where n = slope angle

Sf friction slope (defined in section_ 5-.1)
9 9(t) = lateral inflow (flow/unit length)
i itt) '" rain intensity (flow/unit area)

U mean velocity of lateral inflow
~ angle between main and lateral flow

(figure 2.4.1)

9 i·B· in the surface flow case
~ ~ in. the surface flow case (figure 2.2.3)

B '" width of cross sectional area
B = correction factor for the cross-sectional

velocity distribution

g acceleration due to gravity

I
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The terms in the momentum equation are here called

o local acceleration term 30
at

'.

•

••

0 convective • • 3 (6 '02/A)ax
force II

. 3Y
0 pressure gA'-ax

0 ·slope· • <;1A.(So- Sf)

0 lateral lIlomentum • qUcos r/J

•••
3.3 Initial and boundary conditions

A solution of the shallow water equations req~ires

initial arid boundary conditionz to be specified. The
basic properties of the equations and their connection
to these conditions are best illustrated by applying the

method of characteristics.

The basic 'equations may be transformed to a system·of
ordinary differential equations, see Sjoberg (1976).

using the formulation from the previous section gives

.s-.

. (3·.3.1a)

oq.( (V

dx ·.rA
dt = V +vg·s

~~ - (V -l~i~~ - g.A.(So - Sf) +

1g~) - u·cos r/J)

and

which is valid if•

•

...

••
•

dO .rA: CiAdt - (V+ Y9S)' dt ... gA,(So-Sf) +

q «V+Vg~ - Ucosr/J) 0

••• (3.3.1c)
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The equations (3.3.lb) and (3.3.1d) may be ~ritten

Equations (3.3.1b) and (3.3.1d) express two wave veloc­
ities of a disturbance emanating from an arbitrary point

in tne channel. The velocities appear in the x-t plane as

two lines or characteristics. The line corresponding to
equation (3.3.lb) is here called the p-characteristic,

. . ' \

and that corresponding to equation (3.3.1d)is then-

':haracteristic.Equation (3.3.la) .is satisfied along the
p-characteristic and equation (3.3.1d) along the n-~harac­

teristic. In each point where two known characteristics

meet, the equations may be solved for Q and,JI. TUs is

what is known as the method of characteristics •

where B B(x,Y) is the width of the cross-sectional area

at the water table.

which is valid if

..

•

•

.'.

•••••••.• '

• • .(3.3.2)
l

/

18

I
I

\
l.

"I
i;

and Q =' Q (x,O)A = A(X,O)

The direction of characteristics clearly demonstrates the

required initial and boundary conditions for different

flow regimes. The initial conditions

are always needed, regardless of the flow regime. In

~u£c£i!i~al flow the boundary conditions

F = V_ ••• (3.3.3)

o "gAlE
In subcritical flow, where Fo<l, the p-characteristic is
directed downstream and the n-characteristic upstream,
see figure 3.3.1. In supercritical flow both characteris­

tics are directed downstream.

where the Froude number Fo is given by

•
•

•

•

•

•."



•

••

•
Subcrltlcal flow

•..pA.... '/1"
Supercrltical flow

•
'- ,...;. '-- --,...;.. X

F$.gure 3.3.1. Characteristic directions in sub- and
supercritical flow

Y = Y(L,t) £! Q = Q(L,t) £! 0 ~ flY)
.'. and

A A(O,t) or Q Q(O,t)

•

•

.""

••
•

are needed. In .!!u£e!: £ritic~l...; flow the boundary

conditions

A = A(O,t) and 0 = O(O,t)

are both needed (no downstream condition required).

The requirement of boundary conditions will obviously
vary with the flow regime. In sewer routing,· the regime

will often vary rapidly which will complicate the solu­

tion and usually require very small steps in both time

and space. The accuracy of the method of characteristics

is governe~ by the distance between the selected calcula­
tion points. Using adequate distances the method is very

accurate and is often used for comparisons with more
approximate numerical schemes. The method is sometimes

referred to as the "exact" solution, Sjaberg (1976).

1
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•

Dimensionless shallow water eguations ­

magnitude of the terms

There are several reasons both practical and theoretical,
forexam;i,ningthe possibility of simplifying the mathemat­

ical description given in the shallow water equations. It

is thus of interest to annlyse the relative magnitudes of

terMS. One way is to make the equations dimensionless by

making the following substitutions

•• I
I
I
i

Atf AIAo
0)( .. O/Qo .. Q I (qo!,)

rIO Y/Yo
qtf q/qo

v'l = VIVo
UX U/Uo
x tf xiI,

t X tVo/I,

(I, = length in flow
direction)

•

•

which apply to flow elements fed by a lateral source, see
Woolhiser (1967). Subscript 0 refers to a chosen suitable

stationary flow , for instance normal flow ata lateral
inflow of qo,and t( denotes a dimensionless variable.
Here, qo is used for both lateral inflow (to a gutter)
and rain inflow to a surface (qo = i·a for surface flow).

The continuity equation (3.2.1a) becomes

• ••. (3.4. la)

and the equation of motion (3.2.1b) becomes

....

••
• I

••• (3.4.1b)

o

/



• If the kinematic wave number

Xo =
LoSo or

LoSo·g

Yo'Fo
2 Vo

2
••• (3.4.2)

is introduced the equation (3.4.1b) may be written

•• (3.4.3)

•

•••
•

•

...

••
•

o

The relative importance of different terms in the equa­
tion above can be shown by comparing the magnitudes of

corresponding dimensionless parameters. This requires
estimated representative values of the parameters, which
here have been calculated from the characteristic values

of rain intensities, slope anu lengths of flow reaches
etc. given in chapter 2. The following discussion of the

relation between terms is based on these values.

In overland flow, the Froudp. number will not depart very

much from unity. The pressure force term is thus of the
same order of magnitude as the dynamic terms. Usually,
the magnitude of one dynamic term is less than 20% of the

pressure force term.

In typical overland flow situations the kinematic wave
n.umber exceeds several hundreds. Thus the forth term

KoA~ normally dominates the first three.

If the raindrops have a horizontal.velocity component

they may give a momentum contribution to the flow as

described by the fifth term in equation (3.4.31. However,
each drop also create a disturbance when it penetrates

the water on the surface. It is questionable if the
complex impact of the raindrops could be described as a

21
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.. pure momentum contribution. Therefore, in surface flow,

the l~teral momentum term is normally neglected despite

the fact that, in theory, it may be significant. The
impact of rain drops will be discussed further in the two

chapters which follow.

•
In gutter flow, the lateral term is governed by the
relation between surface slope and gutter slop~. For the
r~presentative valueS given in chapter 2, the lat~ral

term is not; significant in gutter flow.

or

The slope term appears in typical flow cases to be the
most significant.-If all other terms are neglected the

equation of motion is reduced. to

(3.4.5)

••• (3.4.4)

This con_iderable-simplificationof the momentu~ equation
\

is called the kinematic wave approximation and, together
with the continuity equation, forms ~he kinematic wave

equations. The properties and the validity of the kin­
ematic \-lave approximation are analysed in chapter 4.

•

•

.-.

•

...

••

The comparison of terms in this section is only valid if

upstream and downstream boundary conditions do not
significantly influence. the flow. This is generally true
in overland flow, because of the relatively small water­

depth and great slope, see Horris (1979). Th~ discussion

presented here is not generally applicable to flow in

conduits.

The significance of the different terms in the equation
of motion has also been analysed by Jacobsen (19BO). He
obtaineu basically the same results including significant

shear stresses caused by wind (discussed in section 5.5).

22
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(3.5.3)

••• (3.5.2)

••• (3.5.1)

6

:twhere c = clV
o

is the dimensionless wave velocity or
celerity and 0 = In(a2/a1 ) is the logarithmic decrement

(a
1

and a
2

= amplitudes at two sections, .1 and 2, at
distance A along the flow) - a measure of the attenua~

tion of the wave. ~he wave number 00 is defined by

211 Yo
°0 = -';-'So

and

3.5 Celerity and attenuation of waves

The linearized dimensionless basic equations can be
solved analytically for certain simplified conditions.
An example of such a solution was presented by Ponce and

Simons (1977) and is described below. The so.lution is
based on a small amplitude sincsoidal wave superimposed

on a steadyuni!orm flow of depth Yo and involves no
lateral inflow and no influence from boundaries (see

section 3.4). The dimensionless solution i3 given bY the

relations

'..1

I

I
I

I
I
'f
I;
~

•

e QO I
. f.. .

•

e".

'.•
•

.,

Figure 3.5.1 shows the variation in celerity with the
Froude number and the wave number. The diagram can be

divided into three regions:

where A is the length of the sinusoidal wave. 00 charac~

terizes the wave shape. A high value corresponds to a
"steep" wave and vice versa. These solutions are shown in

figures 3.5.1 and 3.5.2.

."
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small wave numbers 0. < 100 and Froude
numbers F < 2 - the 8elerity is independent
of both F~ and 00

o
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gre<lt wave numbers 00 > 102 - the celerity

is dependent on Fo only

intermediate wave numbers 100 < ° < 10
2

o
the celerity is dependent on both Fo and 00

,o~ ..----------.....,~

o

o
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Waves in the region of large wave numbers may be de­
scribed taking only acceleration and pressure force terms

According to figure 3.5.1, the kinematic wave velocity is
c = 1.5 V

o
where 1.5 is the exponentcf the water depth.

in the Chezy friction relation which was used by Ponce
and Simons. In the next chapter the kinematic wave veloc­
itl will be derived for an arbitrary friction relation.

Wave number Cio

,0.' '--_--L_.=......--I.--.I.-
10.2

From the analysis presented by Ponce and Simons it
follows that waves in the region of small wave numbers
caL be described by considering only the slope term in
the equation of motion, tha~ is, by means of the kin­
ematic wave equation. As demonstrated in section 3.4,
this was the case also for large values of the kinematic
wave number K

o
• From the relations given in (3.4.2) and

(3.5.3) it appears that Ko is proportiont11 to l/co iiL
in K

o
is replaced by A. A large Ko thus corresponds to a

relatively slowly varying outflow hydrograph.

Figure 3.5.1 The relation between the celerity c~, the
wave number 0 and the Froude number F
(after Ponce Rnd Simons (1977)). \ 0

I
I
I

I
I

i
I
!
I

I

••
•

...
•

•

•

•
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into acc6unt- so called 9E~Y!!~_~~Y~~. Corresponding

wave velocity is cK
~ l+l/Fo or

(3.5.4)

•
which is similar to the characteristic velocity given in

equation (3.3.1b).

•
I

·..
I
I

~ I
I

~ I
• !

•
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\
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The attenuation for Fo < 2 is greatest in the dynamic
band 10° < 0

0
< 102 • with decreasing or increasing wave

Figure 3.5.2 The relation between the logarithmic
decrement - 6 = In(al/a21, the wave
number 0 and the Froude number F •
(After p8nce and Simons (1977».0

lO
I

+- to 1
c
Ql

E
Ql

:::
Ql...

10.3 L.-_..L-_..:...._-L-.....~~...J
10"2 10.1 tOO 10 1 102 103

Wave numb~r. Go

In figure 3.5.2 the attenuation of the primary wave
(associated with the positive characteristic, section

3.3) is given as a function of the Froude and wave
numbers (an attenuating wave has a negative logarithmic

decrement) •

Waves with intermediate wave numbers are called 9:L!:~!!!!S

~!y~~.They can only be represented by the complete

equation of motion.

I
I
1
I
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number, towards the kinematic or gravity bands, the

attenuation decreases. ---

•

In thee~treme case the gravity and kinematic waves are
subject to no attenuation at all. For Fo > 2 (see Ponce
and Simons (1977) the waves amplify and at Fo = 2 the
waves neither amplify nor attenuate. It should be noted
that the critical value of the Froude number.4epends on
the friction relation used, and is 2 for Chezy~s relation

and 1.5 for Manning~s.

•

•••
•

•

I
I,
I
!
1

Tl:le analysis made by Ponce and Simons is basically only
applicable to\"aves with small amplitudes (compared to
the uniform flowwaterdepth) which are not generated by a

lateral source. As the storm water waves have great
amplitudes compared to the base flow, and as the source
in overland flow elements is usually lateral no stronger
conclusions may be drawn from the analysis. It illus­
trates, however, the general properties of flood waves.
It is also believed that the results from the kinematic

band, namely

o dimensionless celerity, independent of the wave
number,

o increasing attenuation with the wave number,

are also largely valid fer most storm water waves.

• 26
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t~ 4 ~ APPROXIMATION OF THE SHALLOW WATER EQUATIONS i
; j

~I.~ II,,','.4.1 Simplifi'catiop of the equation of motion

:Jsing the basic equations it is possible to obtain ani
f"

1..

.. almost complete description of the propagation of an
arbitrary wave. From a practical numerical point of view
they are, however, difficult to handle and simplifications
have to be considered. The difficult.ies· in application may

'1 cOllU.llonly be traced back to the n-characteristic (seei figure 3.3 •. 1) which is directed upstream foJ;' subcritical
j . flow and downstream for supercritical flow. The boundary

I conditions required vary with the flow regime, which has

I
to. be checked at each time step in the calculation. It is
also difficult to ensure numerical stabil.ity in the case

!...

of steep wave fronts·.

~ In the last chapter, it was shown that several terms in
~ the momentum equation are of lesser importance in urban

i :::::fn:~m:~::~~:~ :~s:::~e::~n:r:::e:~i~::eo:y:::::
i will have different: properties with respect to character-
~ istics, wave velocities, boundary conditions, etc.

In the selection of suitable approximations, systems with
one or no positive characteristic direction defined and
with. only the less important terms neglected are of
greatest interest.

•

• f

••
•

I
I

'>.

The approximations of the momentum equation are named
after the main physical characteristics of the associated
wave movement. Below, the terms used in the different
approximations are indicated.

3Q a Q2 av

t'tl:""O' Il··'O·"L:~::::::::~:~:~':::::.:::t:::'201bl
• diffusive" n

•. steady dynamic" "
dynamic ""
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The significance of the lateral momentum term has been
discussed in.the previous chapter. It is believed that a
significant portion of the momentum of the raindrops is
lost due to the disturbances created when the raindrops
penetrate the sheet flow and hit the ground. Therefore
the effect of falling raindrops on the flow can not be
simulated only by means of the momentum term. The impact

of raindrops should rather be looked upon as a loss of
momentum which could be accounted for by means of an
increased friction factor (c.f. chapter 5). The lateral
momentum term. is therefore neglected in the following.
However, in connection with the solution of the kinematic
wave equation in the case of constant rain intensity, an
example is given where the lateral momentum term is taken

into account.

Further approximations can only be made in. terms of
simplifications of the friction relation, celerity,
diffusive coefficients etc., and can always be derived

from one of the above mentioned models.

The. two acceleration terms are of the same order of
significance and usually very small compared to other
terms, as was shown in section 3.4. Furthermore, the two
terms are alwal's of opposite sign at the important rising
Uowstage. Thus cases where the dynamic equations are
significantly better than the diffusive equation should
be very rare. This leaves only two approximate models of

interest; the diffusive wavei'"lodel and the kinematic wave

model. Their properties are the ffiain subject of this

chapter.

The steady dynamic wave approximation has only one charac­
teristic, which is directed upstream for supctitical flow
and downstream for supercriticalflow.. If the second t(i!rm
is dropp,~d instead of the first, again we have a system
with two characteristic directions. As the negative charac­
teristic in this case is always directed upstream this sys­
tem should be easier to handle than the complete equations.

.-
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4.2 The kinematic wave approximation

4.2.1 The kinematic wave equations

•
The kinematic wave is a widely used approximation of the
dynamic wave equations. The first thorough analysis of
its properties was given by Lighthill and Wittham (1955).

In this approximation only the slope term is taken into
account. The kinematic wave equatiqnsa're thu,swritten

•
q'

o

(4.2.1)

••• (4.2.2)

which is a general expression for a friction relation
valid in a prismatic channel. K is mainly a roughness
parameter while b is governed by the selected friction

relation and channel geometry. For instance, in surface
flow, Manning~s relation gives b~5/3 and Chezy~s gives

b=3/2.

..-
•

!
I
I

If Sf is expressed in terms of 0 and A

2
Sf = (-...2-)

K'Ab

equation (4.2.2) gives

o

(4.2.3)

••• (4.2.4)

29

The equation 4.2.5a expresses a wave velocity or a system

of positive characteristics in the x-t plane.

The kinematic wave equations may be transformed into a
system of ordinary differential equations in the sam~ way

as the shallow water equations (see section 3.3)

\.
\.

\

I

/
I

",

(4.2.5a)

• •• (4.2.5b)

dx dO
dt dA

dQ dQ
dt = dA

oqI
I
I
i

••

•

•
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••
Along these characteristics the equation4.2. 5bis satis­

fied. 'the kinematic equations evidently only simulate
wave propagation in the downstream direction. The necess­

ary initial and boundary conditions are

and no downstream bounda-ry condition ,is needed. This
property ofthEl ·kinematicwave makes it incapable of
taking backwater effects into account but simplifies its
uSe. The basic appearance of kinematic c.,aracteristicS is

shown in figure 4.2.1.

•

•

I
Q = Q(x,O)

Q = Q(.0, t)

(initial· condition)

(upstream boundary condition)

L
...._..L._..L__~_..L-_..L..__J-_x
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0::
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0
0

0::
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• Figu~e 4.2.1 Kinematic characteristics in the case of
lateral and upstream inflow

The equation (4.2.Sa) defines the kinematic wave velocity

c
k

• using the friction relation, it may be written

...
or

dQ
dA

K. S1/2 . b. A (b-1)
o

• •• (4.2.6)

••• (4.2.7)

•
30
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The kinematic celerity is then always greater than the
mean velocity of flow, for instance in surface flow by
67% and in gutterflow by 25% (Manning~s formula). It
should be 'noted that the celerity is ser.sitive to the

selection of friction relation.

•••,-
,..,

,4'

•

I

~--------"---"l

l
l

. ~

!

An alternative way, of writing the equation system is

dx
dt b'V • •• (4.2.8a)

which can be compared to the convective diffusion

equation in section 4.3.

If the definition of thq kinematic celerity is used, the

continuity equation may be written

Equation (4.2.8b) shows that the kinematic wave is not

subject to any attenuation•

•

•••
•

I
I

I
I

~ - qdt -

It can also be shown that

dQ = dA
dx dt

312 1 30-+-.-=q3x c k 3t

••• (4.2. 8b)

... (4.2.9)

... (4.2.10)

•

••
•

I
I
I
I

Figure 4.2.2 Converging surface (after Singh (1976»
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The equations above a;;sume a plane surface. For compari­
son, the corresponding equations for a converging ~urface

according to figure 4.2.2 are {Singh 1977)

••• (4.?.1l)

•
I

o ••• {4.2.l21

as A(O,t)=O and to=O, A(x,O) = 0 if t<tc.From equation
(4.2.4) and (4.2.13) ,m expression of downstream outflow

is obtained

Every downstream flow value Q(L,t) is associated with a
specific characteristic path. By integrating equation
(4.2.8b) over this characteristic an expression for the
cross-sectional area A is obtained at the downstream end

A typical system of kinematic characteristics of a surface
or a gutter flow (in the case of onl~ lateral inflow) is
shown in figure 4.2.3. The characterist~c starting at x=O,

t=O divides the x-t plane into two zones. The 2one.Zl in­
cludesall points where the associated characteristics
emanate from some point x at t;=O and the zone Z2includes
all points where the characteristics emanate from the up­
stream end at some time t=to ' The time taken for a wave
to travel from the upstream end at t=O to x=L is the

!i!!!e_oi £o.!!c~n!r~tio.!!, here denoted by t c '

• •• (4. 2.14)

••• (4.2.13)

t

Ks~/2. ( J'l (a) da) b

to

t

J q{a)da

to

Analytical solution of the kinematic equations

in the case of lateral inflow only

Q(L,t)

A{L,t)

4.2.2

•

•

·..

I
II···
I

I.

• •
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Figure 4.2.3 A system of kinematic characteristics
in the case of lateral inflow only

K is assumed independent of x and t and the upstream
boundary condition is Q(O,t) = O. Equations (4.• 2.13) and

(4.2.6) inserted in (4.2.5a) yield after integration\ .
.'.
•

t

i

I t • .

L = K.s~/~bJ [Jq(o)do]b-l d.

to to

• •• (4.2.15)

;,
....

For a given geometry it is possible to determine the out­
flow at any time by the equations (4.2.14) and (4.2.15).
In zone Zl the flow is directly given by equation (4.2.14)

(to=O). In zone Z2 the time to which is specific for each
time t (see figure 4.2.3) must first ~e determined. This

is done by using equation (4.2.15)

If equation (4.2.15) is applied to the characteristic

emanating from x=O, t=O we have

•

•

•

I
I
I
ij

L

t •

K'S1/?b' {Uq(o)do]b-l dt

o 0

••• (4.2.16)
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(4.2.17)

• •• (4.2.18)

Analytical solutions in some special cases

C
k

= K. s1/2. 1:;, • (A. ) b-1
o l.n

4.2.3

Analytical solutions are obtained'if the lateral inflow
is given as an analytical expression which is integrable

in equation. (4.2.l5) .Li et al. (1975b) propose an iter­
ative method of solving this equation for an arbitrary
~nalytical function of q based on the. Taylor· series. ex­
pansi~~. The' general problem of evaluating the discharge

if the latera1 inflow is given as a time series must be
treated by numerical integration or a finite difference
method (see chapter G.). J\.''llytical solutions are there­

fore not directly used in simulating of runoff.

Analytical solutions of the kinematic ~quations are only

obtained in special cases. The,;olutions are ba.sedoll
specific assumptions of the inflow or the frictiC'n rela­

tion. Below, some cases are discussed in order to illus­

trate the general properties of the kinematic wave and

the limita~ions of the analytical solution.

or, if the corresponding flow value 0in is used (see equa­

tion (4. 2 .4) ) ,

!!E~!:!:~~!!!_!nnQ'!!

Integrati~g equation (4.2.8b) along a characteristic for

the case of £n.!y_u£s!r~a!!! in..fl£w_ ::I=O, A(O,t} ~ O} shows
that the cross-sectional area Alx,t} is constant along

this characteristic. Regarding the relation between flow

and area (equation 4.2.4) and the definition of wave
velocity (equation 4.2.5a), both Q(x,t} and c k will also

be constant along this characteristic. If A(O,t} at the
start point of the characteristic is denoted ·A. we ob-

~n

tain the velocity, see equation (4.2.G)
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The outflow at the downstream end at time t is easily ob­
tained a.s the upstream inflow at, time (t-L/ck) • The. solu­
tion may, however, give unrealistic outflow hydrographs
caused by intersecting characteristics. Such a case is

discussed in section 4.2.5.

£2~!~~~~_!~~~E~!_!~!!2~
For a constant. lateral inflow, qk' stationary flow is
obtained at t.=tcandt.hestate of flow is only of
interest in zone :tl (figure 4.2.3). Integrat.ion of

equa1:,l.on (4.2.14). in this zone gives (to= 0)

'.

The time of concentration in the case of constant lateral

inflow is then

•

••• to .~q:~:~l;rb
(since 0 (L, tc' = qK" L when t"'tc."

(O(t<tc) ... (4.2.19)

... (4.2.20)

•

•

·..

• •

~!~~~E_!!!S~!22_!~!~E!2~

A linear approximation of the friction relation (b=1 in
eq'.:ation 4.2.4) simplifies the solution procedure. consider­
ably. Both the Time-Area Method and the Unit-Hydrograph
Method are based on this approximation, Chow (1964).

The equation (4.2.15) may in this case be integrated for

an arbitrary lateral inflow, giving

••• (4.2.2l)

All characteristics have, obviously, the s::.;;;;::;nt"''Jration
time, showing that the wave velocity is constant in .time
and space (straight line characteristics). It should be
noted that representative values for the factor K are

very different for different friction relations.
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Analytical solutions may also be obtained for certain
time varying lateral inflows when a friction relation
with b=2 is used (see chapter 5). An example of such an

inflow is given by

q =qo' e-t/tkU _ e-t1tk ) (4.2.22)

where qo and tkare constalits (see Parlange .et al. (1981)).
In figl.\re 4.2.4 the function has been plotted to show the

principal shape. It is believed to b~ fairly representative

for ". storm event and. tile correspondu~g inflow to a gutter.

-"._"

\

720600480

q : 2 '10.5 e·tI173lH~-tIm)

qma~.~.SO to·7m/s,

at t. t K · In2

300240120

10

o '--_-+----+---+---+--'---I.......-'--=I==-- t [s]
o

•

•••
Figure 4.2.4 The lateral inflow
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Integrating equation (4.2.14) using this lateral inflow
gives the following expression for the outflow at tht!

downstream end
\.

(4.2.23)Q(L,t)

where to is first evaluated by equation (4.2.15) when
t>t

c
(when t<t

c
is to=O), see figure 4.2.3. Using the

above equations, outflow hydrographs have been generated

•

•
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Figure 4.2.5

from a surface of length 40 m (width 20 m) for three
different slopes. 'rhe hydroqraphsare shown in figure
4.2.5 together with the lateral inflowhydrograph (from
figure 4.2.41 given as the total inflow to the surface.
This hydrograph corresponds to an inflow at the upstream
end if all the lateral inflow were concentrated to this
point.

It appears that the hydrographs get increasingly attenu­
ated with decreasing slope. According to the equation
(4.2.231 an increase in roughness would have attenuated
the hydrographs in the same way. This is typical for "flow
elements exposed to lateral inflow" such as

surfaces exposed to rain
gutters "" inflow from a surface
networks ." inflow from gutters

Given a lateral inflow with a duration greater than the

time of concentration t c ' the outflow will increase until
t=tc ' see equation (4.2.14). Whether O~ not the flow
maximum is reached at t=tc depends on the shape of the
lateral inflow hydrograph. A steep rising lateral inflow
will give an outflow maximum very close to the time of
concentration.
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The ~ttenuationis generated by the dependence on the
outflow of both th~ time of concentration and the shape

and magnitude of lateral inflow. To distinguish it from
"dynamic'attenuation" of waves the attenuation discussed
here.will be called "lateral inflow attenuation". This

attenuation is as significant as the dynamic attenuation

in urban runoff·systems.

If the lateral term in the momentum equation is taken

into ac~ount the kinematic wave equations become•
4.2.4 The kinematic wave including the lateral

momentum term

Using the method of characteristics, see section 3.3,

the charac::teristic equations can be obtai:'ed. Although

they areexpre'ssibleanalyticallY' the~' become very
complicated. In the case of constant iateral inflow the

rising hydrograph. is given by

OIL, t) K
btb·'s U· cos ¢.

= ·qk· ·f 0+ gt

.0.
•

aO + aAax at q

o

••• (4. 2 .24a)

••• (4.2.24b)

• •• (4.2.25)

•
valid for

S +U.cos ¢ > o and So > 0
ogt

The corresponding time to equilibrium is
#,".

As.an example, in figure 4.2.6 are plotted the r~s~ng

hydrographs for a flow case, with and without considera­
tion to lateral inflow momentum. The influence of lateral

inflow becomes more stressed for great intensities, short
lengths and small slopes, and then i = 150 l/s·ha (54 rom/h)

.......
tb .r;- + U. cos ¢

c V::'o gt
L

K'q (b-l)
••• (4.2.26)

J,
•,

• •
•

38



•

• ,
1

L
S

= 5 m· and So= 0.01 have been chosen as an extreme case.

The rain hits the surface at an angle of .~ = 135
0

10 = ~

Comparison between rising hydrographs
calculated with and without lateral
momentum

120\00

'I
I

/ So~O.O\
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/ momentum term
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momentum term
(lj/=13S0)

~
806040
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Figure 4.2.6
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I

•

•
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in surface flowl. As we can see water has to build up be­
fore the runoff can start. It is here assumed that the
water is not able to pass x=O. The lateral term can be re­
placed by a correction in slope to give the same time of
concentration but, as can be seen in figure 4.2.6, the
rising hydrograph is not properly reproduced. However,

as discussed in section 4.1 the impact of r~indrops on
the flow is much more complex than described by the lat­
eral momentum term and the term is neglected in the fol-

lowing analysis •

/

/

." 4.2.5 Kinematic shocks

•

••
•

I
The analysis in previous sections is only valid as long
as no characteristics intersect each other. The condition
for two consecutive characteristics IC1 and C2l to meet

39
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•
can be written, according to Forah and Prasad (1980), as

• AI'

•
[(~~) t ICl < [(~~\ l

c2
(4.2.27)

1 1
where t l is an arbritary time, see figure 4.2.7.

•

•

t

e-_- Cl

••
l.- -~ X

Figure 4.2.7 Two characteristics emanating from the
upstream boundary

According to the equations (4.2.4) and (4.2.5a) the

celerity may be written

,
•

dx
dt ... (4.2.28)

which inserted in the inequality, gives

•
1-1.

[[0 b]tJCl
1

1 1
< [[0 b] J

t 1 C2
... (4.2.29)

... (4.2.30)q(O)do]b-l]

C2

40 -

When [to lCI"' [to ]C2 (characteristics in zone ZI figure 4.2.3)
the right and left hand sides are identical and the

In the lateral inflow case we have (equation 4.2.13»

t 1 _ -- -tl[[f q (a)da}b-11 < [[f
to Cl to
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inequality is not.satisfied. If the characteristics
eminate from-the upstream b0u.ndary[tolc2is always greater
than[tolcr ASq is positive the inequality (4.2.30)
cannot be satisfied. Thus in the lateral inflow case, no
intersecting characteristics are obtained.

41

The case of only ~E§!!~e~_~~~_!~!!Q~is characterized by
constant wave velocity along each characteristic. As soon
as one characteristic leaving the upstream boundary has a

velocitygreat¢r than the foregoing one they will inter­
sect {prov1ded L is long enough). From the point where two
charaoteristics meet a r.ewone will form with a different
celerity. A zone of intersecting characteristics will
develop, ~ssociated with the rising part of the inflow
hydrograph. In this zone what are known as kinematic

shocks or bores will form.. The movement and shape of
these shocks have been analysed by several investigators,
Lighthill and Whitham (1955) ,Kibler and Woolhiser (1970),
and an -approximate method of routing shocks has been pre-
sented by aora.hand Prasad (1980). \

It is possible to get a pure kinematic solution if the
characteristics are allowed to intersect. More than one
flow value may then occur at the outflow at each moment,
which, of course, is physically unrealistic. In figure
4.2.8 is given an example of the kinematic solution in a
case when kinematic shocks form. The lateral inflow from
figure 4.2.4 (multiplied by the surface area) is used as
the upstream end inflow and r.outed over the surface (L =
40 m, B = 20 m, So = 0.03). Typically; the outflow hydro­
graph has three flow values at each specific time in the
shock forming zone.

In the numerical solution of the kinematic wave equations
an artificial attenuation is obtained (see chapter 6).
This attenuation smooths out tpe shock giving, at least,
unique flow values at each time step.
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Figure 4.2.8 The kinematic solution in a case of

intersecting characteristics (physically
unrealistic) ••• 4.2.6 Applicability of the kinematic wave equations

•
It appears from the dimensionless dynar;ic equation
(3.4.3) and section 3.4 that the kinematic wave number

(3.5 •.4)

•

...

is an important parameter in the discussion of theappli­

cability of the kinematic wave model. Generally Ko in­
creases with increasing slope,length and roughness of the
surface or gutter. If the flow is generated by a "lateral
source", K

o
increases with decreasing rate of lateral in­

flow and increas ",ng length. Several investigators, fOr

instance Woolhise.~ and Liggett (1967) have discussed limit­

ing values of Ko for the kinematic model •

Woolhiser and Ligget compared dimensionless ri3ing

•
42

•
• --~



t*

t*2.0

Basic equations
Kinematic wave
equations
Fo~0.5

K =10

43

1.5

Basic equations
Kinematic wave
equations
Fo =0.25
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Dimensionless partial equilibrium hydro­
graphs. n* is the dimensionless time at
which the lateral inflow ceases (after
Morris and Woolhiser (1980)) •

0.5

o
o

0.5

1.0
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Figure 4.2.9a,b

hydrographs evaluated by the kinematic and dynamic equa­
tionsfor different vaiues of Ko and Fo ' They found that

.. the error of the outflow hydrograph using the kinematic

equations was less than lO%at Ko= lO (Chezy's friction
relation used). The error decreilsed rapidly with increas­
ing Ko and Ko = 20 was then defined as a limiting value
below which the kinematic solution does not apply.
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MorJt1sand Woolhiser (1980) analysed in a similar way
partial equilibrium hydrographs from a plane, see figure
4.2.9 a,b. They concluded that the condition on Komust
be further re.stricted in cases of 'small values of Fo and
proposed the general condition:

!
\"

I
I

2 > 5 when Fo < 0.5 ••• (4.2.31a)Fo • Ko

• Fo ••• (4.2.31b)Ko > 20 when > 0.5

\

•

••
•

•

•

••
•

ComparineJ ~twith Ponce and Simons# analysis referred to
in section 3.5, the condition corresponds to the kinematic

band 0
0

< 1 infi<jure 3.5.1, provided the length of flow
L is replaced.by the wave length A of Ponce and Simons~

sinusoidal wave.

Using the lim~ting values of surface flow characteristics
given in section 2.3, the kinematic wave number Ko > 38
and the Froude number Fo > 0.5 are obtained. The kinematic
wave then applies to surface flow according to the condi­
tion given above.

In gutter flow the kinematic wave number may be less than
20 (Fo > 0.5) and the use of the kinematic wave approach
is in some cases doubtful. For small values of Fo the
diffusive wave is a more appropriate approximation, see
section 4.3.2. In the great majority of cases the kine­
matic wave approach, however, applies also to gutter flow.

The condition (4.2.31) also applies to a sewer fed by a
lateral source only. Such a flow element is. in this
report used as an alternative approximation for sewer
systems. In this 'case the kinematic wave number may be

less than 20 (F0 >. 0.5) and the kinematic wave approach
is consequently sometimes less appropriate.

The discussion of the applicability of the kinematic wave
model in sectiufi 4.3 and here is based on the case of
constant lateral inflow. It may be regarded as an extreme

44
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type of inflow. According to section 3.5, kinematic waves
have long wave periods and gentle slopes Of rising and
receding parts. If the lateral inflow is increased suc~

cessively instead of instantaneously, more gentle slopes
of the wave will ~esult. The kinematic approximation can
in this case be expected to be valid for smaller values
of Ko than those given in condition (4.2.31) •

Morris (l979l analysed the influence of the choice of
downstream boundary conditions on solutions of the shal­

low water equations. She found no effect on the solution
for a range of Froude and kinematic wave numbers covering
most overland flow cases. This result is in accordance
with the kinematic wave solution which does not take the
downstream boundary condition intq account;

••
It should be noted that the analysis so far is purely
theoretical and based on assumptions such as sheet flow.
HO'l'leVer, regarding these limitations the discussions
above give a clear indication that the kinematic wave
approximation is, despite its simplicity, sufficiently
accurate for urban runoff simulation in the great major­
ity of .cases •

• 4.3 The diffusive wave approximation

4.3.1 Basic equations - the diffusion analogy

•
The diffusive wave equations are obtained by neglecting
the local and convective acceleration terms in the basic

momentum equation. For prismatic cross-sectipns faA/ax- =
BaY/ax) -the equations may be written

45

The equations form a system of linear differential
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(4.3.1)

••• (4.3.2)
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equations which is elliptic, that is, no charact~ristic

can be found. Differentiating the equations (4.3.1) and
(4.3.2) with respect to x and t, respectively, and using

the friction slope

••
• •• (4.3.3)

(for example Manning~sor Chezy's relations, s~e chapter

5), the kinematic celerity (section 4.2.1)

•
••• ' (4.3.4)

gives for surface flow or rectangular channel flow

"

••• (4.3.6)

••• (4.3.5)

D

aQ + c .aQ
at k ax

The convective-diffusion equation illustrates the prin~

cipal ability of the diffusiv' wave equations to describe

an attenuating wave movement. :his is not possible using

the kinematic wave equations. Comparing the convective­
diffusion equation with corresponding expression of the
kinematic equations (4.2.10) shows that these are ident­
ical if the diffusive term in equation (4.3.5) is omitted.

_...2.­
2S f ·B

The second term on the left hand side of equation (4.3.5)

represents the convective transport and. the first term on
the right represents the diffusion of the wave.withdiffu­

sion coefficient D. The equation wi.ll here be called the

convective-diffusion equation, Daily-Harleman (1965).

where

•

•

••

4
i

• .. ' i
fi ITo

11

,.. B
~

• i

• E~

A solution of the diffusive wave equation requires besides

the initial and upstream boundary conditions (compare with

the kinematic equatiOns), also a condition at the down-

stream boundary

46
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o =0 (x,O)
o = Q(O,t)
Q = Q (L,t)

(inital condition)
(upstream boundary condition)
(downstream boundary condition)-

I
j
I

: !
!
I

i

•

•
I
I

If the celerity c
k

and diffusive coefficient Dare
assumed constant with respect to independent variables,
the equation (4.3.5) can be reduced by the transformation

Xc "i'. X - ckt to

•• , (4.3.7)

The equat.ion may be further reduced (by manipulating the
. boundarycondi tions) to the same form as the classical
.heat conduction equation or rick's law in one dimension.
This equation has been solved analytically for numerous
different' applications, mainly regarding molecular dif~

fusion, CranK. (1975), and heat ,:onduction. Carslaw and

Jaeger (1959) •

•• I

• I
I

•

When the above mentioned analytical solutions are .applied
to channel. flow, difficulties in specifying suitable

\

boundary conditions drise. In addition, the analytical
solutions will be expressed in terms of in~egrals that
have to be solved by means of numerical integration
methods. It is therefore not possible to use analytical
solutions to discuss the properties of the diffusive wave
equations in the way it was for the kinematic wave equa-

tions.

Inserting tee friction relation (4.3.3) in the "momentum"

equation (4.3.2) and solving for Q gives

••• (4.• 3.8)

• /

By expanding the square root term as a power series and
differentiating with respect tox ar,d t, it is possible
to derive the convective-diffusion equation (valid for
flow on surfaces or in rectangular channels), see Price

(1980a) and Kousis (1982),
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••• (4.3.9)

or

12 + C • aQ == -2- ..~ + c .. · q
at k. ax 2- 56B ilx ...

or

have consistently been dropped. These terms are in
dimensionless form, (dimenc;ionless variables denoted by

index x),

which is identical to equation (4.3.5) if Sf is assumed
equal to So in. the diffusive coefficient D. It should be
noted that throughout the derivation of equation (4.3.9)

terms contail'1ing

ll'.

••

•

••
and are thus of the same order of rnagnitude as thene­
glected dynamic terms (see equation 3.4.3), or smaller •

In chapter 6, the diffusive coefficient defined by the
equation (4.3.9) will be compared with the diffusion
caused by the numerical solution of the kinematic wave

equations •.

••
• 4.3.2 Applicability of the diffusive wave equati,ons

•

e-

The diffusive wave equation includes the pressure force
term as well··as the slope term. The dimensionless analy­
sis in chapter 3.4 shows that this term will be more
significant for small values of th~~Froude number. When
F

o
increases towards unity (Ko less than 20) the accelera­

tion terms become more important and the full dynamic

equation should be used.

Morris and woolhiser (1980) derived partial equilibrium
hydrographs from a surface at low Froude numbers, figure
4.3.1. As might be expected, in this reg~on the perform-

48
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ance of .the diffusive wave was better than that of the
kinematic wave, compare with figure (4.2.9b). It performs
lesS well for the receding part than the rising part •
This might be explained by the fact that the sign of the
local acceleration term changes at the receding part and
the acceleration terms no longer counteract on<;l another.

•

•

.-

According to Morris and woolhiser the diffusive wave
approximation should be significantly better than the
kinematicwavewhenK6 F~< Sand Fo <O.S'(equation
(4.2.31a» •• The criterion ha.sasimplephysical inter­

pretation following directly from the definitionof Ko ;
when the difference in level between upstream and down­
stream ends is lesS than 5 times the waterdepth the
diffusive wave equations should be used; otherwise the

kinematic wave equations apply.

Considering typical slopes and water depths in urban run­
off systems the condition is essentially fulfilled only
in VE!ry flat sewer nets. Runoff simulations in such cases

require a downstream boundary condition.

49
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Dimensionless partial equilibrium
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Morris and Woolhiser (1980»
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~h~scase based OIl the analysis discussed~n section 3.5

fora single condui~ which is fed by an upstream sourc<!
only. According to this criterion the diffusive wave equa­

ti~nsapply to the same cases - flat sewer systems with

great water depths.

•

Again it should be stressed t~at the discussion is theor­

etical and the conditions to some extent subjective. There­

fore a definite rule for making the choice between the two
approximations cannot be given. It is, however, evident

that in,network systems with significant backwater the
diffusive wave equations havetobe.used.

50

The kinematic wave equations are not able to reproduce

4.4 Summary and discussion
An analysis of the magnitude and sign of the terms in the

dimensionle.ss momentum equation shows that there are two
simplifying approaches of interest for urban runoff model­
li.ng. These are the kinematic wave ~ndthe.diffusive wave

equations.

From a theoretical point of view the kinematic wave
approximation is, despite its simplicity, sufficiently

accurate forurb~~ runoff. simulation in the great
majority of cases. This is·cxFlained by the rather
impressive ability of the equations to reproduce the

wave velocity in ordinary urban runoff systems - the

kinematic wave velocity •

!h~U~!!!~!!)~!!!:U~~~L~EE!:2~!!!!~!!2!! is defined by a very
simple set of differential equations and boundary condi­
tions (no downstream boundary condition). The\ equations

have in the lateral inflow case no general analytical
solution and must be solved by means of numerical methods.
Regarding the properties of th.e equations, the correspond­

ing numerical algorithm can be expected to give compara~

tively sta~le solutions.
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dynamic attenuation. Provided there is only an upstream
Source the wave is not subject to any attenuation at all.
This is in practice not a serious drawback because in the
numerical solution an artificial attenuation is introduced
which inmost cases is greater than the dynamic attenua­
tion (chapter 6).

!~~_~!!!~~!Y~_~~Y~_~eeE2~!~~~!2~is defined by Q system
of differential equations which are a bit more complex and
also need a downstream boundary condition.·The correspond­
ing numerical solutions can alsoi~ this case be expected
to be "stable" (compared to solutions of the basic equa­
tions).

Using the diffusive approximation it is possible to repro­
duce the main part of the "dynamic" attenuation. It is also
possible to take into account the downstream boundary con­
ditionwhich makes analysis of sewe1.' systems with signifi­
cant backwater possible.

The diffusive 1,o'ave approximation applies to all cases
where the kinematic wave approximation is relevant and
also to special cases where backwater is significant. It
thus appears.to be the most generally valid approximation

for urban runoff simulation. It has SUCCE'ssfully been
used in the analysis of sewer systems, see Sjoberg (1981),
Akan and Yen (1981) and Lyngfelt and Svensson (1983).

An important property of urban runoff is that the sources
feeding the flows are spread along the "channel" elements.
This is, of course, highly relevant for surface and gutter­
flow cases but applies in principle also to most sewer net­
work systems. In these kinds of system an attenuation of
the wave is obtained that can be related·to a characteris­
tic time o'f concentn.tion for the system. This "lateral
inflow attenuation" is believed to be at least as signi­
ficant in urban runoff systems as the "dynamic" attenua­
tion. Therefore a very important property of a model used
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for bteral inflow systems is the wave velocity. As the
velocitias of kinematic and diff~sive waves are equal,
the lateral inflow attenuation should be simulated with
about the same accuracy by the two approximations.

In this chapter, the properties of urban runoff described
by the ~roudeand kinematic wave numbers and also the prop­
erties of the kinematic and diffusive wave approximations
have been considered. It is concluded that the former ap­

proximationiS,sufficiently accurate for simulation of
o"'~rland flow. The approximation is also appropriate in

many cases of sewer flow simulations.

The main difference between the two discussed approxima­
tions is whether or not they are able to consider down­

stream condt'tions. In most practical applications, for
instance in designing sewer systems, it is very difficult
to take these conditions into account. It is therefore
believed that the kinematic wave approximation is more
suitable for sewer flow simulations in gE::neral than the

diffusive wave approximation.

Howev~r, in cas~s of significant effects caused by down­
streaCl conditions the diffusive wave approximation must
be used. The most flexible mode: would, of course be one
that generally uses the kinematic wave equations but which
is capable of changing these for the diffusive wave equa­

tions in parts of the system affected by downstream con-

ditions.

As the analysis of systems affected by downstream condi­

tions is beyond the scope of this report, in the dis­
cussion to follow only the kinematic wave approximation

and "associated" models will be treated •
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General

THE FRICTION LOSSES IN OVERLAND FLOW

5.1

5.

,.

\
'. !

j

•
The friction forces along the wetted perimeter and the
water surface (wind) in the momentum equation are
summarized in the friction term Sf' The term is defined

b~'

./ .

••• (5.1.11

•
..

••
•

f

I

where

'mp = mean shear streSs along the wetted perimeter
'ms mean shear stress ~long the water surface

P = wetted perimeter
B = water~surface width

The total shear stress is related to the flow velocity,

the cross-sectional area, the wetted perimeter and the
water surface width. Usually the wetted perimeter is
represented by the hydraulic radius R= A/P. Using 0 =
V A and ignoring shear stress at the water surface the
standard form of the friction term is obtained

(5.1.2)

•
..

••

••
I

where c
l
-c

4
are constants or functions related to rough­

ness, rain intensity etc. In stationary uniform flow the

friction slope equals the bed slope, Sf= So' ~he estab­
lishment of a relevant friction relation for this case
has long been a fundamental problem in hydraulics.
Through numerous investigations ~ev~ral relations that
can be regarded as empirical or half empirical have be­

come generally accepted •

In the general case, additional effects caused by non
stationarity would be plausible. However, no investiga­
tion quantifying such an influence is known (Yevjevich
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(1975)}. consequently the friction term in the momentum
equation is detexm5.ned in time and space by traditional
friction relations developed for stationary flow.

In this chapter, flow resistance at small water depths
(sheet flow) will be discussed. Many investigations of

this flow type have been performed and the di3cussion
loIil1 be based on some of the best known studies. Friction
relations rel~vantfor surface and gutter flow suitable

for urban runoff modelling are analysed. Besides the

influence of·roughness and rain intensity, the effects of
loIind and rollwaves on the flow. are briefly discussed.

5.2 Alternative formulations of the friction

relation

The most frequently used friction relation in standard
literature is the Darcy-Weissbach equation. For stationary
open channel flow (pris~atic section) it may be written
as a relation between the flow and cross sectional area

'.

where R is the hydraulic radius and f a dimensionless
friction factor. In surface flow, R ~ Y and if Qb is the

flow per unit width .th~ relation is
•

So
••• (5.2.1)

•

•...

•

••• (5.2.2)

The relation is derived considering only friction due to
shear stresses along the bottom. Raindrop impact. and wind

shear stress on the surface may, however, .be incorporated

in f •

The equation covers the laminar flow, the flow in the
transition zone anj the turbulent flow. In laminar flow

2Y~f_~~22!~_~~E!~S~~ the friction factor is only dependent
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IQn Reynolds~" number Re

f = 24
Re

In surface flow Re = Qb/v (v

flQw) giving

••• (S.2.3)

kineroatic viscosity of

••• (S.2.4)

•
!!u:!!~~~!~!!t_n2~_2Y~!_!:2~9!!-~~!:!!!2~!!- the friction
factor depends roainly on the relative roughness and roay

be represented by

\
which is the well-known Chezyrelation for surface flow.

Another relation is the Blasius equation

••• (5.2.7)

••• (S.2.G)

••• (S.2.S)

Q = y3/2. c VS'
b" 0

f = 0.223

R
l/4
e

which is valid for turbulent flow.

f = ~
C

where C" is the roughness pararoeter of" the surface. Insert-

ing in the Darcy-Weissbach relation gives

•

.-

•
Other relations of interest in turbulent flow are:

·..

Q = y5/3.1/S:
b n 0

the Danish ~:!2~~~!a, Jacobsen (1980)

••• (5.2.8)

• •• (5.2.9)

and

• I 55
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••• '(5.2.10)

here called the g~!:!!!!:~g!:_!2!:!!!~!~ (after the exponent of
Y). n, 1<L and1<q are friction parameters governed by
roughness properties of the sut'face and the impact. of the

raindrops.

Investigations of the friction properties of the flow are
usually presented in a logariUUlIic f.,-Re dia~ram. A

convenient way of making comparisons between suitable
friction relations should thus be to express them in

terms of fand Re (by using Re Qbfv ):

-_~-.._--'-_ .. -.-_.
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••• (5.2.12)

••• (5.2.11)

50 1/4
f = 8g·( 6 2 2) ••• (5.2.13)

K 0 v • R
q e

Using the Manning, ~- ~r quadratic formulas is equivalent
to the use of Darcy-Weissbach"s equation with a ,friction

factor given by the equations (5.2.11), (5.2.12) or
(5.2.13). These relations will appear in the f-Re~diagram

as straight lines, each defined by its ~slope" and level.

The "slope" is characteristic for each friction relation

and is dependent only· on the exponent of Re • In figure
5.2.1 these "slopes" are compared to those of laminar
flow given by f = 24/Re and turbulent flow given by the

blasius equation. The levels of the lines have been

chosen arbitrarily.

The Manning formula

\
5 on18 1/10

f
08g . (""2'2'"")

I v 'R
: e,
I

i the L-formula
I
j 50 2/11

f = 8g .( )
K90v~R2

L e

the quadratic formula

••

...

•

•

••

•
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••• (5.2.14)1

{f

where,1<l and K
2

are constants. This type of relation is,
however, inconvenient in a runoff model. If a better

The quadratic and L-formulas appear as hybrids between
the pure laminar and t~rbulent relations and should fit
reasonably in the transition zone and surrounding parts
of the laminar and turbulent zones. Mannirvrsformula
shows the typical "slope" of a turbulent relation. A
relation which gives a "laminar slope" at low Reynolds'
numbers and a "turbulent slope" at high ones (illustrated

in figure 5.2.1) is

!,/

•.', , " r, .' .
....'~~fit"""l''''''''''"'~''''''''''''''''~!''ffl''·~~~'''!''·'''!·''''''~·..,''

•• -.J.,........~~------
"I','~,
I
1
t
I
I

•

...

•

I
1.0

••
~= 2.2,109 R.,JT-1,7

i
i

I 0.1

•

• 0.01

10
Re

••
I!l
J

Figure 5.2.1 "Slopes" of the friction factor relation
used in different friction formulas

adapt ion to laminar and turbulent flow is required a
combination of a laminar and turbulent relation is pre­

ferred. The Manning, Chezy,Blasius, L- and quac.ratic

----------~---,.-.-'-'-,..

'\
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\
\
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The characteristics of flow over a smooth surface have
been investigated by Yoon and Wenzel (1971), Yen etal.
(1972), Shen and Li (1973), Kisisel etal. (1973), Nittim

(1977) and several others. The main objective of these
investigations has been to study the effects of raindrop

impact on flow.
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Flow over a smooth surface

General

5.3.2

Generaily ;;in empir5.cal friction relation can beestab­
lished by measuring corresponding flows and water depths
at different stationary flow conditions. This requires

\ .
well controlled measurements and consequently most re-
ported investigations have been carried out "indoors".
The used surfaces. are very even and the surface lengths
are quite small (5-7 m). Rain is generated in simulators
of different construction usually covering only a part of
the surface. Among the ref.erred tests there are (xamples
of surfaces that. are smooth, covered with sand. or more
realistic textureS (asphalt, c·oncr.-te). However, both the
rain and the surface will be different from the real "in

siuu. situation giving difficulties in generali~ing the

results. On the other hand the fiundamental relations
should be oeststudiedunder these well controlled in­
door conditions, where the effects of different physical

phenomena can be separated.

5.3.1

5.3 InvestigatIon of friction losses in surface flow

Q '" K.S.ll~Abo

where K is basically a roughness parameter (in surface
flow also including the. width, and in gutterflow, the

slope, of $i~es).

relations can all berepresent~dby the more g€ner~l

formulation used in previous chapter, equaHon (4.2.4)

•.10

•

•

•

••

•

••
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•
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••• (5.3.1)=1

«

For flows. !22L~!E2~~1~2_!:2i!!_, most tests confirm the
theoretical laminar rela.tionf 24/Re • The transition
frcm. laminar toturblilent·· flow is found at a Reynolds"
number of about 900 with a transition zone 800-1400. At
low s,lopes (So<0.01) laminar f.low tends to be maintained
at about 1100. For turbulent flow Nittimsuinmarized
several investigations and presented a regression equa­
tion

•

....

I'
I
I

i.•

The relation is plotted together with Nittim'"s results
for flow on glass, in figure (5.3.11. It appears to agree
reas....nably well with Blasius" solution, see Shen and Li.

•••
•

o 50 =.001
.. 50 = .01
• 5 0 =.06

.•1

.01

10
Re

:r
/

-, "

Figure 5.3.1 Values of the friction factor f measUred
for flow without rain over glass after
Nittim (1977) .

·"

• •
-~

......,

!h~_!!!!!~~!!~~_2!~!:2i!! on the friction factor obtained in
investigations by Yoon, Li and Nittim is shown in figures
5.3.2a-d. The tests by Yoon and Li agree quite well and
Shen and Li derived from these (and tests by Kisisel) the
following regression relation for laminar flow
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Figure 5.3.2 a,b Tests on the impact. of rain on flow over
a smooth surface (U.=raindrop velocity)
After Shen and Li (1973)
(l lJm/s = 10 lis ·ha)

(5.3.21

• 't

0.407
f = 24+3400·i

Re
where the rain intensity is given in [m/s J. Nittim was
not able to· quantify a similar laminar relation. The
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series shown in figure 5.3.2c shows the same trend as
given ':>y the equation. The second series of measurements

by Nittim, figure 5.3.2d, however, shows the opposite
trend. The friction factor decreases with increasing
rain intensity, but is generally greater than 24/Re • A
possible explanation for this discrepancy could be the

•
' ..........• •

Figure 5.3.2 c,d Tests on the impact of rain on flow
over a smooth surf~ce (U.=raindrop
velocity) after Nittim (1977).
(l ~m/s = 10 l/s·ha) , ,.

• •
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i9reate~' raindrop velocity in this test (figure 5.3.2d).
I:However, Nittimcould not show that this velocity 'had a

statistically significant effect •

'J.'heinte~pr~tat~on C)f thesecontJ:'adict~·ry effects on the
flow is beyond the $ubjecfofthissfudy. However, it

serves to indicate that the way raindrops are produced in
the laboratory has a significant effect on the flow.

In turbulent flow, She!n and Li found that the Blasius
solution can be used if the constant f.R

1
/

4
= 0.223 is. e

increased by 12%. Nittim's tests agree reasonably in the

turbulent zone but with a slightly larger value for
f.~;/4 = 0.260. It should be noted that the main part of

the study discussed above has been ca)iried out using

slopes equal to or less than 0.01.

The following conclusions can be drawn from the !e!!.t~ £n_

.fl£w_oye! !!.m£oj:h_s!!ria£e~:

o Flow without rain agrees well with the laminar relation
and reasonably well with the Blasius solution in the
turbulent zone (with the value of f'R;/4 slightly in-

creased)

o The flow is. strongly influenced by the rain-
drop impact in the "laminar" zone resulting in an

increased friction factor

o The flow is moderately influenced by the raindrop
impact in the "turbulent" zone. The Blasius' solution
(with the value of f'Re

1/ 4 increa&edby about 15%) may

be used.

/

!
,I

5.3.3 Flow over "artificially" roughened surfaces

• •

:--

•
•

On an "artificially" rougheneds\1rface (using sand or
sroall spheres) the height.and shape of the roughness can
be made very uniform. The infl\1enCeOn the flow causedlJy
the surface roughness is thus expected. tq be best observed
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on such surfaces. Investigations of interest in this area
have been accomplished by Woo and Brater (1962), Kisisel

(1973), Phelps (1975) and Nittim (1977) •

Phelps investigated n21!_1!!!:!!2~L!~!!!over a surface
covere.1 by glass spheres with a roughness height k=1.2
Mm. His tests show a clear laminar zone for Reynolds'
numbers less than 400, figure 5.3.3. In both the laminar
zones and tra~"ition zone an overall effect of increased
friction factor compared to the smooth surface "flow can
be observed. There is also a tendency for the friction

factor to increase with increasing relative roughness
k/Y

o
• If, however, only tests with a slope qreilter than

0.008 are considered (marked by squares in figure 5.3.3.

the pattern is changed. The laminar zone vanishes and the

transition zone moves towards lower values of Re •

Nitt~minvestigated also flow w~thout rain avera surface
covered by spheres (k=2.33 l\UlI). The tests show rather
different friction relations compared to those found by
Phelps (figure 5.3.4 •• Generally, considel'. bly smaller

'~i'-o
"- "l.J+.

"'"'~~ @]@}

~
"~~~ @J@J J!:

\. ~, l!I • •

f=~~~ ~~, • • •.... •
k/Yo r-.. ,,~ '"••
0.52- .55 '\ •
• < .38 I 1'\ I

050>,008 I f' I
102 103

Reynolcs Number, Re

Figure 5.3.3 Flow without rain-effects of the relative
roughness on the friction factor f,
after Phelps (1975)
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valufs'of f were obtained and a less marked transition
zone. Tests with largeklYo(greater than l)are prefer­
entially found at the lower edge of t~e band formed by
Nitt.im*s testpoirits~ for Reynolds* numbers less than 600,
tests with the smallest values of klYo are very close to

the lam.iIlar r;1a.tionH=24/Rel. Thus Nittim*s tests show
a tendency for the friction factor to increase with
decreasing relativeroughnessklY • It should be noted

. 0
that there is a difference in chosenklYo values in the
two investigations. Phelps* test points all fall in the
interval.klY6 =0.23 - 0.55 while Nittim"'s are consider-

ablyqreater.

o,oSo··OI
., • So' .06

f

.1

.01
1.0

Figure 5.3.4 Friction factors at flow without rain
(sphere roughness k=2.33 rom I
after Nittim (19771

Compared to Nittim*s results for .the smooth surface con­
siderably greater friction-factors can b~ observed in the
region R

e
> 500 whereas lower values were obtained at Re

< 300, figure 5.3.4.

Nittim*s sphere covered surface was also used to study
flow exposed to rain using two different intensities. At
the high intensity (i = 800 lls·hal a great increase of
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the friction fa~tor compared to flow without rain was
found. However, at the lower, more realistic, intensity
(i • ISC lis-hal this effect is not 50 marked - about
~O, increase at largeReyn~lds" numbers >SOO and values
smaller than 24/Re for Re <100.

The results presented by Kisiselshows the same great in­
crease in f at unrealistically high rain intensities on a
surface -roughened- with sand (k • 0.072 rnml.

-;

.,, ..

.~~.....
&8JCi . .

~ .~.••...••
.....~

Re
,I

/' to
I'
I
I

i. ,

t to-

•• ~
~:

I
0.' ~

• '0 Re/4

'0 ~-----------,

0.\

--,

Figure 5.3. 5a-b The friction factor verS\lS Reynold."s
number at i=2l0 l/s·ha and i=ll6 l/s-ha,
after Woo and Brater (1962)

woo and Brater investigated flow exposed to rain on a
sandcovered s\lrface (k '" 1.0 mm). Fig\lze 5.3.5 summarizes
tests with Reynolds" numbers less. than SOO and rain in­
tensities below 210 l/s-ha. At each- slope (>O.Ol) the
friction factor reaches ~ maximum in the interval SO<Re <200
and decreases rapidly from this point with decreasing and
increasing Reynolds" numbers. The moderate intensity ;;.ests
(i = 116 I/s·hal agree reasonably with those of Phelp:;"

wi thout rain and k/Y0 '" 0.5. The high intensity tests (i

210 l/s-ha) give slightly greater values of f than Nittim·s
tests (i = 180 lis-hal. The re?ult from Woo and Brater·s
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te~ts fits reasonably with Phelps' and Nittim's and
supports the earlier results of a great effect caused by

the relative roughness and a more coderate effect caused

by .rain.

The following conclusions can be made from the tests of
flow on sand and sphere-roughened surfaces with a slope
greater than 0.01:

o The friction factor differs considerably from that

of .asmooth surface. No lamina~' zone can be identified
and in the turbulent zone (Re ».1000) significantly
greater friction factors are obtained (f increased by
·a factor 2).

o for flows h~ving a relative roughness k/Yo > 0.5 the

traditional relation - f increasing with.k/Yo - does
not apply.

o For flows ~!!hQ~!_re!~ and a relative roughness
realistic for urban surfaces, f-values less than
24/Re are obtained at low Reynolds' nUmber~ (Re <400).

o The !I;!n!:!~I;!~!L2L!:~i!! on the friction factor is great
at high intensities but more :r.oderate at realistic
intensities (about 20% increase at high Reynolds'
numbers) •

o The friction relation has characteristics resembling
a transition zone at Reynolds' numbers less than 1000
with great scatter. Thus it is not possible to quan­
tify this relation with the referred investigations

as a base.

!

i
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5.3.4 Flow over asphalt and concrete surface .

.1\
...

•• •
•

Flow over impermeable surfaces found in urban areas, 'such
as concrete or asphalt, has been investigated by Izzard
(1944), Yu and McNown (1964), Andersson et al. (973) and
Nittim (1977). Such surfaces are characterized by having
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f
Ia roughness height and shape that varies over the surface

and the roughness elements form irregular patterns on the
surface, all in contradiction to "artificially" roughened
surfaces.

\. + K
'.,",,~:.":..,,-,,;,-:. . . ~.. /.~~\ ..•... ""', '. .'~" .-

"''' ..•••. !~.~ I .• ' . '. ."'-.... .. ; .- '.. ..~ , .

l 1
.,••

...

•

••

••

!l~w_w!t~o~t_r~in on a steel brushed asphalt surface has
been investigated by Nittim. The surface represents a
road-surface that has been worn by traffic (k.., o. a rom).
For Reynolds- numbers less than about. 103 the obtained

friction factors are quite similar to those from Nittim-s
·sphere· surface (k=2.33 mm), though the latter shows a
greater scatter. When the Reynolds- number is. greater
than 103 the asphalt: surface optains significantly
smaller values of f than the "sphere" surface. This
indicates that in the fully turbulent zone, where the
relative roughness is smallt the traditional friction

relation - f increasing with k/Yo - holds •

•

•

.1

.r 1

10

o
o

050 •.01
o So· .03
• So· .06

McNown

Figure 5.3.6 Flow without rain-friction factor versus
Reynolds- number for an asphalt surface.
After Nittim (1977)

".

• A, Yu and McNown made a number of te~ts with flow without
rain on concrete. The tests (represented in figure 5.3.6
as a line) have friction factors in the fully turbulent

.-.,..-.

•
67

• "'''II.$=.''l'.



.""".,-..,. '/

,::,'~';~~'\lLfIlmfP!!itl~~;~i*!K*~!~'!'~"!t?~""P;,~,j~;~\~~")!,1!!;~!;I!S~'~'¥M!~);;,1~.~~IM~"""~~*M!!!!·"'".""" .;..".:: .. -•...,_ , .. ,~.:~,_'< ..__: ' .. - "-"""'-"~' '-'.'.,'.-.. -., ,.. ,"" '",-,., _,,-, .. ,', - .'-" ',-,' <.,' ,,', -". -,', .",' .. " ~'.'.,.,. _,',.'-. ,'_ c······ ,- "" " .. '-, --' .. '.," ",.,.

i.
t"
I

.......

i
i

zone about 80% greater than those obtained from Blasius"
solution while the corresponding factor for the asphalt
surface is about 50%. No information was available on the

roughness height'of the concrete.

•

•

Tests on an asphalt surface made by Izzard show greater
friction factors than those found by Yu and McNown and
Nittim but agree reasonably with Phelps" results when

R~<600.

Andersson et al-tested asphdt surfaces (Ab 8 t and
Ab 12 lH in the field by velocity flew measurements and
found f,riction factors also in agreement with Phelps"
results. Izzard obtained for Re >600 slightly larger
f-values than Nittim.

.'

··e
!h~~f!e.£t.p! .fain onYu and MCNown~s and Nittim~5

surfaces are sl~wn in figures 5.3.7 a,b. Nittim's data
are very scattered compared to those of ,Yu and McNown.
The greatest scatter is, however, found in the interval
Re <200 where Yu and McNown only have, one test point.
Their results, in g~neral, agree very well with Nittim~s.

•

•
,~

••
..-

••

Nittim's tests with rain agree reasonably with his test
of the sphere surface exposed torain, except at high
Reynolds' numbers where the greater roughness height of
spheres gives rise to a greater friction factor. The in­
fluence of rain can be recognized both in Yu,and McNown's
and Nittim's data. It should, though, be noted that in
figure 5.3.7b all the filled and the half filled dots rep_
resent unrealistic rain intensitites ,(greater than 380

I/s·ha). If these are removed, the influence of rain be­
comes mainly visible as a scatter. Yuand McNown were

also unable to quantify the effect of. the rain intensity.
In their tests, rain intensities from 180 l/s·ha to 700
l/s·ha are represented. Izzard"s investigatiOns of rain
dependence show the same general trend of increasing
friction factor with increasing rain intensity, but all
his intensities are unrealistic (see above).
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Figure 5.3.7 a,p Friction factor'versus Reynolds# number

for a concrete and asphalt surface
after Yu and McNown (1964) and ~ittim
(1977), (1 ll:n/s = 10 I/s·ha)

The following conclusions can be drawn from, the tests
considered in this section, (il. general agreement with

those of "artificially" roughened surfaces):
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o No distinction can be made between a lamiqaf ~nd a
turbulent zone.

•

'0 At Re >1000 values of f conside.rablyqreater than
those corresponding for a sm::>oth surface are obtained.

o ~6r Re >1000 a tendency for U:~ friction factor to
·increase with .increased roughness height is· observed

(sections 5.3.3 and 5.3.4).

o At Re <.300 values of f below the "laminar values·

24/Re are obtained.

II

..

I

/

••
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I

•

o The influence of rain is clear at high intensities,

but at realistic intensities only a weak trend is

observed. However, the scatter be~ornes very great at
low Reynolds' numbers.

5.4 Rollwaves

If the slope So is sufficiently steep, small disturbances
(which are always present in a flow) will grow and after

a certain length so called rollwaves - a form of unstable

. flow - will form and move downstream. The stability is

judged by theVerdenikov's number Ve ' defined by Chow
(1959)

(5.4.1)

Where p is the exponent of the hydraulic radius in the.

friction relation (denoted c 4 in equation (5.1.211.P is

the wetted perimeter and Fo the Froude number. Insta­
bility is assumed to occur when Vedernikov's nUIDber ex­

ceeds unity. For surface flow dP/dA is zero and for gutter­

flow it is approximately zero. If the Darcy-Weissbach
friction relation is used (p=O.5), thenVedernikov's

number can be written

•

• •

....

•
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Ve =vi's~ ••• (5.4.2)
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Using the Chezy formula with aChezy coefficient relevant
for urban surfaces, the stability criterion becomesSo<
0.04 -0.05. This coarse criterion agrees reasonably with

4ataobta ined by Nittim for the smooth surface ~ndthe
asphalt surface. For rougher surfaces the agreement is
not so good. No rollwaves seem to occur during heavy rain.

•, .

I

•

•

••
•

Rollwaves have a wave length and period much shorter than
the waves that are the main subject of urban runoffsimu­
lationand cal'mot be represented by the momentum equation

(3.2.1b), see )ren et ale (1977). According to Nittim's
data the most realistic way of considering rollwaves in
the analysis is by using an increased friction factor.
For a relatively smooth surface and small Reynolds' num­
berll an increase of the friction factor of more than 50%
may very well be obtained. At large Reynolds" numbers and

surfaces with greater roughness heights, the influence is

considerably less •

5.5 Wind forces

in the steady flow case, equation (5.1.1).applied to sur­

face flow is written

••• (5.5.1)

Using equation (5.2.1) the friction factor maybe expressed

as a function of the shear stresses

• f
8-2-.(-r + T )

V . p mp - ms
••• (5.5.2)

where the she~r stress at the surface Tms is wind gener­

ated. The wind shear stress is given by

where the density of air PL = 1.29· kg/m
3

, the resistance
coefficient Col::! 2.4 (according to Engelund (1969)) and W
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the wind velocity 3 m above surface. Thus

\,

c

,
\

(5.5.4)

•

•

••
•

is obtained. The wind shear stress obtained from equation
(5.5.4) at a wind velocity W =6 mIs is 0.1 N/m2• This
can be compared with the the bottom shear stress which
has values in the interval 0.01 - 1.0. The wind shear
stress,may,evidently be of the same order as the bottom
shear stress.

If the effect 9f wind is included in the Darcy-Weissbach'
friction relation, we get (for surface flow)

••• (5.5.5)

Strong wind will, in addition to the effect on the water
surface friction, have an influence on the momentum ,of

the raindrops~ Surfaces in urban catchment usually have
arbitrary flow'directions. Wind velocities ov.er the sur.\.
faces also have, because of houses anc other obstacles,
great local variation. It would therefore not be possible
to calibrate, or to feed with proper input values an
urban runoff model that takes the effects of wind into
account. However, in studies of the validity of modols
using field data, wind may be treated as a source of
error.

\
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\
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In the studies of the friction factor discussed in the
previous sections, several distinct trends or relations
have been specified. Examples are Shen and Li's friction

factor - rain inte~sity relation for a smooth surface,
and Phelp$' observations of the influence of the relative
roughness. However, even if only those test::; with rain
intensities, roughness heights and slopes relevant for

•

.'"

5.6 Summary and discussion

---
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Swedish urban surfaces are taken into account, the
variation of f appears to be very complex and difficult
to interpret. The scatter in friction factor values il3

large for flow exposed to rain, especially at low
Reynolds~ numbers. Some charact.eriStics may, however, be

noted;

•

••
...

....

•
o
o

o

o

there are no distinct laminar or turbulent zones
at small Reynolds~ numbers friction factors below
the laminar values are obtained
at large Reynolds~ numbers friction factors
consideraply greater than those corresponding to
Blasil.ls~ solution are obtained
the influence of rain on the friction factor is
small

I
"

""

J.;
;

I

/

,"

The investigations give no base for estabiishing a
relation which quantifies the influence on the friction
factor, either of the relative. roughness or the the rain
intensity. However, the 'simple' friction relations pre­
sented in sect~on 5.2 will be discussed and fitted to

test data.

Comparison of the fit.ted friction-relation
with Nittim~s (l9 7 7) qnd Yu and McNown's
(1963) (shaded) tests on asphalt and concrete

."
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1n figure 5.6.1 the most relevant results from section
5.3 have been put .together. ':hey are the t~ittlm's asphalt

tests and Yu and McNown's concrete tests (shaded). All

test points with unrealistically higt (i > 390 l/s·ha)

rain intensities have been removed from the plot., but
this could not be done with Yualld McNown's data. Typical

values of trie Reynolds' number for surface flow are less

t.he.n 900 while the corresponding numbers for gutter flow
are greater than 900. The test points greater than ~OO in
the figl,\re are therefore believed to be reasonably repre..

sentative for gut~er flow.

Considering the scat.tered results a suitable level of
sophistication for a friction factor r'1lation might be

• •• (5.6.1)

represententing a.st:raight line in .t.he friction factor
diagram. The relation is valid for the Chezy, Manning, L­

and quadratic formula~. Comparinq the 'slopes' of the
different friction factor relations and the test results,

theL-formula generally seems to have the best overall
fit. Howe\'er,in the important ir.terval Re < 1000 there

are no grounds tor rejecting the.l-lanning- or quadratic..

formulas, provided suitable roughness coefficients are

used. In figure 5.6.1 the quadratic relation (Kq = 515

and So = 0.03) and the Manning formula (n = 0.016 and So

=0.03) are shown.

The friction factor relations are al&ocharacterized by

an influence from the surface slope S , see equationso.
(5.2.11 _ 5.2.i3). This dependence could not be recognized

in the series of test points. Each relation should then

be. represented in the diagram by a band instead of a line.

The bands correspcnding to the slope interval given in

chapter 2 (0.01-0.05) are marked in figure 5.6.1. The
qua.dratic friction factor relation is obviously more in­
fluenced by the surface slope. Both the relations may be

manipulat~d to give a friction factor relation indepen..

dent of So. This is tione by using a slope exponent of
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0.5.5 and 0.67 in the Manning and quadratic formulas,

respectively (not used in this report).

The typical ur.bansurface ·is not as plane and regularly
shaped as the laboratory surfaces discussed in this
chapter. The flow over the surface will, therefore, in
some parts form rills which more closely resemble gutter

flow.

-.

---.,.-------_._---_..------------'-

Jacobsen (1980) successfully analysed suriace flow using
the L-fOrmula (b = 1.83). He reported indications of a

Falk and Niemczynowicz (1979) analysed 13 Swedish urban
surfaces and developed a friction relation. This is not

directly comparable with those discussed here but it
should be noted that the Chezy exponent (b=3/2) was used

to relate flow and water depth.

,." .
I
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I
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In the simulations. of runoff from a small asphalt catch­
ment (430 m2), which are discussed in chapter 8 several

friction relations werE~ tested. It was found that the
typical turbulent friction modelS, Chezy, Manning and
Blasius formulas (b = 1.50-1. 72), performed rather well.
The 'intermediate '. quadratic formula (b = 2) performed
not so well while the laminar relation (b = 3) performed
badly, eve~ for runoff with very low Reynolds~ numbers.

By comparing model simulations and corresponding flows

from field measurements more realiable friction co­
efficients f.hould, in principle, be obtained, However,
field measurements of surface flow are difficult to
accomplish and all those known to the author contain not
only surface flow but also gutter flow and sometimes, in
addition, sewer flow. It is then,. in practice, difficult
to an?-lysesurfacc flow arid gutter now separately. Simu­
lations presented later in this report indicate, however,
that the Manning formula is an appropriate friction rela­

tion using n = 0.016 in surface flow and n = 0.013 in

gutter flow.
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~!better .fit in some cases using the quadratic relation,
Jacobsen uses the same basic equations as the author but

" a somewhat different numerical solution method •

In an urban runoff model where the governing equations
are solved by numerical methods the selection of space
and time step has an influence on the simulated hydro­
graph, which is very similar to the effect caused by a
change in roughness coefficient. It is, therefore,
possible to seme de~ree to compensate for a space step
which is too long bydecrdasing the friction factor,
Lyngfelt (l97SY. Thus, for different runoff models and
for different uses of the models different friction
coefficients may be relevant in otherwise identical

applications.

A traffic load on the surface changes the characteristics
of runoff. In a study of .runofffroma motorway (traffic

intensity 500-2000 vehicles/hour) it was found that this. '

load increased the roughness coefficient by 100%, Bufill

(1984) •
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,6.

6.1

NUMERICAL SOLUTION METHODS
OF THE KINEMATIC WAVE EQUATIONS ..............

•

••

••

•
'I

·..

••

'l'he kinematic wave ~quation$ have analytical solu·tions
only in some very special cases (c.!. chapter 4.2.3). In
the general case with an arbritary rain intensity input,

numerical solution methods must always be used. In these

the derivatives are apprcximated by finite differences
usually' estapHshed b,~tween fixedgridpoints. in . the .x-t
plane. 'l'he finite difference solution can be expressed

in many different ways, each one havinqits own possi­
bilitesand prcperties. Important properties are sta­

bility, consistency and numerical diffusivity •

Th~ main object of the numerical algorithm is, of course

to pl')duce a solution as close as possible to the exact

solutiCJn of the differential equations. :If unsuitable
algorithms and numerical parameters are used the devia­
tion from the 'exact' s,>lution can be great. A thorough

knowledge of the properties of the numerical solution
method is, then, just as important as the knowledge of

underlying differential eq\ ations

In this chapter numerical solution methods for the 'kin­

ematic wave equations will be discussed. The analysis is
mainly focused on the surface and gutter flow case (lat­

eral ~:lflow) but is in many parts also generally valid.
The discussion is based en the weighted box scheme, which

is a very general solution method.

6.2 Finite difference schemes

The structure and use of a finite.difference scheme to­
gether with ~oundary conditions is best discussed with

reference to the x~t plane. This plane is shown in
figure 6.2.1 with fixed grid points, upstream and down-

stream boundaries.
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If the difference equations are applied to the first box­

grid points (0,0)., (0, At), (Ax, 0), (AX, At) - and Q

or Y is given as upstream boundary conditi.on, Qand Y in
the first internal gr.d point (Ax, At) can be determined.

Let the scheme now be succe,;siv~lyapplied in a down­
stream direction and water depths and flows calculated

stepwise at the points (2AX, At), (3AX, At) and so on.
When the scheme is finally applied to ·the la~t box at

one time l.evel, values of 0 andY at the d.ownstream

boundary can be determined. The given solution m~thod is
not able to take dow!1stream conditions intoacc~dnt. The
method is therefore valid c:nlyfor supercri tical flow •

• .-. •
( bOll ).

• .----. •

Ax • • •

x
x;O x=L

Figure 6.2."1 The x-t plane with fixed gridpoints
and boundaries

Consider t:he problem of solving fOl' the two ul1known
variaoles (~,Y) at each' grid point using the kinematic

wave equations.'1'heinitial conditions 'att=O art:

assumed given along the channel reach. Because the
equations have no second order derivatives it is poss­

ible to use the box-scheme where the differences are

established by only one time and space st~p ("o;}est~p"

scheme).
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Figure 6.2.2 An example of a two. step explicit scheme
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An explicit scheme ~ncludes only one point at the new
time level and thus the unknown variable may be directly

solved. In figure 6.2.2, a two-step explicit scheme (con­
taining two successive space steps) is given as an ex­
ample. Two-step schemes can be used in differentiating
second order derivatives, for instance the diffusive
term in·the convective diffusion equation a

2
Q/ilx

2
(sec-

tion 4.3) •.

Stability is an important property of the numerical
scheme. with an unstable scheme a solution will be
produced where the values obtained s;uddenlygrow in an

uncontrolled manner and often cause it to break down.
Implicit schemes are usually regarded as unconditionally
stable. Explicit schemes may become unstable for un­
suitably selected time and space steps. The so called

Courant condition is generally used as a stability

In figure 6.2.1 it can be seen that the box scheme in­
cludes two points at the new time level. As the relation

between Q and Y is not linear this will result in an
implicit difference equation which must be solved by
some iterative technique. Numerical schemes containing
more than one point at the new time level arc called
implicit. The box scheme is a typical implicit scheme.

••
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••• (6.2.1)
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criterion for explicit methods, Yevjevich (1975)

At 1
At < Iv :!: 'f9Yl

In implicit methods, mainly for stability reasons,
greater time and space steps can be used and these seems
then to be the. most effective from a numerical point of
.view. The necessary iteration procedure in the non lin­
ear case reduce§, how~ver, this effectiveness and the
implicit scheme is not always·advantageous.

The box scheme, is for several reasons which will become
apparent in this chapter, the most interesting for dif­
ferentiating th~ kinematic wave equations. It also forms
a base .for analysis of and comparisons betwf'en different

well known solution methods.
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6.3 The weighted box scheme - general properties••
•

6.3.1 Finite difference equations
\

• • •

•

.""

• •
•

(j,m+11_ (j+1, m+11( .).
J (j,m)·--·(j+1,ml·

l>ll...-~ -+. x

Figure 6.3.1 Grid points in an arbitrary finite box
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• •• (4.2.1)

If all gridpoints are equally accounted for we get

Let this equation be approximated by _finite differences

using a box scheme, figure 6.3.1.

In the kinematic wave equations only the continuity

equation contains derivatives

"
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3Q (Om+l m O~+l I.'~) /26x ••• (6.3.1a)+ °j+1ax j+1 J

aA fA'j:i + Am.+1 m A'j)/2flt (6.3.1b)
at = - Aj+1 - .. ,-

J

i

••
This differentiation defines a scheme which is centred

on the cent);"e of the box. By the use of weighting fac­
tors in the differentiation it is possible to consider

the four gridpoints at different levels.

•

•
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I ) ,!l·4l
.~ • ..1.
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•
Figure 6.3.2 The relation between the centrepoint and

weighting factors after Smith (1980)

••• (6.3.2a)
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at

m+1
(I-a) (Aj+l -

Aj+l)] It>t

••• (6.3.2b) I
!

•
'1'hisdifferentiation corresponds to a scheme which is

centr,~d on a point in the box given by a and bas shown

in figure 6.3.2. The weighting factors can take values

O<a<LO and o<e<l.O.
.,,

\ .
.-- ----.

It c.~n be shown by a Taylor series expansion that the

weighted scheme is a better approximation of the equa­

tion,•
6.3.2 Numerical diffusion - consistency

..
~'; '""',

••
q

where

••• (6.3.4)

• •• (6.3.5)

•

•

·..

••

than of the continuity equation, Smith (1980). The
effect of the differentiation can thus be intepreted as

an introduction of a diffusion component in the kinematic

wave equations (compare equation (4.3.5)). The diffusion

coefficient is a function of the numerical parameters

4x, 4t, a anu e. Different corrbinations of these para­

meters together witn the flow-state (represented by ckJ

results in different values of the diffusion coefficient

which may be both positive and negative. A negative

coefficient will give an attenuating wave movement which

cannot be described by the basic kinematic wave equations.

A positive coefficient gives an amplifying wave movement,

usually resulting in serious numerical difficulti~s (see

below) •

'1'he second order derivative in equation (6.3.4) have

factors containing both 4x and 4t. This is also true for

the third order derivatives (here not included in the

82
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equation). In the limit when Ax and At - 0 the ordinary
continuity equation is obtained. The numerical solution
is then c~nsistent with the underlying differential

equation for any choice o~ ex and ~.

Analysis of the diffusion coefficient and its influence

on the. properties of weighted box models has been dis­
cussed by Smith (1980), Ponce and Theurer (1982) and

~ousis(1983).•
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Classification of weighted box models

•

.-
•

Weighted box models can be classified according to the
properties of their diffusion coefficient as defined in

. the previous section. In this report three classes, named

ex.,., ~-'andCt~-diffusive models, will be discussed:

!h~ ~-E!iif.!!siv~ !!!oE!e.!:~ are obtained for «<0.5, ~=0.5 and
corresponds to a diffusivity related only to the chosen
discretization in space. Of special interest is the com­
bination «=0, ~=0.5. It will here be called the diffusive
Q.o~ §.c!le!!!.e_. though many other combinaU'ons of« a~d-~ -als;;
result in diffusive solutions. The scheme corresponds to

the differentiation

(6.3.6)

-. .,

'..--...~-:::.- .

'.

!n_t~e_ex~-E!iif.!!siv~ !!!oE!e.!:s_ diffusivity is influenced by
the discretization in both time and space. The case when

The ~-E!iif.!!siv~ !!!0E!e.!:s correspond to a diffusivity re­
lated to the discretization in time only and are obtained

for Ct =0.5, B>0. 5.

which is equivalent to the assumption of uniform water
depth in each segment Ax. The diffusive box scheme is a
frequently used solution method for the kinematic wave
equations especially in sewer routing (c.f; section

6.6).
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,«<0.5, f:>0.5 implies a positive contribution to the
diffusion by both the time and space related components.
This will decrease the influence of a single discretiza­

tion (in time or spacel. The case when 0.<0.5, 13<0.5
implies a negative contribution to thedHZusion by the

time step dependent term. Because of this term a rela­
tively greater space dependent diffusion can be accepted.

This model is 'then of interest in connection with the

use, of large space steps' (reservoir models).

! .

.."

A special case is the ful~y centred scheme given in

equation (6.3.1). This scheme corresponds to a = S = 0.5

giving the diffusion coefficient zero, see equation

(6.3.4). It is commonly called the!!o!!-~i!f~s~y~~c!!e!!!e.:.
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The greate3t possible diffusion for given time and space
steps is obtained when.a = 0.0 and 13= 1. O. This scheme

has been proposed by Li,et al. (l975a).

In order to survey the different models and their dif­

fusive properties, they have been put together in table

6.3.1.

Table 6.3.1 ~eighted box models

... ....

\
"-. \...

"

------------------------_.._-----------------------------

Model 0. 13 Dn

<l-diffusive <.5 .5 (2a-1) t>x/2

a-diffusive .5 >.5 (l-213)t>t- ck/2

(la-diffusive
<.5 >.5 2cx-1 + 1-26
<.5 <.5 --2-·t>x - 2·t>t,ck

~....

o
-t>x/2

-.(t>x+ck ·lltl/2

.5

.5

1

.5

o
o

Special cases
Non-diffusive

"Diffusive box"

Li et al. (19751•

•

•
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6.3.4 'Negative diffusion'(Dn > 0)

The three classes of model given in the last section all
have a positive diffusion (On < 0). !tis, however, poss­
ible to choose numerical parameters that give solutions

with a negative diffusion (On> 0).

,....." ; I, ,', "~--~_ •• ~--,,. , '" ",'. " ,,/ •• ::-;,- '. _"~ / '. '.' .... ..... ..» ..>----....../' .~.. .' ,__._J~ ~ ;..J~'-

~~~,~"'~~~,~~?~
~ ....•.;'., ). . . .·i
t
k

Theoretically, such models should produce amplifying
waves. Numerical experiments show that hydrographs simu­
lated l1sing a negative diffusion scheme become uneven
with sudden ~~nrealistic flow peaks (shots). These dis­
turbances do not usually make the solutions. break down
like disturbances can do in explicit schemes. Despite

the fact that the box scheme is implicit and thus
'uncondit.ionally stable', solutions obtaining shots will
be called unstable solutions. An example of such insta­
bility is shown in.figure 6.3.3 together with a hydro­

~raph having a suitable attenuation •

/

,

32 tlminl 402416

Rain intensity
, SuitableattenlJated

solution (On< 0)
+ Non - diffusive

solution (On: 0)
x Negative diffusion

solution (Dn>OI

8

50

i, Q [(/sohal

100

I

I
•

•

•

•

••

Y,. ;.... ._,.-__•__v~...-~---

•

••

Figure 6.3.3 An example of unstable solutions (with
shots) compared with one having a
suitable attenuation (L =20 m, s =0.035,
n=0.016) s s
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Thenondiffusive scheme has according to equat~on (6.3.5)

no diffusion (On'" 0). Despite this the hydrographs simu­

l'}ted by the model often become unstable ina pimilar
way to models with negative diffusion, see figure 6.3.3.

This can be explained by the neglected third order terms

in On (equation (6.3.4)) which give a positive contribu­
tion to On in many flow' cases. The non~diffusive scheme
is therefore 'usually not used in kinematic wave routing.

Simulations by means of this model also show that On < 0
as expr~ssed in equation (6.3.4) cannot be taken as a

totally reliable condition for stability.

1--·----·----------- ------------

1
•

a*IQ/q.;U

---------- ------------

..
i
\
-\

I

1.51.00.5

Dimensionless r~s~ng hydrographs obtained
from the diffusive box model using various
values of 6x (after Lyngfelt (1978)).

Positive diffusion (On < 0)

O.t
Owo=:=---t- ~--t ,...f- _'__ _+_--

o 0.1

Figure 6.3.4
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6.3.5

M9dels with positive diffusion (On < 0) will produce

attenuated hydrographs. Th'~ basic performance of such

models is exemplified by the use of the diffusive box

0.5

1.0

..
•

•

•

••

••
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IlIOdel in figure ~.3.4. Here dimensionlesS rising hydto­
graphs generated using various step lengths (correspond­
ingto different D ) are shown, together with the ana-n ..
lytical. kinew.atic solution. Evidently, rather 'small
space steps have to be used in order to obtain a solu­

tion similar to th~ analytical solution.

The numerical diffusion influences the solution in a way
which is very similar t.o that caused by the acceleration
and pressure force terms in the complete dynamic equa­

tion. In figure 6.3.5, dimenSionless rising hydrographs
generated using the cOMplete shallow water equations are
shown, Woolhiser (1967). The attenuation is a function

of the kinematic wave numbers and Froude numbers.

•

i
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1.5

t

1.5

t*(~o.t)

1.00.5

According to sections 3.4 and 4.3.~ the main part of the
'diffusion' in overland and sewer flow simulations is
generated by the pressure force term. It should thus be

0.5

Figure 6.3.5 Dimensionless r~s~ng hydrographs
obtained by the shallow water equations
for various kinematic wave'numbers'and
Fo=l (after Woolhiser (1967)).
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possible to estimate a suitable step length in the
.diffusive box model by setting the numerical diffUsion

coefficient On equal to the corresponding coefficient °
in the convective-diffusion equation (section 4.3.1).

This will give

Ax =
where Qb
formula

••• (6.3.7)

?er unit width or, using the Manning

Ax=ls'!s' ••• (6.3.8)
o

which is basically valid for surface or flow in a rec-

tangular channel. The equations show that in order to
obtail1the 'true' diffusion using the diffusive box
model in (lverland flow, step lengths below 0.1 m should

be used.

In overland flo,",' where the kinematic wave nurr,ber usually

exceeds 100 the optimal selection of numerical para­
meters is evidently one that gives a very small diffu­

sion, like that obtained by the complete shallow water
equations (see figure 6.3.5). For such a choice the

numerical solution will in fact be more accurate than

the underlying kinematic wave theory. In practical
modelling, the numerical diffusion can not be determined
with suf~icient precision to follow the true value and
must therefore be chosen to be greater in order to en­

sure that shots are avoided.

••• 6.3.6 Selection of numerical parameters

•

•t'r
!-.

To obtain reasonably effective calculations, the greatest

possible step length should be used. The diffusive box
mode!>appears from this point of view to be unsuitable

and better numerical methods are found among the a-, ~­

and aB-diffusive models (see table 6.3.1). The advantages
and drawbacks of using different numerical models have
to be analysed by means of numerical experiments which

is done in the next section.
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The selection of time step is also important and affects
the diffusion~ In choosing a suitable time discretiza­

tion,bothpractical and numerical aspects have to be

conl;lidered. From a practical/economical point of view
the greatest possible timestep should be used. It has,

however, to be l'>mall enough to preserve an.appropriate
reproduction of the shape of hydrographs within the

system. This demands varying discretization within the
system, which is not very practical. It is, furthermore,
desirable to keep the time step constant between differ­

ent tests .ill the same catchment and preferably also

'between different model applications.

,,.
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The general consid~rations ':Jiven in the last section can
not be used directly to choose suitable parameters (a,
8, Ax, llt) in the weighted box scheme. Reliable solution
methods have to be based on experience from numerical
e.:periments. In this section a series of such e..<peri­

ments is discussed. From this, a criterion for Choices
of the weighted box parameters is presented, giving

The choice of time step has, then, to be a comprol'lise.
Referring 'to :.-ain intensity/runoff measurements in

catchment;s of different sizes made in Goteborg and

Linkopillg (see chapters 8 and 9) llt = 30 s seems reason­
able for fast reacting catchments. In slower catchments
(areas greater than 2-3000 m2)a greater time step, llt =

60 s, can be accepted. Greater time steps may be of
\

interest in special cases where very great subcatchments

are used or long time periods are to be simulated. 1.1

the simulations referred to in this report, the time

step has been fixed at 60 s with the exception of. the

smallest simulated catchments, where 3C s is used. The
analysis ,of the numerical parameters in the subsequent

sections are based 0n these two time steps.

Aim and scope of the experiments

The weighted box scheme - numerical experiments6.4

6.4.1

"
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.stableand s~itably attenuated solutions •

As it t-lould go too far to investigate all possible para­
meter combinations, the test series has been limited to
cover a certain variation in flow length, rain intensity
and shape of thp. hyetograph besides the four numerical

parameters. The time step has, in accordance \f/ith the

last section; ~)eentested for 30 and 60 seconds. The
tested catchmEnt is shown in figure 6.4.1 and consists
of a surface and a gutter. F~ursurface lengths were

tested in t~le interval 5-40 m and three surface s_opes

in the interval 0.005-0.04 •

!
su~face

1 120m 1
~

gutle~.
~ --. ..

I..- 50m
I

.1

Figure 6.4.1 Test surface for numerical experiments.

Two cases of gutter length, Lg 50, 100, and two cases

of gutter slope, 5-1 .005, .02, were also tested.

A standard hyetograph was used in the tes~s, see figure

6.4.2. It is intended to reflect one f.ast rising/re­
cession part and one relatively slow one. The peak inten-'
sity was 100 l/s·ha (corresponding to a recurrence inter­

val of 4 months at five minutes duration). For the sur­
face length L =;20· m two alternative intensities were

tested, i = 25, 50 1/s·ha •
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Figure 6.4.2 Hyetoqraph used in numerical tests

Numerical models and experiments

a and ~ were chosen in the intervalsO~O.5 and 0-1.0
respectively in order to cover the three main model
cases defined in the last section; a-, B - and as
diffusive models. The tested models are given in table

6.4.1.

Table 6.4.1: Tested n~merical models
\

K .0 .1 .2 .3 .4 .45 .48 .50

* *.25 all all
* *.35 all aB

.5 a·· a a a liD

.52 aB

.55 all Il

.60 all Il

.65 B

.70 all Il

.75 Il

.80 B
1.0 " a

H)Models with a negative contribution to the
diffusion from the time dependent term

KK)Diff~sive box scheme ND= Non-diffusive schem~
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The different models are marked in the t~ble by their
i
prefixes a, 6 or ex6.

*.

•

••

For each model given in table 6.4.1 a diffusive para­

meter was chosen and varied for different flow cases.
Using smallval~es of this parameter it was possible.to

stress the models to an unstable behaviour at the first
intense hyetograph peak.liydrographs generated by dif­

ferent values of the diffusive parameter were then com­

pared. In each flow case a 'critical' value was chosen
corresponding to the hydrograph having the smallest
diffusion but still with no tendencies tl) instability

(shots, see figure 6.3.3). These empiricallyobta~ned

values represent a diffusion, which from a practical
numeric;).l point of view, is the clo.sestpossible to that

of the complete equations at large values of Ko ' (figure

6.3.5). Below, they are called 'optimal' values.

/
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In the a-diffusive models 6=0.5 which reduces the dif­
fusive tenn in equation (6.3.51 to

(6.4.1)

The a-diffusive models (a; 0.5)

Ax
Dn = (2u-I)'"2

6. 11.3·

In the numerical experiments it waS found that at ,rery

large values of the discretizd.ticn txlL, difficulties
arose in properly reproducing the shapes of the hydro­

graphs, this despite selection of 'optimal' diffusive
parameters. At step lengths having a AxIL smaller than

114 this effect was negligible. The condition AxIL < 1/4

was thus adopted as a general criterion besides the cri­

terion for 'optimal' diffusion evaluated in the succeed­
ing sections.

where 0<a<0.5. The equation shows that the space step"is'
an important factor in discussing the performance of

a-diffusive models. Ax was therefore chosen as diffusive
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In testing various values of a and Ax it was found that

provided

parameter for this class of models.

I . .
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o < a <0.5 (general condition for a-diffusive
models)

Ax/L<1/4 (general condition for all weighted
box models)

(~a-1)·AX = constant

almost identical resulting hydrographs were obtained for
any combination of a and ax. All a~diffusive models may

thus be transferred to the diffusive box, model (O~0.5)

by increasing the space step (see table 6.3.1). Dis­
cussions of the properties of the a-diffusive models
will, therefore, here be entirely based on the diffusive

box model.

•
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8 tlminlt c 4

i. Q ll/s'ha)

8

l> )llml

& 0.8
+ 1.6

" 5
<1 10

t c 4

50

In figure 6.4.3 an example 'from the test series is
shown. The hydrographsare simulated by the diffusive
box model using different values of Ax. The storm input
is the first part of the standard hyetograph (figure

Figure 6.4.3 a,b Hydrographs simulated by the diffusive
box model (L =20 m, S =.035, n=0.016
K =230). s s

o

i, Q ll/s'ha)
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6.,4.2). In figure a the time step at = 30shas been used

and in b.At=60 s. The hydrographs can be compared with

the qimensionless kinematicwav~ solution and the dynamic
waveso~ution at Ko=100 given in figure 6.3.5 (t

c
in

figure 6.4.3 corresponds to t Jt=l).

From the figure some observations may be pointed out:

o For At=30 's an optimal value of ax according to sec­

tion6.4.2 will be about 1.5 m. The ~orresponding

value at at=60s is about.4 m,

o The influence of the space step on the attenuation

'is very marked. When ax i~ increased compared to the
optimal. value the attenuation grows and rapidly be­

comes too great. When ax is decreased below the

optimal value thehydrographs obtain shots despite

the model having a positive diffusion (D
n

< 0 accord­
ing to equation (6.4.1)).

o The time step has a gre~t influence on the attenu­

ation and therefore influences the selection of the
optimal space step. Atat=60 s shots are o~tained

at space steps which were considered optimal for
at=30 s.

The diffusive term (equation 6.4.1) includes neither the
time step nor the wave velocity. The influence of these

parameters on the attenuation must thus be explained by
effects of the third order Taylor terms in at. From the
expression of these terms given by Smith (1980) it is

evident that they are always giving negative contribu­

tioris to the diffusion (On> 0). This agrees, as shown
above, with test observations. The diffusive term On as

given in equation (6.4.1) can therefor.e nQt generally be
~sed to estimate optimal step lengths.

The wave velocity ck may be written for flows with only
a lateral source,
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••• (6.4.4)

• •• (6.4.3)

00. (6.4.2)

c~X L 64 using At = 30 s

where aopt=O (diffusive box model) and AXeq is the
chansred space step to be used together with aeq •

95

c~x = 1.76 using At = 60 s

The relations can be used to estimate an optimal step
length which gives a suitable attenuation o~ hydrographs
simulated by the diffusive box model. The optimal space
step AX

opt
may be changed (preferably increased to a

convenient value) with maintained attenuation if the
a-aiffusivemodel is used. Based on the relation (2a-1)Ax
= c<;mstant (see previous page), the corresponding a-value

a
eg

can be determined by

where c~X is the wave velocity defined by equation (6.4.2)
using L=llx.lnserting the optimal step length and corre­

sponding values of At and c~x for all test runs gave a
Courant number that was only slightly dependent on At~

where q=lateral inflow intensity (= i in surface flow),
L=flow length, So=slope in flow direction, k, c 1 and c 2
are constants depending on roug~ness and flow' section,

see section 4.2.

In the tests it was found that the optimal value of AX

.varied with the lateral inflow (rain intensity in
surface flow) and the slope in accordance with equation

(6.4.2). No variation with respect to L was observed. A

modified expression c~xfor the Courant number was

therefore tested
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'l'hegeneral discretization condition must still be
satisfied: lix < L/4. 'Transferring to alternative a­
diffusive models is of interest for two reasons; to
reduce calculation cost and to obtain a space step
which is a multiple of the actual flow length•

In the a-diffusive models a=0.5, which reduces the dif­
fusive term (in equation (6.3.5)) to•
6.4.4 The B-diffusive models (0.5; B)

(6.4.5)

•

••
•

•

·-

• •

where 0.5<13<1.0. The equation indicates that the time
step is an important factor in simulations using l3'-dif­

fusive models. Since it is rather inconvenient to vary
the time step, 13 was selected as diffusive parameter in
this class of model.

In the tests it was shown that the performance of l3-dif­
fusive models is practically independent of the, choice
of s~ep length (lix/L<I/4 must still be satisfied). This
is in accordance with equation (6.3.5) and indicates
that the third ordsr terms in Ax are not significant,
unlike the third order terms in lit (see a-diffusive
models above).

Table 6.4.2 Optimal 13 -values (lix/L < 1/4)

At L B

30 >15 .61
30 10 .66
30 5 .71

60 >15 .72

60 10 .77

60 5 .82
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, lJ- diffusiv~ ,model ~x/L::tl4

+ ex - diffUSive model AxiL :;1/13
( Cl =0 I

50

i.Q H/s'hal

100 +---::.t

In figure 6.4.4, hydrographs from a - and /3-diffusive
models using diffusive parameters according to equation

~.~.3 and table 6.4.2 are compared. The example demon­
strates how the discretization ~x/L can be reduced from
l/13to 1/4 ifthe6-diffusive model is used instead of
the conventional diffusive box model. A similar teduc­
tion may also, be obtained by using the a-diffusive model

if the (I-value is increased according to equation (6.4.4).

Optimal/3-values obtained from the numerical experiments
were found to be functions of the time step and flow
length. In table 6.4.2 the relation between these para­
meters are·' shown.

Figure 6.4.4 Comparison between a- and /3-diffusive
models ILs= 20 m, 5s = 0.035, n= 0.016)

It is obviously easy to select the diffusive parameter
/3, as it is mainly a function of a geometric parameter.
When 'optimal a-values are used, the B-diffusive model
shews a rather impressive ability to generate suitably
attenuated hydrographs, independent of the actual flow
case. Compared to the a-diffusive model, which has a
diffusive parameter more sensitive to changes in flow
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co.nditions,the B-diffusive model appears to be more
!approp;iatein the sense of both accuracy and practical

application.

I

-.
-t. 6.4.5 The a &-diffusive models (a;B)

•

•

e_

e

•

••

In ,the ae-diffusive models the diffusion is governed by
both the time and space dependent terms (equation 6.3.5).
There are two types of qf3-diffusive model, each of them

interesting but for different reasons •

t-lhen a<0.5 and 13>0.5, the diffusion gets a positive con­

tribution froll!both·thetime and space dependent terms.
This seems advant.ageous from a general point of view as

the sensitivity to changes in both th~ flow conditions

and the time step is. less than the corresponding charac­

teriStic for the a-diffusive and f3~diffusive models

respectively. However, the sensitivity to changes in

time step is not very important (usually kept constant)
and the B-diffusivemodels appear in comparison to have
the actual advantage. TheaB-diffusive model was there­
fore only tested in a preliminary way, s.;le table 6.4.1.

The model (0.4; 0.6) performed very well. It may be

noted here that the SWMM-model in the sewer routing

algorithmtises (0.·15; 0.55), Price (1980b).

When B<0.5 the diffusion will be decreased by the time

dependent term. This gives the opportunity to retain an
appropriate diffusion when large values of lix are used.
This is of interest in the case of-reservoir models
where lix/L=1. The model (0;0.25) was found to perform

very well in tests at large values of lix and appears,
therefore, to be an appropriate base for a rese~voir

model (c.f. 'secti~n 7.2.3). It becomes, however, "un­

stable" at small values of lix and .s therefore not
suitable as solution method for the kinematic wave

equations. In figure 6.3.3 such an "unstable" solu­
tion is shown (negative diffusion solution) •
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6.5 The Lax-Wendroffscheme

Consider a Taylor series expansion of the cross­

sectional area at (j, m+l)

Ar1= Aj +[:~ ~t+ ::~. ~t2+ 0 Ut) 3}: (6.S.l)

1
. I

I

• • .(6.5.3)

•

•

••
•

•

Comparing with equation (6.3.6) we can see that the
diffusive box scheme corresponds to neglecting second­
and higher order derivatives. In this section an example
of a scneme which takes also the second order derivative

into account is discussed.

The continuity equation can be e)Cpressed (Q=aoA
b

)

• •• (6.5.2)

which leads to, see Rovey et a1. (1977}

a2A [. a [ . .. b-l il . . b. ] il a ]__ = __ a.b.A (-(a(A }-g} - ..::..;;I.

at2 . ax ax at

where a= K{:Soand b are constants in the friction rela­
tion, equation (4.2.4}. Inserting equations (6.5.2} and
(6.5.3) in equation (6.5.1) will give an expression which

only contains second order derivativesin~xandwhich
provides the basis for the so called Lax-Wendroff scheme.

In the differentiation of the equation (6.5.1) the "two
step" algorithm shown in figure (6.2.2) can be used. An
explicit scheme of second order accuracy is then obtained.
This algori';hm has been tested in surface and gutter flow
by Rowey et ale (1977). Using a "two step" scheme requires

special connecting equations at the boundaries x=O and
x=L. Sucheguations based on the characteristic equations

are presented by Rowey.

The scheme is explicit and the solution may become un­
stable. The Courant condition can be used as a stabili­
ty criterion according to Kibler and Woolhiser (1970).
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A~plied to the kinematic wave approximation the condition

becomes

•

At<L
"li ck

Using equation (4.2.5), Manning~s formula

have

(6.5.4)

and Q=i·L we

•

•

••

•
,./ ..

·..

• '.

••• (6.5.5)

Insert~ng n = 0.016 and limits of i and L according to
chapter f,At/AX lies in the interval 2-35. According to

thisctiterion At should, in surface flow, usually be
chosen below 20 seconds. There are obviously two main

drawbacks using the Lax-Wendroff scheme for surface and

gutterflowi the algorithm is more complex and small

time steps must be used to obtain stability.

6.6 Classification of routing methods

The kinematic wave equations are the most used basic
equations in models intended for the routing of water

through sewerS and channels. The numerical s9lution

requires only "one step schemes" which can be related co
the weighted box scheme (c.f. section 6.2). Smith (1980)

analysed several well-known methods "and found that they

could all be regarded as weighted box solutions with
different values of the parameters a and f3.Below,
values of a.and f3 corresponding to different methods are

given.

Models marked by SP refer to analyses by Smith (1980) or

Price (l980b).

It should be noted that many algorithms in the table are
basically intended for, and mainly tested .in sewer and

channel flows.
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weighting 0.5
factor

0,0.5,1.0
0.5 diff.box

0.55
0.5
0.5 diff.box

1

0, &<1

1 9>1

.'

diff.box

comments

0.5o

0.5

o
0.45
0.5

o
o
o
1

Muskingum-Cunge (SP)

Model/reference

Reservoir routing (SP)

Brakensieks models (SP)
SSARR (SP) .
SWMM (SP)

HYMO (SP)

.RRL method (SP)
loi et al. (SP)
MIT method (SP)

where

&

......

•

-.I

and

••• NIVA (Lindholm 1975»)

ILLUDAS (Sjoberg (1979))

URSULA {Jacobsen (1980)

0 0.5 diff. box

0 0.5 diff. box

0,0.5 0.5 mixed

• 6.7 Numerical solution of the diffusive wave
eguation - a comparison

6.7.1 The basic diffusive wave equation

•
In previous sections we have seen that diffusion is
hardly avoided by using numerical solutions of the
kinematic wave. The question arises, could the basic
diffusive wave equation be used directly. However, a
differentiation of these equations includes lineariza­
tion and the resulting algorithm beComes a bit more
complex. A diffusive wave model (DAGVL-DIFF) has been
developed by Sjl:iberg (1981). The model is mainly in­
tended for sewer routing Lut is also ~apable of simu­
lating surface flow and gutter flow •

•

• \

./
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DAGVL-DIFF has been applied to the test surface and
storm event which were used in the 'previous section. The
simulated hydrographs were found to agree well with
those obtained from the diffusive box model. Some simu­
lations at very low slopes (So = 0.001- 0.• 01) were also
executed and found to correspond well with the kinematic

wave simulations. An example of a simulated hydrograph

is shown in figure 6.7.1.

o Diffusive wave model ,
• Kinematic wave model (p. diffUSive)

\
1

40 tl min)3224168

so

I,Oll/s"ha)

fOO

•

••
The close agreell\ent between the solutions indicates that
the kinem'ltic wave solutions have a sufficient precision
in overldnd flow application. This agrees with the conclu­

sions from theoretical considerations made in chapter 4.

•
Figure 6.7.1 Comparison between the diffusive wave

and weighted box solution (Ls =20 m,
5s=0.018, n=0.016)

• 6.7.2 The convective-diffusion equation

•

•

The convective-diffusion equation discussed in section

4.3.1 is a slightly simplified version of the diffusive
wave equation. It has one dependent variab1eQ and needs

a downstream boundary condition.
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"giving a modified convective-diffusive equation (see
section 4.3.1)

••• (6.7.2)

••• (6.7.1)

If the wave velocity c k is assumed to ,(ary slowly with
respect to x the diffusive term may be written

•

•

••

With this manipulation the downstream boundary condition
can be.rejected and the diffusive box scheme may be
used, Price U980bJ. with constant values of ck and 0
the equation is, according to Price, identical to the
basic equation used in the fixed parameter Muskingum­

Cunge:method.

The equation (6.7.2) was first presented by Price
(l980a,c) who also showed a suitable solution algorithm •
However, according to Price, this algorithm is compara­
tively time consuming and the use of the equation before
the basic diffusion equation is questionable in both
overland and sewer routing.

•

•

•

6.8 Summary

This chapter has mainly focused on numerical solutions
of the kinematic wave equations~ These equations may be
solved by a one step scheme. A very" general outline of a
one step scheme is given in the weighted box scheme
which is defined by the numerical .parameters a, B, At
and Ax. The weighted box scheme includes most numerical

solution methods for the kinematic wave equation and is
therefore a suitable base for classification of and
comparisons between different so'ution methods •

/

·...
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The solution algorithm gives dse to a numerical
.diffusion which is governed by the chosen numerical
parameters. The numerical diffusion affects the solution
mainly by attenuating the simulated hydrograph. Based on
the way the diffusion is generated the weighted box

models have been classified in three groups; the a-~ B­
and a6~diffusive models. Each class is characterized by a
diffusiv-:! parameter which is cho:ien to give a suitable

diffusi.)n.

using a: .•optimal , value of the diffusive parameter a

solution :s obtained Which is close to the exact ,olu­

tion of the kinematic wave equations. In fact it is
often even closer to the solution obtailled by the
complete shallow water equations. In practical applica­

tion it is advantageous if the optimal diffusive para­

meter is easily estimated and does not have to be
changed between different storm or dedgn events.

In order to obtain an insight into the properties of the
three classes of model, especially the variation of the

optimal diffusive term, a series of numerical experiments
was performed. It \~as found that the diffusive p<.rameter

6 in the ~-diffusive model WaS significantly dependent
only 0n the time step and flow length. From the experi­
ments a table relating 6, 6t and L was put together from

which the optimal 6-value ·is directly obtained (tabJe

6.4.2). As the tillle step is usually not varied in
practical applications the diffusive parameter can be

chosen once and for all for each overland flow element.
The 6-diffusive model was thus considered to be the most
accurate and, in addition, the most easily used model.
It has the~efore been used ad overland flow model in the

simulations discussed in chapters 8 and 9.

It should be noteclthatthe drawbacks of the a- and

a6-diffusive models which. make the B-diffusive model
advantageous have noc been absolutely quantified. These
models may, then, in many cases be sufficip.ntly accurate
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though the a-diffusive is easier to adapt and more

~ccurate•

The'most commonly used solution method for the kinematic
wave equations is the so called diffusive box model. It
is principally an a-diffusive model and uses impracti­
cally small space steps compared to the a-diffusive
model. In the experiments it was found that tLese could
be increased substantially by increasing the a-value.

Independent of which mode1 and diffusive parameter was
used, it was found that a minimum condition of discreti­
zation, AxIL < 1/4 has to be satisfied in order to
preserve a proper general shape of the simulated hydro-

graph •
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7. RESERVOIR AND CASCADE MODELS
t
!'

7.1 General

In the preceding chapter various numerical solution

methods based on the kinematic wave equations were

discussed. ,They aU (except for llx!L=l) work with a
celerity that varies in both time and space. In this
chapter, simplified solution methods based on the
kinematic wave equations but with restrictions on the

wave velocity are discussed. Models of this category are
not classified as kinematic though the relationship is
evident and the solutions sometimes show good agreemel_ t

with the kinematic solutions.

A further simplification of the kinematic solution is

obtained in one of two different ways; the celerity is

assumed constant, either in time or in space. In the
first case the nonlinear reservoir model is obtained and

in the second a cascade of reservoir models. One example

of the latter is the well known Time-Area Method. Both
models appear, from a theoretical point of view, quite

coarse. The "sophisticated" solution methods given in
Chapter 6 imply sheet flow on a rectangular surface. This

is usually a very coarse approximation of the real runoff.
In the light of this fact a simplified solution ~ompared

to the kinematic might be appropriate in practical appli­
cations.

Assuming the celerity invariant in both time and space is
the ultimate simplification of the kinematic wave solu­

tion. As a routing method this approximation is dEmoted

the Time of entry. It is also the assumption underlying
the Rational Method which is discussed in chapter 10.

The simplified models above represent well known and

traditional solution methods in urban hydrological ana...
lysis. During recent years these have been subject to

several studies giving new aspects of application and
selection of input data, see for instance Kidd et al.

106

i

I
I
I

i
!
!

I
l
j
I
I
I

I
i
j
j
I
\ I

'.-,
/

•



.,.

•

(1978) , Falk et al. 11979), Lynqfelt (1981). In addition
the Time-Area Method is included as overland flow model
in the NIVANET and ILLUDAS models, two of our commercially
most used urban runoff models, Lindholm (1975) ,Sjoberg

(1979). It is then of interest to discuss these methods
both from a more theoretical point of view which is done
in this chapter and with practical simulation as a base

(chapter 8).

Reservoir models

The traditional·. reservoir model is based on the contin­
uity equation .and a relation between the reservoir volume

and the outflow. The equations may be written• I

7.2.1 Linear-nonlinear reservoir models

The linear reservoir model (c2=l) :::orresponds to the

assumption of constant velocity in both time and space.
This model will be discussed together with the Time-Area

and Rational Methods.

where 0in and Qout are inflow and outflow respectively,
L'A is the reservoir volume and c 1 and c 2 are constants.

This model is identical to the diffusive box (ct=O; 6=0.5)

solution of the kinematic wave equations if 6x/L = 1 is
used. The reservoir model may be interpreted physically

as assuming uniform flow (constant velocity) along the

"reservoir length" during a time step.

••
•

• I

L-A

(7.2.1a)

••• (7.2.1b)

•

The non-linear reservoir equations must basically be
solved by an iterative technique in the same way as the

diffusive box scheme (see section 6.2). Because of this
little is gained in simplification of the numerical model

and reducing calculation cost when the reservoir model is
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use~ .instead?f.a distributed model. It is then desirable
to use a numerical scheme with an explicit form in con­
nection to the nonlinear reservoir modelling. This ca•.
be done in.two ways~ by manipulation of either the fric­

tion relation or the box scheme parameters. The first

method has been proposed by Lyngfelt (1979'. An example

of the second way is the so called Time-lag model which

is discussed below.

The non-linear reservoir is a very common overland flow
model in'urban runoff simulations. It is, for instance
used in the SW~I-, CTH- and MAGR~R-models, see Huber

(1977), Arnell (1980), Bengtsson (1980) •. It can also be
used in the NivA model, Lindholm (1975) and in the

Wallingford procedure, National Wa.ter Council (1981).

I
I
I
t
!

i

1,.
I
!

I
i

!
I
I
i,

The Time-lag model is derived from the nonlinear reser­
voir equations by the introduction of a time lag in the

"friction" relation••
7.'2.2 The Time.-laq model

\ (7.2.2'

•

•
..· ..

••

By making this change, a very simple explicit solution of
the nonlinear reservoir equations is obtained. The .model
was developed and introduced by Falk and Niemczynowicz

(1979) who use a time step and time lag of one minute.

It can be Shown that the Time-lag model as solution

method is identical to the implicit algorithm a=O, 8=0.25
provided 6x/L=1 and 6t/T=2. Because of this similarity it

should be possible to analyse the Time-lag model in terms

of stability and 'diffusivity in the same way as other box

scheme al~orithms.

By numerical experiments it was shown that the model
could be stressed to an unstable behaviour with "shots"
at the recession part of the hydrograph (see figure
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6.3.31. Tois occurs, oowever,only on occasions when
heavy storms, steep slopes and soortflow len9ths are
combined. Only a few tests were performed, but those

indicated that the stability criterion On < 0 (see sec­
tion 6.3.2) combined wito toe Mannin9 formula mi9ht be

used for the model. The stability of toe model may
according to tOis criterion be increased by using the
time step 30 s. This will, oowever, also affect the

numerical attenuation.

i
~
J

Js
i
f
I
I
i
I
1
i
I,,

---

According to chapter 6 the numerical scheme which is the

base of the Time-lag model has advantages with respect to

the attenuation for. large bx. The Time-lag mOdel is there­

fore, in addition to its practical aspects, theoretically
well suited as a reservoir model. Falk and N.iem¢zynowicz

have, by an extensive measuring program, established

empirical relations for the parameters in the Time-lag

model for paved surfaces < 700 m2 •

••

•• 7.3

7.3.1

Cascade of linear reservoir models

Basic equations

.-'
.'

•

•

In section 4.2.3 the linear friction relation (b=1) was

discussed. It was found that using this relation is ident­
ical to assuming the kinematic wave velocity invariant in

time and space. This is also evident looking at equation

(4.2.6).

Consider the friction relation in the'general form (com­
pare equation (4.2.4))

. b
Q = a (A) P.3.1)

• 10

••
I
I

In the linear case the constant a appears to be the

kinematic wave velocity. Applied to surface flbw a very
simple form of the solution is obtained according to

equation (4.2.14)
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with the conditions Q(O,t)=Oand to=O if t<tc and where B

is the width .of the sur.face. The solutionimpl:ies integra­

tion along the characteristic between to and t (see fig­

ure 4.2.3).lf the velocity and width are assumed to be

functions of the space coordinate x only we obtain

t

•

...

•

Q (L, t)

Q (L,t)

t

J a·B·i(T)d.

to

f a(x)·B(x)·i(1:)d't

to

••• (7.3.2)

· ••• 17.3.3)

1

I
I·

!

/
/

•

••
•

which impl:ies a time invariant value of the velocity

a{x)=dx/dt to be specified at eaCh point of ~he surface.

This corresponds to characteristics he\"ling a constant

shape independent of the starting point to' which in turn

means that the integration.time is constant,t-to=tc '

Consequently, it is possible to define a time for the

wave movement between any point on the surface and the

downstream end, x=L. This 'relative time' is here denoted

(boor) with T=t-tc forx=O and, =t for x=L.An arbritary

surface element dAc ' for example, at x=x1 may thell be

specified by its 'relative time' (t-'l) as well as its

coordinate; dAc(xl)=dAc(t-'I)' If the element is a?proxi­
mated by a rectangle with width B(x) perpendicular to the
flow direction we have

dX'B(x) ••• (7.3.4)

•
Equation 7.3.3 may then be written

Q(L,t) ••• (7.3.5)

• •

••
• ,.

which is a continuous expression of the so called

Time-Area Method. The method is obviously analogous with

the kinematic wave approach on a surface whose width may
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••• (7.3.7)

••• (7.3.8)
(n.L )3/5

s

L

t

The time of concentration, t c ' in the
Time-Area Method"

The evaluation of the two 'parameters' - time ofconcent~a­

tion and time-area diagram determines"the performance of

the model and will be discussed in section 7.3.2-7.3.3.

7.3.2

In order to solveequation (7.3.5), the storm intensity

varidtion i (t) and the relation dAc (T )/dt, O<t<tc ' must
be known. In the Time-Area Method the latter is given by

the time of concentration t c and the time-area diagram.

The time-area diagram isa dimensionless relation between
the cumulated area (contributing area) AplA

c
and the time

tIt where A =A when t=t • Usually the time-area diagram
"c pc c
is discretized in. 10 segments, each one representing a
part. 0.£ the surface and a wave velocity. Applying the

equation (7.3. S)to a catchment should then be interpreted
as using a series or cascade of linear reservoirs.

The time of concentration was defined in section 4.2 by

The Nash cascade model is a model based on a cascade of
linear reservoirs, Sing (1977). \

vary in the flow direction and a wave velocity which is
9n1)' a function of the di,,;tance from the downstream end,

kee also Newton-Painter (1974) and Lyngfelt (1981).

where c k is the kinematic wave velocity. Using this

definition, a constant rain intensity i and the Manning
formula we"obtain for surface flow

I

•

•

•

•
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where Ls and Lgare flow l~ngths of the surface and the
gutter respectively and z the slope factor of side walls.

.,..
and for gutter flow (V-shaped)

n3/4.(2h/z+z) 1/2. L3/4
9 ••• (7.3.9)

•
"

•

A sewer line having many inlets along the reach may be
regarded as being lateraly fed by water. It is, however,

not pgssible to eV~L\late ,a relation corresponding the
equCitionsabove'for sewers because of the analytically

complicated relation between flow and water depth. The
relation for gutterflow (7.3.9) may, however, be used as

an approximation for the sewer line if a greater value of
z is used. A more suitable expression of the equation for

this CCise is

\

••
n3 / 4 . (2b/z+zI112. L

9
(i.A ) 1/4. S3/8

c 0

where A
c

is the contributing runoff area.

••• (7.3.10)

•

•

• •

• ••

Equivalent or similar relations also based on th~

kinematic wave concept, have been presented by several

investigators such as Morgali (1970), Singh (1975),

Lyngfelt (1981) and Akan (1984).

When the Time~Area Method is used for simulation of
runoff from a storm event with constant rain intensity,

the corresponding time of concentration is easily
evaluated by the relations given above. It should,
however, be noted that even for this simple storm eve~t

the approach is not entirely relevant as the recession
part will have a considerably lower wave velocity. It can

be shown using the ki.nematic wave equations that the' flo~

at the timetc after cease of rainfall is 17% of the

maximum flow (provided the duration of rainfall is

greater than t c )'
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Using the Time-Area Method for a storm with varying rain
intensity, a representative intensity value must be

selected before the time of concentration can be calcu­
lated. A suitable intensity value should be one giving a
properly delayed main flow peak. Such an intensity can be
expected to have values near the average intensity over a

time equal to t c during the most intense part of the
storm.·For a t c evaluated in this way, the Time-Area

Method would produce inaccurate flow values from less

intense parts of the storm.

c- -.......

I

In the Time-Area Hethod the 'flow velocities '. are assumed
to be constant in time but to vary along the .flow di~ec­

tion. The time area diagram reflects the relative veloci­

ties. Each diagram will then represent only one specific
flow case giving a characteristic shape of the simulated

hydrographs.

The kinematic wave concept is theoretically the most
sound basis for evaluation of the time of concentration
used in the Time-Area Method. However, the relations have

to be tested by comparative simulations between the Time­

Area Method and the kinematic wave model. Such simula­

tions (discussed in the next chapter) should also give an
idea of the gene·ral performance of the Time-An'a Method•

•

•••
•

7.3.3 The time-area diagram in the Time-Area Method

•

..• •

• •
•

Consider the two hypothetical time-area curves in the

figure 7. 3. 1.

The convex curve (b) will, if applied to a storm with

constant rain intensity result in a basically Correct
shape of the recession of simulated runoff hydrograph.
The rising part obtains, however, an· incorrect shape, see

figure 7.3.2 .

A better resemblance to the r~s~ng part is obtained with
the S-curve (a) given in figure 7.3.1. This diagram will
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for the rising part
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FigUre 7 •.3.1 Hypothetical ti:ne-area diagrams
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Figure 7.3.2 Principal shapes of runoff hydrographs
obtained by the Time-Area Method (curve b)
and the ~-diffusive model (kinematic wave)

not, however, give a suitable shape of the recession

which is shown in figure 7.3.3.

The rising and recession can be regarded as two extreme

cases of flow state and corresponding time-area curves

have, as a consequence, extreme shapes. Simulating runoff

from a storm with continuously changing rain intensity a
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Figure 7.3.3 Principal shapes of runoff hydrographs

obtained by the time area method (curve
(a)) and the 6-,diffusive model (kinematic
wave)

time-area curve which isa mean of the two extremes

appears most appropriate.

The 'mean' curve will obviously he very near the linear

time-area diagram (deviation < 5%). In runo~f simulations
from a 'single surface there is evidently no theoretical

reason to use a non-linear time-area diagram.

A time-area curve giving the 'best fit' for the rising

part in ~u~f~c~ _flo~ simulation was developed by com­
parative simulations with a numerical kinematic wave
model and the Time-Area Method. Corresponding 'best fit'
curve for the recession part may be obtained analytically

from the kinematic wave theory. In figure 7.3.4 these
curves are given together with the "mean" curve, which
has been slightly modified in order to fulfill the re­

quirement of full areal contribution at t=tc '

115

________._~ ..,., ~-..iIfIl.." ....r;~....' ...-.IIlJ_.._------------

•

•

•
"- •

••

~·..

•



•
Figure 7.3.4

'Best fit' ti.ne- area curve
tot the .recessIon part

'Best tit' time - area curve
tot the rising part

'Mean'time - area cur ve

linear time - area cur ve

Time-area curves g~v~ng the 'best fit' of
the rising- and recession parts of the
runoff in surface flow
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Time-area curves may also be developed for a catchment

with £n~ ~u!f~c~ .!e~d..!PSl ~Slult~r:.. In this case the time
area curve will be influencec by the relation bet\'1een the

time of concentration for the surface [tcls and that of

the gutter Itclg. If [tc]s is great compared .to [tclg or
[tc]g greclt compared to [tc]s' the time-area curve for
the rising part will be very similar to that for surface
flo .... For a given catchment area Ac it can be shown that

[t }has a minimum for a certain surface length. It wasc . . . . ... ...
found that the time-area curve for this case gave the
greatest deviation from the linear one, see figure 7.3~5.

The corresponding t1me-area curve for the recession part
'was obtained by numerical simulations. It is shown in
figure 7.3.5 together with the 'mean' curve between the
rising- and recession curves. This mean curve evidentlY

diverges more from the linear than the corresponding one

for surface flow. The 'surface-gutter' curve is believed
to apply to the ordin&=y 'surface-gutter' catchment while

the surface runoff curve (t':qure 7.3.5) applies to cases
where the relation [t] I[t] is extensively greater orcs . c g --
smaller than unity.

116

.-

/
I



•

•

•

••

'Best fit' tIme-area curve
for th~ recess,onpart

'Best fIt' tllre-area curve
fOr the rislr·9 part

'Mean' time· e:rea curve

linear time - are-a ~urve

Figure 7.3.5 Time-area curves g1v1ng the 'best fit'of
the rising- and recession parts of the
runoff trom the SUrfjCe-gutter catchment
at t c =~tc)s + [ t cl g min

For £a!c£m~n!s_c~n!a!n!n~~e~eEs the corresponding time
area ·curvewill principally be a function of the struc­
ture of the system. In figure 7.3.6 time area curves made

I
1

I
!
I
i

Figure 7.3.6 Time area diagrams obtained by numerical
simulation of the rising part of constant
rain intensity storms for four residential
areas, after Lyngfelt (1981)
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up from five great urban catchments are shown, Lyngfelt
(198H. The diagrams have been obtained by numerical
.simulat~..m (kinematic wave model) of the rising part of
constant rain intensity storms.

The areas have '~ery different flow characteristics ar.d
the cu):'ves consequently diverge a lot though the S-shape

is general. No definite conclusions of the relation be­

tween the time area curves and the characteristics of the
catchment can be made fi-om the figure. The relevance of
the curVes. for the recession part has not.been studied.
The recession part time-area curves can, however, be

expected to have a basic shape according to that given
in'figure 7.3.5 •

7 •4 Summary

In this chapter reservoir model;; and I!lodels based on a

cascade of linear reservoirs have bl'en discussed. These

models have a clear -relationship with the kinematic wave

concept but use a simplified representiltion of the wave

velicity. The non-linear reservoir model and the Time-Area
Metho.. are the most commonly used overland flow "'ouais in
commercially available urban runoff models.

The !i~e=l~g_m~d~l is a non-linear reservoir model de­
veloped by Falk, Niemczynovicz (1979). The model hus been

successfully tested on small urban paved surfaces. It has
a simple numerical algorithm and can be used for manual

calculations. As the model parameters are based on urban

runoff meastlremerrts from paved surfaces < 700m2 the
Time-lag model has not been tested as base catchment
model in this study.

The !i~e=AEe~ ~e!h~d_ can be regarded as a model bas2d on
a cascade of linear reservoirs. It is a traditional method
which is still m~ch used. The method is governed by two

'paXdmeters', the time of concentration and the time area
diagram. One set of these parameters represents in fact
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The class of models discussed in this chapter will sim­
plify the. calculation routines ccmpared with the kinematic

\!;lVe approach. However, ... problems' .• with. parameter estima­
tions arise·and the nUmerical kinematic wave model appears

to be more generally applicable in basecatchment modelling.
The model tests in the !ollowing chapters will thlls con­
centrate on the numerical kinematic wa 'e model. Simula­
tionsby the Time-Area Method will, however, also be.per­
formed and discussed •

only one specific flow case. Applying the method to a'
storm with continuously varying rain intensity, the para­
meters should be chosen to give the best fit at the main

runoff peak. The method can therefore be expected to give
an unsuitable performance in other parts of the simulated
hydrograph.
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8. BASE CATCHMENT MOOELS

8.1 General considerations

In earlier chapters the analysis was based on surface­
gutter-systems with regular geometry and constant slope~

,This is usually not the case for real urban catchmen~s•

i

120

In practice it seems reasonable to limit the description

of the surface to a maximum of five or six parameters.
'l'hismeansthat,inreality, even for a small uniform
surface the physical description of a surface-gutter
system becomes very approximate. Despite this several

investigators have reported relatively good performance

of models based on the two dimensional kinematic wave
theory, Langford and Turner (1973), woolhiser (1975),

Rovey et al. (1977), Lyngfelt (1978), Jacobsen (1980).

"

The storm water from a surface is normally collected in
collector sewers with minimum dimensions. These sewers

are often long and thu$ significant in the runoff system.
A separate surface connected to a street inlet is very

seldom greater than 1000 m2 and is normally les~ than

500 m2 • However, suitable sets of input data are obtained
only when base units of surfaces {base catchments)

greater than.say 5000 m2 are used. Then, in practice, ,.the'
base catchment flow model must, in one way or another,

represent both several separate surfaces Wit~ different

characteristics and upstream collector·se~ers.ThEi

discretization of input data (size of base catchments)

Theoretically it may be possible to usc a three dimen­
sional model and an extreme discretization in space and

thereby obtain a mo)::"eaccurate physical description of

ther.unoff,. Chow ef a1. (1973) ,Coristantinide... et a1­
(l981l. However, $ucha description requires a very large

amount of input data and the ,,;ork spent on collecting
these data is unreasonably. large compared wi th the
improvements in the results •

I

I
I
I
I
5
I
j
~
~
.~~

~
i
~

~
i-------_..._----------_.-

•

•

•

•

••

.'.:,.
·)



I
I
i
{

f
I
!

has been '!ilicussed by several investigators; in most

cdses.discu$sioris have been based on the specific
properties of the SWMM model, see for instance Proctor
and Redfern (1977) and Zaghloul .(1981). The use of an

aggregated bast;! catchment with a silTlple geometry.and a

time o{.conce~rratioI}Elp1al<t.othat()fthecealcatcllment
is a general approach, applicable to many runoff models.

This approach will be used below and has earlier been
discussed by Jensen (1981), Lyngfelt (1981) and Marsalek

(1983).

••
.-
•

•

•••
•

In this chapter a number of different approaches to base

catchment modelling are investigated. l'he discussion is

based on six urban catchments where storm runoff and rain
intensity have been recorded. The runoff from storms has

been simulated using different models and discretizations

of the geometric input data.

The main objective of the simulations is to investigate
how the geometrical input d~scribing the base catchment

can, and shoUld be, simplified. The work is focused on
the numerical kinematic wave model (the ~ -diffusive model

as described in chapter 6) but the Time-Area Method is
also tested.

Below, the test catchments, measurements and models are
briefly described, befC're the simulations are presented.

\
-;

•

· .,
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••
•

8.2 General characterization of the test catchments

and measurements

The rain intensity and the runoff have been recorded in

six urban catchments for a number of storm events. The
catchments are. all different and cover a range of
conceivable base catchment characteristics. The catch­
mentshave been investigated withrespect-to·geometric

parameters sUch as contributing area, slope and so on.
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In order to give a general impression of the catchments,

th~ main characteristics are summarized in table 8.i.l.

A. more detailed description is given in appendix 1.

!h~ ~~!c~~n! ~s~a_ is a part of a street feeding an
inlet. It is the 'only catchment with no sewer system.

!h~ ~aicnm~ni ~C.QN_ is a parking area and consists of the
top floor of a two storey car park and a collector sewer
along the building.

!h~ £aichm~n! RA§P_ is a parking area with a uniform,
small slope and three inlets to the.collector system.

'1'able 8.2.1 Main characteristics of the catchments

Catchment Area Number Slope Number Length Slope

Accm2) of S of of S
inlets (m7m) joints sewers (m'fm)

(m)
ASPH 430 1 .044
PCON 1700 7 .014 0 107 .036
PASP 3900 3 .008 1 110 .010
AASP 9700 8 .010 0 254 .0025
SASP 3000 10 .030 2 3~ .007\
COMP 3100 20 3 530 .022

!h~ £aichm~ni ~~P_ is part of an airport surface. It is
the biggest test area with large surface flow lengths.
The slope of both the surface and the sewer system is
small, and consequently the characteristic time of con­

centration is comparatively long.

!!!e_c~t£h!!!e!!t_S~S~is built up of three streets including
pavements and a few additional surfaces (no roofs). The

surfaces are cGnnected to a sewer system which principally
follows the streets •

!h~ £aichm~ni £OM~ is built up of different typical urban
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su~faces; roofs, parking areas, streets and paven~nts.

The surtaces are connected to·a sewer system which is
longer and has more joints than the other catchments.

In table 8.2. 1 th:~ catchments have been arranged accord­
ing to thtlc()~plexitYQf the runoff system. There is
obviously no rtllation between contributing area and this
complexity. Most of the surfaces are of the bitumen type
but concrete paving (PCON) and roof-felt (COl-IP) are also
represented.

Rain intensity and runoff have been measured with the
objective of obtaining a record of several separate storm

events for each catchment. The measurements are briefly
described together with the catchment characteristics in
appendix I.

The rainfall-runoff volumes of the separate storms were
plotted for each catchment. A linear regression line was
fitted to each data set by the mf'thod of least squares.
From the regression line the contributing runoff area was
calculated as the slope of the line, and the depression
storage as the intercept on the rainfall volume axis,
Arnell, Lyngfelt (1975), Arnell (1980).

The contributing ~reas were all found to be equal to or
less than the corresponding areas which had been estimated
by areal measurements in the field. In five of the areas
the difference was less than 10% (and for the two smallest
there was no difference). In the SASP catchment a differ­
ence of 18% was found.

The obtained depression storages were found to be between
0.4 and V.5 mm in five of the catchments. This value
agrees with expected values regarding actual slope and
unevenness of the surfaces, Falk,Nicmczynowicz (1979).
In the AASP catchment a much lower value, 0.25 111m, was
obtained. This may be explained by the extremely even
surface and the smooth asphalt in the catchment.
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8.3 Models and criteria for comparing runoff

hydrographs

All simulations in this report have been performea by the

runoff model CUll-E, Lyngfelt (1985). The model was mainly

developed in order to make it possible to compare differ­

ent numerical and geometric models. In this part of the

study the model. was used as def!cribedbelow.

The surface depression storage loss is subtracted from

the very first part of the rain. The surface and gutter

flOW. is routed by the 6-diffusive model (kinematic wave

approach) described in.· chapter 6.4. 4. The flow inSeWell:l

is routed by the tradftional numerical solution of the

kinematic wave equation (diffusive box model, section

6.3.2.). The capability of the model to make simulations

using the Time-Area Method is also used •

In each catchment between 3 and g storm events have heen

uSed in the simulations. The obtained hydrographs have

been used for comparisons with recorded hydrographs and

between different model approaches.

The storm water is routed through the catchment without

any losses except the surface depression storage (no

infiltration, no overflows). The differences in perform­

ance between models will thus appear only as differences

in shape between the reSUlting hydrographs. The compari­

son between the performance of one model relative to

another must then be based on these differences.

The discrepancies between two hydrographs can be de­

scribed by several parameters, for instance, the integral

or biased in~egral square err.or, the absolute error of

peak flow values, or the time lag of peaks. Each of them

show, however, only a part of the differences and none of

the parameters or set of pararreters can replace the

. survey obtained by simple visual inspection, Geiger

(1984) •
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The discussion of the models has been based on both

visual inspection, and a simple statistical analysis of

the hydrographs. The statistical parameters used,are

the mean and the standard deviation of the ratio

betwt:!en flow peaks, Ap and (lp' respectively

•
the mean absolute error in peak flow values, E: p '

The parameters have been used in .several similar studies,
s~e for instance Arnell (1~80).

•
8.4 Kinematic wave model simulation - comparison

with' recorded hydrographs.

For each of the six catchments a set of input data corre­

sponding to a very detailed geometric representation of

the runoff system was built up, the DET moGe!. In prin­

cipal each surface,. gutter and sewer within the systems
is repre;ented - a disc~etization beyon~ what is usually

realistic in urban runoff modelling. Values of lengths,

slopes, etc, have been evaluated by field investigat;ons.

Surface roughnessesare selected according to chapter 5.

For the AASP catchment, which has a very smooth and even

surface (appendix I), a lower value was chosen (n=0.012).

••
•

8.4.1 Detailed geometrical descri~tion of the

catchments

In the PCON and SASP catchments, the basins at discharge
measuring stations were found to act significantly as

retention storages during low intensity storms. A rete~­

tion storage model was then included in the DET-model.

'"/
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Comparison between recorded and simulated runoff8.4.2

The input data set with a high level of discretization...

I• ""

J

...

• •
•

•



was used together with the kinematic wave model to
simuiate run9ff from the six catchments. The simulated
hydrographs thus obtained were compared with the corre­

sponding recorded hydrographs •....
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The simulations were executed using three different

versions of the detailed input data set. In version 1, a
contributing area corresponding to field investigations

was used. In version 2, the area was obtained by regres­

sionanalysis of precipitation - runoff volumes as de­
scribed in section 8.2 (fit of volumes for each catch­
ment). Both versions include depression storages obtained

from the regression analysis.

In the PCON and COMP catchments the volume fitted con­

tributing area was found to vary significantly between
storms. This causes deviations between the simulated and

the recorded runoff volumes which have no connection with

the discussion of the performance of the kinematic wave
model.

The degree of wetness at the beginning of the individual
storm is not known from the measurements. The depression
storage model used is, in addition, believed to give a
rather coarse description of the initial runoff process

for low intensity storms.

Version 3 of the input data sets was based on depressi?n
storages, indivic"ually chosen for each storm in order to
obtain a volume fit for the first part of the hydrograph.

In addition, an individually volume fitted contributing
area for each storm was used in the PCON and COMP catch­

mentf:. Hydrographs simulated by this version of input

dat~ are plotted in appendix 11.1.1 (also in figures

8.4.1 and 8.4.2).

It should be stressed that the only difference between
the data sets used is in the choice of depression storage

and contributing runoff area. All data describing the
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catchment with regard to geometry, surface roughness ar~d

joints. are all according to the DET model (section
8.4.1).

A visual inspection of. thesimulate<1 and. recorded hydro­
graphs shows that they coincide fairly well with respect
to general shape and delay of peaks. The main impression
is, then, that the runoff process is reasonably well
described by the model. Sometimes a very good performance
is obtained, as for example, that shown in figure 8.• 4.1.

•
60

IPASP-catchment t
Hyetograph

-*- Recorded hydrograph
-+- Detailed simulation

--
20

40 tlmin) 60

•

•

••

Figure 8.4.1 Recordec' and simulated runoff from the
PASP cat..;hment (input data version 3)

T~ere are, however, parts of many hydrographs with great
discrepancies between simulated and recorded values, see
for example figure 8.4.2. With regard to continuity and
realistic flow velocities in the runoff system it can be
concluded that several of the discrepancies must" have
causes other than the performance of the model.

A simple statistical analysis of the relation between

recorded and simulated flow peaks were performed for
comparative purposes. Trends such as, for example,
increasing deviations with increasing catchment area or
complexity were not observed. In table 8.4.1, the mean
ratio ~p' standard deviation 0p and absolute error Ep
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80
IcOt-ip -catchment I Hyetograph

-+'- Recorded hydrograph
-+- Detailed simulation

Table 8.4.1 Mean ratio Ap standard deviation op and
absolute error Cp for not volume fitted data
and volume fitted data for each catchment.

defined in section 8.3 are given for the two sets cf
input data, one using not volume fitted data and the

other using volume fitted data for each catchment. The
flow peaks shown in appendix II: 1. 1 were used with the
exception of those in three low intensity storms where
the performance of the retention storage model was not
acceptable (thecharacteris.tic retention storage area

varied between different storms). Five recorded flow
peaks with great deviations from the corresporlding
simulated hydrographs were also excluded (as recording

errors were suspected).

•

••
•

•

Figure 8.4.2

Input data

No volume fit
(Version 1)

Recorded and simulated runoff from the
COMP-catchment (input data version 3)

Number Mean Standard Abs.error
of peaks ratio dev.

A a E: %
P P P

30 1.08 0.21 15

128

Volume fit for
each catchment
(Version 2)

I
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30 1.00 0.15 11
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If the'five"error peaks" are included in the fitted data
set, the standard deviational1d absolute error are
increased to 0.26 and 18% respectively.

From the table it Can be seen that the de'/iation between
recorded and simulateclflow peaks is reduced by the use

of volume fitted contributing areas. Typical is the
general over estimation of flow peaks (Ap = 1.08) using

not volume fitted data. Although the verison 3 hydro­
graphs give a general impression of better performance
than the version 2 hydrographs, corresponding statistical

parameters are the same for the two ve.rsions.

The differences between recorded and simulated hydro­
graphs shown in appendix IL1.1 and table 8.4.1 may be

explained by

o error in measured rain intensity - runoff

values

o . error in or insufficient description of the
runoff system input data

o insufficient accuracy in the model
description of the runoff process.

The two first points include sources of errors such as
bad representation of the real rain intensities over the
catchment, increased/decreased contributing area during

parts of the storm event or water leaking into or out of

the sewer system.

The errors in rain intensity and runoff'values are

difficult to evaluate. A general level of the total

error in the intervalZ (10-20%) can, however, .be assumed
for both rain intensity and runoff values. TheSe errors

have been discussed by Arnell (1980) who usep measuring

devices similar to those used in this stedr. He estimates
a total error of about!: 15% for rain intensity values and

corresponding error for runoff values of Z (l0-15%) •
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Ina st~dy of the performance of 12 different models,
Colyer (1977) found the 'best' models to have a mean
ratio "p in the range of 0.95 to 1.05, a standard devia...
tion 0p of 0.15 "" 0.20 and an absolute error E:p betwe!'ln
10 and 20%. The model used here obviously has a perform­
ance at a level similar to Colyer's 'best'models.

As discussed above, there are many sources of "errors"

which are not connected with the performance of the
model. It is thus probable that a large proportion of the

deviations indicated by the table 8.4 .1 and thos.e found
by Colyer are caused by errors in measurements and in­
sufficient knowledge of the properties of the real catch­

rnE;lnt. Because. of this,· defined judgement of the perform­

ance of models and also'comparisons between models based

on recorded runoff appear difficult.

In summary, the discussion in this section illustrates
the difficulties in performing representative field

measurements and also the difficulties in judging the
performance of models. The comparisons indicate, however,

that the kinematic wave model, using detailed geometrical

input data, describes the runoff process well, provided
that proper estimates of the contributing area and the

depression storage are used.

It is believed that the influence of the choice of de­

pression storage values and depression storage model is
much less marked in the case of design storms than in the

analysis above. /

Teuse a very detailed description of the catchment in
the input data such as the DET model input is usually not

•

·..

8.5

8.5.1
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Simulations using simplified geometric

input data
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realistic in practical applications of runoff models. The
geometric representation of a catchment has to be ~ore

generalized to reduce the effort of generating input
data.rtis characteristic of the kinematic Wave model
that it can simulate the,velocity variations along the
'runoff system (a spatially distributed model). These

variations are partly governed by the geometry (runoff
system structure and successive cross-sections'of flow).
Simulations made with the kinematic' wave model using a

simplified representation of the runoff system geometry
~ppear to be meaning'ful only whim this geometry is chosen

in such a way that the real spatial velocity distribution
becomes represented in a reasonably appropriate way.

In the preceding two sections, different Simplified
geometrical representations of the base catchment are
discussed. A number of geometrical models are defined
which are chal"acterized by the number ,Of fre\:! paramet.ers
used' such as surface flow length, slope and soon. It is
basic for all simplified models that the catchment area
and the time of concentration are maintained from the
real catchment.

\

There is no real basis for selecting roughness values in­

dividually for each type of impermeable surface. Another
parameter which is mostly is difficult to choose individ­
ually is the side wall slope of the gutter cross section.
These parameters are thus not regarded as free in the
geometrical models.

• 8.5.2 Representation of catcnments with no sewer net
- the KW3, KW4G and KW6G'models

·...

--

••

The simplest possible geometrical description of a c:atch­
ment is given by figure 8.S.1a, where therun6ff is
modelled by sheet flow over a single surface witllout
change of flow section. The catchment is represented by

three parameters - catchment area Ac ' surface flow length
L s and slope Ss - and the model is here denoted KW3.
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Including" a gutter alOl'll:J the su.rface with the. standard
1: section gives an essential i.mprovement to the catchment
inodelwhile the c.atchment parameters <Ire only increased

by the gutter slope Sg' The model is here denoted the
KW4G model, see figure 8. s.lb.

Gutters are often fed by lateral inflow from two sides
and manholes sometimes collect water from two gutters.

Neither of the geometric modelS above is suitable in

these cases. A representation according to figure 8.5.2
covers. these cases including the I(W4G model, and will
generally be more flexible. However, the number of

geometric parameters is increased to six. and the model

is called the K\'t'iG model •

Parameters' Ac.Ls • 5 s

••• Ls

1
I I1 ~

Paraineters. Ac • Ls • 5s • 59

111
• (a) Model: KW3 (b) Modal: KW4G

•

•

Figur~ 8.5.1 Representation of base catchments by
three and four parameters in the
kinematic wave model.

The KW6G model is usually directly adaptable to a given

single surface' while the KW3 and KW4G models require

adjustment of tbe parameters length, slope and/or rough­

ness to maintain the characteristic time of concentra­
tion. For instance, if the gutterflow is replaced by an
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!

Model' KW6G

-

Representation of a b.ase catchment by six
parameters in the kinematic wave model

Parameters I Ae:.La. Ls • Bs • SSt $9

r
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increased surface flow length, this equivalent length
[LsJ eq' is (derived from equation 7.3.8 and 7.3.9)

[Lsl eq =

where c l ' is a parameter containing rain. intensity, rcugh­
ness, slope and shape factor of gutter flow·section. The
relation implies maintained surface slope and roughness
for the equivalent surface (KW3 surface).

Figure 8.5.2

Increasing the surface flow length will result in an in­
crease not only of t c but also of the water volume stored
on the surface. This increase of volume is directly pro­
portional to the time of concentration. Therefore, m~in­

taining tcby adjusting the length, slope or roughness
will have the same effect on water volume stored. The two
conditions, maintained time of concentration and main­

tained stored water volume, may not be satisfied at the
same time. Any of the three parameters, or combinations

of them, may then be used to satisfy the first condition.
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Representation of catchments with a sewer net

- the KW6S, KW6S-S and KW4G-I models

In normal application the base catchment includes several

single surfaces and a connecting sewer system. There
are, of course, numerous approaches to obtaining a slm­

plified geometrical representation of such a catchment.

Below, some geometrical models are described wh;.ch have

been used in the simulations. They include some of the

main principles on which a simplified geometric model may
be built, for.example, lateral inflow along the sewer
lines, standard values of surface-gutter system (the

KW4G-model) or a standardized network system.

A very simple geometric descript~on of a base catchment

containing a sewer is acc0rding to the KW4 model with the
gutter section replaced by a sewer, figure 8.5.3. The

Whether the increased storage volume on the surface
corresponds to the 'loss' of volume in the system caused
·by.neglecUng t'le gutter, depends on its shape and slope.

A test·of a few representative surfacc.:-gutter catchments

indicated a reasonably maintained storage volume for the

equivalent surface.

.....

:.•

•

••

••

•

e

e ..
.!

Figure 8.5.3 Representa·tion of the catchment by the
KW6S model
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sewer represents the main sewer 'line of the system and is

~haracteri2ed by its length Lm, slope Sm = AH/Lm and
diameter Om' The surface flow in the model represents the
surface-gutter and sewer branch flows in the real catchment •."

•

-
--

If the surface flow length Ls and,slopeSs are regarded
as freeparametf,lrs, they may be evaluCited,in the same way
as for the KW3 model. In this case, the delay caused by
flow in sewer branches may be added according to section
7.3.2. As the width of the surface (Ac/L

S
) will deviate

from themains~wer.linelength,the geometric model
assUmes the lCiteral inflow to the sewer to be evenly

distributed along its length. The model, here called KW6S
is governed by •six free par,ameters,

catchment are~ Ac
equivalent surface length Ls
equivalent surface slope Ss
length of main sewer line Lm
mean slope of main sewer line Sm
diameter of main sewer line Om

The discretization level of the geometrical model of the
catchment is increased if a number of KW6S units are
applied to the catchment, see figure 8.5.4.

•

•

Let one representative value for each of the parameters

surface length Ls ' surface slope Ss' sewer line slope Sm
and sewer line diameter 0p be used for all units. The
number of free parameters then becomes 4 + 2 • n where n
is the number of applied units. The two parameters which
are varied between the units are the contributing area
and the sewer length.

"

If, in addition, the sewer slope and surface length are
considered individually for each unit, 'th!'l,number, 0;. free
parameters will be 2 +4 • n.This ,geometrical model is

here called KW6S-S. Its level of discretization is mostly
governed by the number of KW6S units applied.
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Figure 8.S.4 Example of a.model structure containing

only KW6S units, th,·KW6S-S model

A,n alternative way of using only a few free parameters

and still having a discretized sewer net is to define
permanent sewer structures. Examples are shown in figure
8.5.5 with a fixed number of inlets and distances between

them. To each of the inlets identical KW4G models with
characteristic values are connected (contributing area is

•

.- (total area) ! (number of inlets)).

The system is defined by 10 parameters

\

•

• j..

••

sewer structure according to figure 8.5.5

total catchment area Ac
length of the surface Ls
slope of the surface 5s
gutter flow slope 5g
length of main line Lm
mean slope of main sewer line Sm
length of downstream sewer Ld
diameter- of sewer Om
length of sewer. branch Lb

and is here called the KW4G-I model.

136

•



Tbe KW4G -1 model
Parameters: AC,Ls,S$,lg,lm,Sm.lln,ld,lbnumber of side Lines

<D ® @@

Lm
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Figure·S.5.5 Four alternative sewer structures. To each

of the inlets identical KW4G models are
connected.

For each of the six catchments, sets of input data have
been built up according to the simplified geometric

models discussed above. The main characteristics of the

simplifications are;

o simplified representation of the sewer net.geometry
(the KW4G-I and KW6S models)

o use of mean slopes of the sewer net (the KW4G-I and
KW6S models)

o replacement of gutter and sewer flow by surface flow
(the KW6S-S, KW6S and KW3 models)

o use of representative surface/gutter/sewer reaches.
(the KW4G-I model)

••
•

•

8.5.4 Application of simplified geometric models

The free parameters of overland flow in the s.implified
models have been adjusted to maintain the representative

time of concentration from the real base catchment. For

example, corresponding time used to evaluate Ls or Ss in
the KW3 model is

... ._-'----~--~........._;'(~~ .
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where {t)s is obtained from a representative surface,
{tc)g from corresponding gutter and {tclp from the main
sewer line of the base catchment. The choice of [tc]g/2

isa/colllpromiseconSide~ingthe.facttha t the upstream
part of the surface is<drainedthroogh the full length of
the gutter while the downstream part is not drained by
the gutter at all. If the main sewer line of the base
catchment is considered as being mainry laterally fed,

the same prin9iple.is applied,J~c]p/2.

The calculations are based on the t c relations given in
sect10n 7.3. In the simulations it waS found that appro­
priate values of the side wall slope are ·z = 0.02 (gutter
now) and z = 0.27 (approximation of sewer flow) .Rough­
ness parameters Wfilre chosen according to the DET modl::"' in
section S.4: A mean of the maximt;m intensities from ti.~

storms u>:>ed in the simulations in· each catchment was \1sed
as a representative rain intensity (one value for each

catchment.) •

In order to show how the different geometric simplifica­
tions affect the volumes of input data and calculations
theu\1mbers of routing units and free parameters used are
9 iven in tables8.5.l and 8.5.2 respectively. Correspond­

ing information for the Time-Area Method (TAM) has been

added for comparison.

A routing unit means any separate sHrface, gutter or
sewer reach to which the routing model has been applied.
The number of routing units is then a relative measure of

the calculation v~lurnes of the geometric models.

The tables show the great difference between the detailed
and the simplioied geometric models both regarding.ca:'cu":,"

lation volumes ~nd volumes of input data sets. It can also
be seen that the use of the KW4G-I model is only justified
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....
compared to the KW6S-S model, in catchments with more

complex sewer nets •

Table 8.5.1 Number of routing units for different
test area and geometric models

•

•

~~ PET KW6S-$ KW4G-I KW6S TAM

ASPH 3 1

peON 13 2 2 1

PASP 18 4 9 2 1

AASP 37 4 6 2 1

SAS:P 90 8 11 2 1

COMP 36 10 11 2 1

••
•

Table 8.5.2 Number of free parameters used in different
test areas with different geometric models

PET KW6S-S KW4G-I KW6S TAM

ASPH 6 \
3

PCON 52 6 6 3

PASP 72 18 10 6 3

AASP 148 18 10 6 3

SASP 360 . 36 10 6 3

CaMP 144 42 10 6 3
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The geometric models above can all be regarded as simpli­

fied versions of the detailed model PET. Nothing is added

to the-description of the runoff process and it is thus

natural to compare the performances of the simplified

models and the detailed. Comparisons with PET model hydro­

graphs instead of recorded ones also improves the making

of comparisons between the simplified models.

Simulations by simplified geometric models8.5.5

•

•

•
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Simulated hydrographs are shown in appendix II 1.2. In
the,s~all street catchment (ASPH), only the overland flow
models KW4G and KW3 have been tested; in the small very
reqularl'y shaped parking area catchment (peON), only the
KW6Sand KW3 models. All models used in the two catch­
ments show very good performance, generally better than

in the latger and,more complex cCltchment~.,

•

••

••

In the four largest catchments, the KW6S-S, KW4G-I, KW6S
and KW3 models have been used. The ma,inimpression from
visual inspection is that they perform well, ,with hydro­
graph shapes very similar to those of the detailed model.
The simplest model KW3 and to some extent also the Kw6S

model, tend to have hydrographs with deviations in shape
in some cases. GenerCllly, all model simulations made for
the AASP and SASP catchments show not quite as good per...
formance as for other catchments. It ,should be noted that
storms with comparatively low intensities have been used
for these catchments.

The five highest flow peaks simulated in each of the four
largest catchments have been used to estimate the statis­

tical parameters Ap ' 0p and cp • In table 8.5.3 the
parameters are given for each of the models used.

:...
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Characteristic of the models~performance is the varia­
tion in the attenuation of the hydrographs. While some

KW6S-S 1.02 .07 5.7 20
KW4G-I 1.02 .10 8.1 20
KW6S 1. 01 .09 6.9 20
KW3 0.'96 .13 11.5 20

I

I
I
I
!
I
I
I

I

Number of
peaks£ (%)

P
A

P
Model

Table 8.5.3 Statistical parameters for the simplified
geometrical models compared with the
DET-model (five peaks in each'of the four
greatest catchments)•

• •

•

••
•
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are too little attenuated g1v1ng flow peaks which are too
high and too fast, some are too attenuated with too low,
delayed peaks. The ratio between flow peaks ~p is a good
measUre of the attenuation. For all catchments together
this attenuation appears balanced according tctable
8.5.3 (the KW3-modelgives~meanunderestimation of
peaksbyabout4%). The variation of the attenuation
between the catchments and models represented by ~p is
shown in table 8.5.4.

The difference in ~p is obviously.smallest for the most
detailed model (KW6S-S) and greatest for the simplest

geometric model.

Table 8.5.4 variation intervals for ~p for the
simplified geometric models (five peaks in
each of the four greatest catchments)

Model smallest greatest
Ap ~p

•• KW6S-S 0.94 1.06
KW4G-I 0.87 1.06
KW6S 0.90 1.11
KW3 0.82 1.12

Difference

0.10
0.19
0.21
0.30

•

•

Looking at each catchment .eparately, it is clear that
all models can give both too small and too great attenua­
tion. This is an indication that the estimat.ed times of
concentration on which the selection of all input data
which influences the attenuation is based, are not repr~­

sentative for all storms. A more precise evaluation of
these times would probably increase the accuracy of the

models (or decrease the differences in table 8.5.4). How­
ever, a more sophisticated way of estimating the time of
concentration is rather pointless when the basic idea is
to simplify the creation of input data for the kinematic
wave model.
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The. influence of the selected times of concentbation on .
the attenuation was tested in one of the catchments (the

CO!MP-catchment) • The paramet.ers~~<.~he models were
shifted to co.rrespond to a .30% 'l~;~ and a 30% greater

time of concent~·'\tion compared to the basic value. In
t~ble 8.5.5 A

p
values .from the test have been put to­

getherfor the different models ..

The effect of the parameter variations on the attenuation
depends not only on the properties of the t~del but also
the properties of the catchment and hyetograph. The
figures, in table 8.5.5, should therefore be regarded only

as examples of a variation.

In the table i:t is seen that, with the exception of the
KWQs-s-model, the interval between maximum and minimum
flow values increases as the geometrical discretization

becomli!s ·coars,er.

Table 8.5.5 The effects on the attenuation of varying
the parameters in the models '(corresponding
to a variation in (tcl

Hodel Ap(0.70 tcl A (1. 30 tcl Difference
p

RW6S-S ' 1.13 0.92 .~1

KW4G-I 1.05 0.99 .07

KW6S 1.09 0.95 .14

KW3 1.19 0.87 .31

The time of concentration for ~he sewer net is included
in the parameter variation f~' the KW3 model but not for
the others. These can thus be expected to be less sensi­
tive to errors in the estimation of the time of concen­
tration. As shown in the table, the KW3 m,odel has conse­
quently the greatest difference between the peakflows

from the two sets of parameters.

A sensitivity test using parameters corre~ponding to
O.St

c
and 1.St

c
increased the difference to about 0'.27 in
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mean ~orthe KW6S-S, KW4G-I, KW6S models and to 0.5 for

the KW3 mode1•

Figure 8.5.6 Sensitivity of the KW6S-mode1 corresponding
to O. 7tc and 1. 3tc

••
"".

•

••

••

.i, Q (l/s;ha)

80

40

i,Q ([Is hal

80

ICOMP ~ catchmentl

ICOMP - catchment I

KW6S
--..- 1.0' t c.
-+- 0.7' t c
-x- 1.3' t c

KW3
--.- 1.0' t c
-+- 0.7 ·tc
-x- 1.3. t c

•
20 40 t(min)

• ' . I

@i4fif1!i1!@@trHf'f*¥#Vi'j7*¥_Mft_te1ii!¥xww#iW#:~,"4¥§¥it®1·¥.Mj\l.~wtiHfi6Y;.riiif4l:1~iofiEAi61!%4;;jI.)',;j'"'~#1i4~~~~~

•

• / /

Figure 8.5.? Sensitivity of the KW3-model corresponding
to 0.7tc and 1.3tc

In figures 8.5.6 and 8.5.7 the sensitivity to a change in
parameters corresponding to O. 7tc and 1. 3tc are shown for
the KW6S and KW3 models (the corresponding DET simulation
is shown in appendix II: 1. 3) •
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The standard deviation a and the absolute error. e inp p
table 8.5.3 reflects the ability of the models to repro-

duce the flow peaks of the detailed model. The parameters
may thus be used for comparisons between the simplified
models. It is clear from the table that the standard

deviation and the absolute error increase as the used

geometric input data becomes more simplifie~. However,
the differences are not very marked and no drastic
changes in the performances are obtained by making the
simplifications. In particular the KW65 model appears to

have a good performance considering its relative simplic­

ity.

According to the study, th(;: performance of the detailed

kinematic wave model is reasonably well maintained

assuming .lateral inflow to the main sewer line.

- using. the nl'~an slope of the main sewer line
_ excluding minor branches from the sewer system

8.6 §imulations by the Time-Area Method

The performance of the Time-Area Hethod has been examined
in much the same way as the simplified. kinematic wave

models in section 8.5.5, that is by making comparisons
with the detailed model (DET). The time of concentration

was chosen as the time from the most distant surface to

the downstream end using the relations given in section

7.3.

Several time-area curves were investigated. Attem~ts to

select a non-linear time-area diagram to get a "best fit"
for each simulated hydrograph we-::..: uot successful, though
parts of the hydrographs (for example the rising part)
could be improved in comparison w:.th the linear-diagram

hydrographs. This result is consistent with that of
section 7.3 where the theory of thEo Time-Area I-'ethod. was

discussed. In figure 8.6.1, an example of the effects of

using different time-area curves is shown
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@§P- catchment I
Time~Area Method
-+- linear diagram
-+- A diagram
-x- B diagram
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I
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Figure e.6.l Example of effects of using different
time-area curves

We can. see how the shapes of the hycirographs are changed
by the time-area curve. It is also evident that the delay

and level of the peaks is influenced by the curve. A
general method for estimating the time of concentration

mustth.:m be based on one selected time-area curve. As
. \

the best general performance waS obtained using the

linear time-area diagram together with the way of esti­
mating of the time of concentration given above, this

method was used throughout the study.

In appendix 11:1.4, hydrographs simulated by the Time­

Area Method are shown. A statistical analysis of corre­

sponding flow peaks was made in the same way as in sec­

tion 8.5.5 and is sUlllJ:larized in table 8.6.1.

According to the table the peaks are on average under..
estimated by about 7%. Regarding the standard deviation

and absolute error the method ap'pearsto be' as good as
the kinematic wave models with an acceptable ability to

reproduce a balanced attenuation of single peaks. How­
ever, looking at both the general shape and delay of the
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hydrographs, the deviation from theDET- model is more
marked than for any of the kinematic wave models.

'Table 8.6.1 Statistical parameters for the Time-Area
Method compared with the DET-model (five
peaks in each of ,the four greatest
catchments)

op
Number of

peaks

•
.93 .10 9.2 20

••

The, Time-Area Method was also found to be ",ore sensitive

t.O yariations in the general level of rain intensity.

~his is indicated in the catchment which has the greatest
variations in maximum rain intensities between different

storms (29 l/s· ha to 108 lIs.ha) .In this catchmentlthe

PASP-catchment) the Time-Area Method has a standard
deviation about three times greater than the kinematic

wave models.

•••
The influence of reducing and increasing the time of

concentration by 30% was also investigated as in section
8.5.5~ Corresponding values f.or the Time-Area Method are

given in table 8.6.~.

•
As we can see, the effects are at the same level as for
the I{W3-model. In the figure 8.6.2 an example is given of

the effects of the variations on the hydrograph shape.

Table 8.6.2 The effects of varying the hme of
concentration in the Time-Area Method

0.27

DifferenceA
p

(1.30 t e )

0.86

Ap (0.70 tel

-------......;..-......;..-.-
1.13•

· '"

•
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Figure 8.6.2 Example of variations in hydrographshape
caused by variations in time of concentra­
tion

8.7 SUllU1\ary

The kinematic'wave model .has been applied to six catch­
ments, using different simplified geometric models. In
addition., the Time-Area Method has been investigated. The
geometric models have all been compared with a kinematic
wave model using a very detailed geometric description of
the catchment. This detailed approach has been compared
with recorded runoff from a number of storms. The com-

. parison with re:corded runoff indicated uncertainties in
the measuremeflts and model performance of some catch­
ment.s. However, it was concluded that the detailed model
reflected the runoff process reasonably well. The valid­
ity of the kinematic wave model has been documented by
several investigators, for example Jacobsen (1980).

The effects of using simplified geometric d~scriptions of
the catchments for the kinematic wave model were investi~

gated by making comparisons with the detailed kinematic
wave model. It was found that the performance of the
kinematic wave model is still very good, even for great
simplifici"tioTls of the catchment geometries such as
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The simulationshy the Time-Area Method showed that
reasonably accurate values of single flow peaks may be

obtained. However, the general shape and delay of the
simulated hydrographs were not as 900das those.of the

kinematiC wave models.
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using the mean slope of the. main sewpr iine

excluding minor branches in Lne sewer system.

replacement of gutters by increased surface

lengths

Assuming only lateral surface inflow to the main

sewer line

> ..

Independent of the model used, the main difficulty is to
cho0se reF~esentative input data which give suitably
attenuated hydrographs. In this study the choice has been
basec on an evcluation of representative times of concen­
tration by the relations based on kinematic wave models
9 iver. in section 7.3. As the evaluation is approximate,
the probability of an unsuitable attenuation is intro­
duced. The probability of large errors is greatest for
the simpiest models (the KW3model and the Time-Area
Method). A more precise evaluation of the time of concen­

tration would possibly increase the accuracy of "the
models. This, hcwever, requires a more sophisticated way

of estimating this time which is pointless as the basic
idea was to develop a simplified method of creating input

data for the kinematic wave model.

l~runoff simulations from catchments built up of several
basecatchmen.ts,the general performance Jshape and delay

of hydrographs) of the base catchment models is as
important as the ability to reproduce flow peaks. The
kinematic wave models should then generallY be. preferred
as base catchment models. These models are also specially
favourable in cases when input data can be calibrated by

runoff measur~ments.
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The most suitable geometric simplification for the
kinematic wave model, regarding'boththe demand for
simplicity in inputdata and accuracy is tne Kw6S Rlodel.
The model is comp<>sod of a sewer with the length and mean
slope of the main sewer line in the catchment. The sewer
1$ laterally fed by a surface with length and slope
corresponding to an estimated time of concentration which
is representative for runoff to the ~ain sewer line.
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The"Linkoping 2 catchment is a residential area with
small slopes. Ilis about 18 hectares in size with 5.7
hectares ~ontributing directly to runoff. ~ characteris­
tic time of concentration for ordinary storms is about
12 minutes. The sewer system is built-up of two major

branches.

The Bergsjon catchment is a mainly steep residential area

with .a flat central part. The runoff "area is about 15
he9tares.5 of wh~ch contribute "directly to the runoff in
the storm water system. ~ characteristic time of concen­
t-:oation for ordinary storms is about 6 minutes. The sewer

system has a tree. shape with four main branches.

General

BASE C~TCHMENTMODELS'APPLIED

In the last chapter the discussion concerned mainly three .

catchnientmodels. the Kw6S and the KW4G-I models and the
Time-Area Method. These have been applied to two urban
catcllments. Berglljoll cmd Linkoping ;Z, which are consider­
ably.greater than thecatcnments used in chapter 8. The
catchments and measurements are described in appendix I.

9.•e·

•

•

••
•

Three levels of subdivision into base catchments have
heen used. The finest division corresponds to base catch­
ment areas of about 0.5 hectares (directly contributing

area).

•

The discussion of the performance of the models are here
based on comparison between hydrographs in the same way
as in the previous chapter: The recorded flow is compared
with hydrographs simulated by a detailed kinematic wave
model IDET), and hydrographs simulated by simplified
models are also compared with those from this detailed

model.
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9.2 Kinematic wave model simulation-
comparisons with recorded hydrographs

The recorded runoff hydrographs W"lre compared ·with hY4ro­
graphs simulated by the detailed kinematic wave model
(DET-model). In this model, in principle every surface,
gutter and sewer withi!l the system is represented. How­
ever, the available information of the runoff system in
Ber9sj~n and Link~ping 2 was not quite as detailed as in
the six catchments in last chapter. The application of
the models to Bergsjen and Linkeping 2 is therefore more
like a realistic case.•

tE1f.••II._ ; 2 ..

••

••
•

•

·,..

In appendix 11:2.1, simulations of five storms from Berg­
sjen and four storms from Linkeping 2 are presented. The
contributing areas used in each catchment were obtained
from regression analysis of _storm volumesr~corded over
22 months (Bergsjon) and 12 months (Linkeping 2, two
summer - autumn reasons). They were .found to be 75% and
90% of the impermeable surfaces in Be.cgsjonand Linkeping
2 respectively, .Arnell (1980).

A visual inspection of the hydrographs shows that the
simulat~dand recordedhydrographs coincide reasonably
well with respect to general shape and delay of peaks.
There are, however, parts of several hydrographs with
marked deviations. There are also, for some storms, de­
viations between recorded and simulated runoff volumes.
Probable explanations for the deviations hav"l been dis­
cussed in section 8.4.2 and are not repeated here.

A statistical analysis of the relation between recorded
and simulated flow peaks was performed for the hydro­
graphs presented. No marked differences in the statisti­
cal parameters were found between the catchments. The

result is then summarized for both catchments in table
9.2.1.

As shown in the table,-the model gives on average flow
peaks which are slightly too attenuated for both catch-

15 ,.
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loiumber of Mean ratio Standard dev. Abs. error
peaks Ap 0p ~p

%

18 0.96 0.13 11

.~

'l'able9.2.1 l'1eanratio Ap ' standard deviation a and
absolute error ~p for recorded and p
simulated flow pea~s in Bergsjon and
Linkoping 2.

.-~,

•

•

••
•

•
Of· ,.

••

ments. This can be compared with the analysis of the six
"smaJ,l" catchments in the last chapter where the DET
model gave peaks which were too little attenuated. The
standard deviation and absolute error are smaller com­

pared with the six catchments. Compared with colyer's
conclusions previously mentioned (section 8.4.2), the

model performs well.

ThesamE~two catchments have previously been used byAr­
nell (1980)1;0 test a runoff model (the CTH model) of

about tbe same level of sophistication as the DETmodel.
Comparillg the two models the standard deviation and abso­

lute error are smaller for the DET model than the CTH
model. This may be explained by the fact that the CTH

model does not take gutterflow in.toaccount. It should,
however, be noted that the statistical measures are
partly based on different flow peaks which may have an

influence on the deviations.

9.3 Simulations using different base catchment sizes

Three levels of subdivision into base catchments have
been investigated

nine base catchments (Ll)
one base catchment for each main sewer branch
(four in Bergsj5n and two in Linkoping) (L2)

the entire catchment as one base·catchment (L3)

The KW6S-Smodel has been applied to each catchment and
each discretization level. They will be denoted here as
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the 1CW6S-Ll. KWGS-L2 and KW6S":'L3 models for the three
level~ respectively. The first level corresponds to base
catchments of about the same size as those investigated

in the last chapter, 0.3-1 ha (contributing arear. The
second level means four base catchments in Bergsjonand
two in Linkoping 2. Thei-..'\\4G-l model was applied to the

third level (i3). The input dat<l sets h<lve been based on

represen.tative times of concentr<ltion <lnd the different

models. compared with the DET model. The different steps
have been performed in the same way as in last chapter.

Tbe sim-ulatedhyd.rographs are shown in appendix II: 2.1.

The main impression from a visual inspection is that the
models perform well with hydrograph. shapes very similar
to those of the DET-model. The best simulations are ob­

tained from the KW6S-Ll model, but those from the KW4G-1

and KW6S-L2 models are also very good. The simulations by

using the KW~S-L3 model are also good in the Linkoping 2

catchment, .but become too little attenuated in the Berg­

sjon catchment P'p .. 1.09), see also appendix 11;2.3 •

From the statistical analysis of the flow peaks it can be
concluded that the models generally perform better in

Bergsjon' than in the fla.tter Link;lping\ 2 area. In table

9.3.1 the statistical parameters are summarized for both
catchments.

Table 9.3.1 Statistical parameters for simulated flow
peaks in the Linkoping 2 and Bergsjon areas

"

•

· ,.

....

••

l-Iodel A Gp t: p (%) Number ofp peaks

KW6S-Ll 1.01 0.05 3.2 18
KW6S-L2 0.98 0.07 5.5 18
KW6S-L3 1.04 0.13 9.9 18

KW4G-1 0.99 0.01 4.3 18

The table shows that a balauced attenuation is obtained

for the models. The standard deviation and absolute error
have low values in general. These parameters ~ncrease
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The most marked difference is between the KWGS-L2and
K~6S-L3 models. This·deviation is most probably caused
by the approximating of the sewer system to only cne
main sewer line, which in both Bergsj6nand Link6ping 2

appears to be a coarse approximation. ·It should also be

noted that the KW4G-I mode! performs almost as well as

the KW6S-Ll model despite the fact that it is based on a
very standardized network system.

The influence on the attenuation of the selected repre­
sentative times of concentration on the attenuation was

investigated in Bergsjon. The parameters in the models
were .shifted to correspond to 30~ less and 30% greater

time of concentration compared to the basic. chosen value •

In table 9.3.2, A values from this test are put together.p.. .

oj

"-
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9.4 Simulation by the Time-Area Method.

The Time-Area Method used as base catchment model was
examined at the two levels· of discretization Ll and LJ,

Model Ap (0.7 t c ) Ap (1.3 t c ) Difference

KW6S-L1 LOS 0.96 0.09
K~116S-L2 1.11 0.94 0.17
KW6S-L3 1.17 0.92 0.25

KW4G-I 1.08 0.96 0.12
.,

......'.'.

AI? values for different times of concentra­
t~on j~ Bergsjon

Table 9.3.2

As shown in the table the interval between the mean peak
flows for the two choices of parameter increases with

decreasin~ discretization of the catchment. The effect of
an improperly estimated representative time of concentra-­

tion is obviously greater for more simplified catchment
descriptions.
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as defined in secHort 9.3 (9 and 1 base catchments). The
simulated hydrographs were compared with the detailed
kinem~tic wave model D~T and the times of conc~ntration

were evaluated in the same way as in chapter 8. Only
~inear time-area diagrams were used.

In appendix II:2.4 hydrographs simulated by the Tillie-Area
Method are shown. These show generally a more marked de­
viation from the DET-model than those simulated by the
kinematic wave model. The hydrographs are too little at'­
tenuated and delayed. compared with the Time-Area Method

hydrographs analysed in last chapter, they show a better
performance with regard to general shape. .It should be
noted that the former are, on average, too attenuated.

In table 9.4.1 the statistical analysis of flow peaks
from the two catchments are summarized. The models cor­
responding to levels Ll and L3 are denoted TALI and TAL3,
respectively •

Table 9.4.1 Statistical parameters for the Time Area
Method compared with the DET-model

Model >.. 0p E:p (%) Number ofp peaks

TALI 1.07 0.15 10.4 18
TAL2 1.06 0.13 9.9 18

\ I
I

!

I

The standard deviation and absolute error are generally
greater than the corresponding values for the kinematic
wave models. There is very little difference between the
two discretization levels and the TALI model has obvious­
ly a worse performance than corresponding kinematic wave
model at this base catchment level, the KW6S-Llmodel.

This is probably due to the fact that the sewer lines of
the branches are represented in the KW6S-LI model by
routing units, which is not the case in the TALI model.

•

·..

••
'--....,..----.,-------
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Th~ influence' of reducing and increasing the time· of cOn­
ceJtration by .30\ was also investigated in the Bergsjon
arfa. corresponding values for the Time-Area .Method are

given in table 9.4.2 •....
.,- ."

Variation of the time of concentration using
the Time~Area Method in Bergsjon

•
Model >'p (0.7 tel >'p (1.3 tel Difference

TALI 1.16 0.98 0.18

TAL3 1.18 0.97 0.21

The interval between mean peak flows for the two choices
of parameters are, as shown in the table, about. the same
for' the two base catchment levels. compared with the kin.,.

ematic wave models the sensitivity at the first level
(Ll) fs consiaerablygreater. At the third level (L3) the
sensitivity. is of about th~ same order for the two cate­
gories of model. This is most probably caused by the dif­
ferencein representation of sewer lines mentioned above •

•

••• 9.5 Summary \

•

•

· ~

'.••

The runoff models ?resented in last chapter have been
applied as base catchment models in two urban catchments
with total areas of 15 and 19 hectares, respectively.
Three level:; of subdivision into base catchments have
been used where th~ finest division corresponds. to sizes

around 0.5 ha.

The general impression of the performance of the models
applied to these areas is much the same as in chapter 8.
The models based on the kinematic wave appear to perform
well, better than those based on the time-area reiation­

ship at comparable discretization levels.

A simple geometric model (one sewer laterally fed by a
rectangular surface - the KW6S model) has been applied as
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base catchment model at he three different ievels of
subdivision. Using great r base catchment sizes the per­

formanceis not quite as good. However, there are no
drastic changes and it is obviously possible toobtJin a
ver~' good performance using quite great base catchm~nts_,

provided the catchment characteristics (for instance the
time of concentrationJare properly evaluated'. It &hould
be stressed here f-hatas the base catchment increases the
effects of making misjudgements in these evaluations ir.­
creases. It was also found that when the main sewersys­
tem contains several long branches they must be repre­
sented in the input data system and should not be re­

placed by one main sewer line.

The Time-Area Method does not perform quite as well as
the kinematic wave model despite the fact that the same
amount -of oatchment data is required. Though the moiel
properly used has a perfoJ:"mance which is acceptablt. "::
many applications there is no obvious argument for its

use •

It can finally be concluded that:

Independent of the mocel used and ~ase catchment
size, the choice of input parameters in the base
catchment model (overland flow parameters) has a

significant effect on the result.

The kinematic wave model (KW6S model) is both
possible to use and effective as base catchment

model.

With this model relatively great simplifications of
the input data geometry can be used with a reason­
ably well maintained performance, t~is provided the

'catchment characteristics are properly evaluated.
That may be done using relations derived from the
kinematic wave equations, assuming constant rain

intensity.
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In many cases it is of interest to make only a fast ~nd

simple evaluation of maximum flows in a couple of key

points in the sewer system. This may be d"lne by the so
called Rational Method. The method was formerly the only
available design tool and then much criticized for being

too. approximate. It is easily applied but may, as all
strongly simplified models, give very misleading results

if it is improperly used.

•;e

e~

e.

10~

10.1

EVALUATION OF STATISTICAL MAXIMUM FLOWS

General
/

!

•

••

The Rati6na], Method is commonly regard~d as an empirical

model. There is, however, a clear relation between the
model and the basic equati6nsused in this report, as has

been. pointed out by Newton-Painter (1974). Despite the
relationship to the Time-Area Method the Rational Method

is basically quite different from all the previous dis­
cussed models by being a statistical method for maximum

flows rather than a routing method.

In the following sections some theoretical and practical
aspects of the method will be discussed in order to dis­
cuss the relevance of the underlying model. An alterna­
tive method for evaluating design flow rates based on the

traditional Rational Method is also proposed.

/
/

• 10.2 Basic deterministic relations

•

·..

..
.*,•

Using the Time-Area Method corresponds, as shown in sec­
tion 7.3, to applying the kinematic wave equati.ons with
a wave velocity that is fixed in time but not in space.

The discretization of the time area diagram defines the
space step in the equations used. Fixing tlle wave veloc­
ity in space as well corresponds to a straight line in

the time area diagram. This approximation requires no
spatial discretization and may be regarded as a reservoir
model (linear). The solution takes the form
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(see equat:ion 7.3.2)l.Tbe wave velocity may be w::itten
~=L/tc where L is the' length of the surface and t c the

time for the wave movement over the sl:/-rface. According
to section 4.2.2, t-to= t c giving

•e·

e

t
Q (t)= a·B.· J ito} do

to

(10.2.1)

Q (t)

t·

L'B -! . J i (0) do
t c

... (l0.2.2)

This relation corresponds to an averaging of the inten­

sities over the time t c ' For each storm event a maximum
value'Of the average intensity can be found

•

••
t

. f
t-tc

i«(J)daJ
max

••• (10.2.3)

o how well the time t c is estimated

o the divergence in "real" rain intensities
from the maximum average intensity i

The mo~~l (equation (10.2.4)) exprecses the deterministic
relation underlaying the Rational Method. The relevance

of maximum flow values obtained by this model depends

mainly on

•

•

The maximum flow is obtained as

Q max = LoBoimax

\

... (10.2.4)

· ..

••

Hager (1985) has shown that the variation of rain inten­

sities in an interval equal to the time of concentration
has little influence on the peak flow value' for a rectangu-,
lar surface (effects of delay were not negligible).
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The results from this theoretical study can not be gener­
alized to·an arbritary urban catchment but gives an indi­

cation of the pos.sibilites of the basic model.

10.3 The Rational Method

The design of a network system is basically a statistical
problem. lriprinciple, one possible way to balance pipe

size against fisk .is to design the system for each storm

in a long series of rainfall events (perhaps 30 years).
The return period for· the different flows is calculated

and a choice bet\ieen risk levels with corresponding pipe
sizes Can be made. Design methods based on statistiCal

analyses of simulated discharges have been proposed by

Johansen (1979) and Arnell (1982) •

. A more practical but also more approximate approach is

based on storms generated by statistical parameters,
design storms. By using such a storm a design flow is

evaluated which is assumed to have the same return period

as the storm•

The traditionally used statistical storm is the Ma~imum

Average Intensity storm (MAl-storm) which is defined by

its average intensity i max and corresponding averaging

time (duration time t d ), compare equation (10.2.3).

Each historical storm can be described by a series of
MAl-storms with different durations. From a ser~es of
historical storms, frequencies of MAl-storms can be

evaluated. For each duration a distribution function for
the intensities can be plotted. Examples of. such func­

tions obtained from a two year series are given in figure

10.3.1 (after Arnell, Lyngfelt (1975)). The three rain
. .

distributions correspond to the durations t d = 6, 9 and

12 minutes. The frequency is. here given as the I~turn

period in years (T). The distribution of ~aximu~ dis­
charges from a residential area (15 hectares) during the

same period is also shown in the figure.
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Figure '10.3.1 . Distribution functions for MAI-storll'.s and

maximum discharge (after Arnell, Lyngfelt
1975)

Assuming parallel intensity and dis~har~e distriburions
we ootain

• I

16'

••• (10.3.1)

If the time of concentration is used as the duration of
the MA!-storm, the corresponding intensity distribution

._-_.._---------.-_._----_._----

where 0max(T) and itT, t d ) are flow and MAl-storm distri­
butions, T the return period, t d the duration tim~ and c l
a constant. As we ca·n see, all the chosen t-U\l-storm dis­
tributions diverge slightly from this· assumption. The
storm distributions get closer to the flow distribution
with increasing return period. The s~me tendency can be
found in other catchments analysed in a similar way, see
Shailkeet ·al. (1967) and Arnell et al. (1980).
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(10.3.2)

(10.4.1)

A . i (T, t Ic . c°max(T)

10.4 The time of concentration

where t c . is a function of i.

will have a 'steeper' slope. In a study of five catch­
ments it.was found that the distribution i(T,tcl was
always in better accordance with the flow distribution
than al'y distribution i(T,td ) using cor.stant duration.
It was also found that the constant c 1 (equation 10.3.1)

was close to the estimated contributin':J area A , Lyngfelt. c
(1981). The relation becomes

The curves are characterized by haVing steep gradients
for the durations of interest in urban drainage design
(5-20 minutes). overestimating the time of concentration
by, for example, five minutes may very well result in an
underesti'l\ation of the discharge by more than 20%. The
time of concentration is thus a significant parameter and
the estimation of tile parameter is of great importance in

the application of the r:tethod.

Relations for estimating of the time of concentration
based on the kinem~tic wave concept are given in section
7.3. In chapters 8 and 9 they were used in model'analysis
and found to give appropriate values for th~ Time-Area
Method using a linear time-area diagram. The expressions
for surface-gutter and sewer flow may be sum~arized by
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The traditional way of pr.:senting MAl-storm distributions
fora series of historir.:al storms is th~ intensity dura­
tion frequency diagram (IDF-diagram). In Sweden IDF­
("urveshave been established at six locations. In figure
2.2.2 the IDF-diagram ',sed in Goteborg is shown,
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10.5 Evaluation of the maximum flow

The IDF-curvesmay be expressed by the relation

••• (10.S.2a)

••• 110.5. 2b)

••• (lO.S.l}a
t +b + c

d
. i =

Lyngfelt (1981) evaluated by regression analysis an em­

pirical relation which glvesvalugsof t c close to. those
obtained by the relation(lO. 4.1) • The regression is
based on catchments haVing contributing·areas greater
than 1. 6 ha.

where K} andK2 includes catchment parameters such as
slopes, length$ and roughnesses. The parameters may be
evaluated from equation (7. 3. 8) - (7. 3.10) •

where a, b and care parameters which vary with location
and return period. Using the Rational Methddwe are look­
ing for the rain intensity corresponding to the time of
concentration estimated by equation (10.4.1) which is a
function of the rain intensity. The intensity is obtained,
together with the time of concentration,. by solving the
equation system

f
I

••

•

•

•

••••

This may be done by using the regression equation

++ c] 0.25

"

••• (l0. 5. 3)

•
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.' The intensityi(T. tcl is obtained from eqJation 10.5.2a

for a giventc and the maj(imum flow by equation 10.3 •. 2.

.... 10.6 Tests - discussion

•

•

••
•

•

.....

Th!! Rational Methodrelates the distribution functions of

rainint.ensity and flowina catchment. It is therefore

only possible to investigate the relevance of the model

in catchments where such functions have been established •

Arn.ell·.(1982) used a detailed runoff model and a series

of Mstorical storms to evaluate distribution functions

for discharge and rain. intensity in 30 catchments with

different ~haracteristics.Allof them aresubcatchments

in the areas Link5ping 1; Linkoping 20r Bergsjon, sae

Arnell et al.(1980). The evaluationwas1onein order to

compare. different d~signstorms used in design of sewer

nets by detailed rUnoff models. In figure 10.6.1 the

sewer network of Bergsjl>n is shown with calculation

points.

Flow rates evaluated by the Rational Method, as described

in the last two sections, were compared with Arnell's

distribution functions. The method was found to perform

with about the same accuracy as the detailed model using

a design storm. Three examples are given in figures

10.6.2 - 10.6~4 •

When a detailed runoff model is used in desig~, the flow

is repeatedly simulated for different durations of the

design storm until a maximum flow is obtained. With this

procedure there is not a "perfect" fit between rain 1n­

tensity and response time of the catChment, as there is

the case in the Rational Method as described above. This

fact is believed to compensate for the coarse deter­

ministic runoff model included in the Rational Method. It

also emphasizes the importance of including the rain in­

tensity in the estimation of the time of concentration•
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Figure 10.6.2 The distribution function for the
discharge in point 9 in Bergsjon (see
appendix II) af':!r Arnell (1982) with
the Rational Method points included

Figure 10.6.1 The sewer network of Bergsjon (after
Arnell (1982))
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•• Figure 10.6.3 The distribution function for the
discharge in point 24 in Bergsjon (see
appendix II) after Arnell (1982) with
the Rational Method points included
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Figure 10.6.4 The distribution function for the
discharge in point 7j in Bergsjon (see
appendix II) after Arnell (1982) with
the Rational Method points included

166

---~----~--_._-~_.•.-._- "._--_.-

•.~
.~.~:~.-



"

\,

I
I

167

--- !liiill!e£~

\

« 10 minutes).

The Rational Method appears surprisingly capable'ofesti­

matinqstatistical design floWS. It should, however, be
stressed that the method a,s it is ueed here requires
much the same amount of input data as the kinematic wave
l\lodels.lnaddition it is usually advantageous t<' have
the entirehydr6graph and not only the design flow as a
basis in the design situation. Runoff systems with reten­
tion storages or overflo~s are examples where routing
l\I~thods l\lust be used. The Rational Method ,is a very suit­
~lemethodfor cillculating flow 'rates in the preliminary
design staqeof a network system, in small or simplesys""'
tems and also for checkiM tile input data to more'complex
inOdels.Whenthis method is used, the time of concentra­
tionshoUld be evaluated by relations based on the kin­
ematic wave theory (see section 7.3). Particular care
'should be taken in estimating tcwhen this time is short
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amplitudeS at section 1 .ancl 2 laeetic)n 3.5)

width of chaLnel

one of the gutter flow. lengths in the kW6G
geometrical m~del

exponent in 'che non-linear friction relat·ion or
parameter in the lDF relation (section lO.S)

contributing catchment area

part of contributing catchment area

param~ter in the llOIl:"li.!lear friction relation or
parameter in . the IDF .relation (section 10. S)

cross"section at' stationary flow

cross-section of flow

dimensionless cross-section of flow A/Ao

b

LIST OF SYMBOLS
51-units are generally used. If not the unit is specified
in the text.

••

'.
modified Courant number (section 6.4.3)

CI,C2

CD

CR

C
llX
R

characteristic number land 2

resistance coefficient

Courant number

(section 4.2•.5)

c ' wave velocity or parameter in the IDF-curve
relation \

•
dimensionless celerity (c/vo )

c
k

kinematic wave velocity

D diffusion coefficient

diameter of sewer

Froudenumber
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Da:cy-Weissbach friction facto~

numerical diffusion coefficient

diameter of the main sewer line

dimensionless time at which the lateral inflow
ceases (section 4.3.1) .. ,

•

•
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•
••
•



..,

length in flow direction

catchment length in the KW6G geoMetric model

length of branches in the KW4G-I model
(chapter 8)

frict~on parameter in the L-formula

friction parameter in the quadratic formula

effectiv~ absolute roughness'

kinematic wave nUmber

rain intensity

maximum average rain intensity (section 10,,2)

acceleration due to gravity or
index for gutter flow variables

L

i(T,t
c

) maximum average rain intensity distribution

j ,j+l space step j ill'l.1ii j+l

K fri~ti6nan~ shape paramet<!r in the non-linear
friction relation

i

•

•

•
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flow rate

Manning·s coefficient of roughness

wetted perimeter

exponent of the hydraulic radius in the
friction relation (section 5.4) or
innex for sewer flow variables

time step m and m+l

dimensionless flow rate

length of surfaCe in flow direction

length of main sewer line

length of sewer

length of dow:lstream sewer in the, KW4G-! model

length of gutter in flow direction

p

n

p

Omax(T) maximum flow distribution

00 stationary flow rate

Ld

Lg

L
p

'Ls
Lm
m,m+l
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maximum flow rate obtained by the
Rational Method I

surface flow per unit width

0in 00ut inflow and outflow rat~s to a reservoir
(section 7.2.1)

lateral inflow

dimensionless lateral inflow (q/qol

q . stationary lateral inflow
o

qk constant lateral inflow

R hydraulic .radius

R
e

Reynolds# number

slope in flow direction

friction slope

gutter slope in flow direction

slope of sewer in flow direction

n.ean slope of main sewer line (Lm/t>H)

5s surface slope in flow direction

s index for surface flow variables

T return period (chapter 10)\

t time

starting time for a characteristic at upstream
boundary (section 4.2.2)

dimensionless time(t Vo/L)"

t
c

tim~ of concentration

time constant ·in lateral inflow

velocity of lateral inflow, cross-sectional mean

dimensionless velocity'of lateral inflow O/Uo

velocity of lateral inflow at stationary flow

Oi velocity of rain

ve;locity in gutter, cross-,:;ectional medn

I
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X

Y
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YO

yg

Yp

Zl, Z2

z

C

Ceq

p

AH

At

Ax.

0
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9

A
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v
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. velocity in sewer, cross-sectional mean

veloc~ty in surface flow,crQss-sectional mean

velocity of flow, cross-sectional mean

dimensionless velocity of flow VIVo

Vedernikov's number

stationary velocity of flow

velocity of wind

space coordinate

cross-sectional water depth

dimensionless watEirdepth Y/Yo

stationary cross-sectional water depth

water depth in gutter flow section

water depth in sewer flow section

zones in the x-t plane (figure 4.2.3)

slope factor of sidewalls (tanc = z)

nu~erical parameter (weighted box scheme)
slope angle of channel

eqUivalent numerical parameter (a-diffusive
model)

correction factor for the cross~sectional

velocity distributions or
numerical parameter (weighted box scheme)

elevation between two points in the sewer system

time step

space step

logarithmic decrement = In(a2/ a l )

mean absolutE' error in compared peak flow values

parameter in the MIT model (section 6~6)

length of sinusoidal wave

mean of the ratio between flow peaks

kinematic viscosity of water
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p density of water

PL density of air

e 11 integration variable

wavenumb~r-

e.
T

Tmp

standard deviation of the ratio between
compared flow peaks

integration variable or
time-lag in the Time-lag model (chapter 7)

mean shear:stres$ along the wetted perimeter

T
ms

mean shear stress along the surface

• 'I'

shear stress of wind

angle between main and lateral flow vectors

angle between rain velocity vector and surface
flow velocity vector
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PREFAC3

appendix. II, simulated hydrographsare presented. The
documentation in this volume gives an important back­
ground for tile disc;:ussion in the chapters 8 tc. 10 in
Volume LRegarding appendix II it was considered suit­
able to gather. all hydrographs into one place.in the

report •

i
I

'l'hispart, Volume II, of the report contains t.wo appen-

dices. In the first, catchments and rain intensity runoff

measurements. used in the simulations are described. In
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TEST AREAS AND FIELD HEASURElvIEUTS

1:1 Introduction

Measurements of rain intensity and runoff in urban catch­

ments have been performed over a number of years by the

Department of Hydraulics in cooperation with the Depart­

mentof Sanitary Engineering. The circumstances and ob­

jectives have varied between different locations causing

differences in measuring techniques, sampling periods,

evaluations, etc. In this appendix, catchments and

measurelTients which have been used in chapters 8, 9 and 10

(Volume I) are described. The catchments which have had

similar mepsuring techniques applied are described to­

gether.

In section 1:2 the largest catchments used in the analy­

sis are described. These have been used in earlier analy­

ses for instance Arnell & Lyngfelt (1975), Arnell (1980),

Lyngfe1t (1981) and Arnell ~t al (1980).

In section 1:3 the smaller catchments are described. The

measure"ments have been published as Master of Science

Theses, Ericsson et al (1978), Johansson et a1 (1981) and

Nordqvist et al (1982).

In section 1:4 the three smallest catchments are de­

scribed. The measurements in these catchments have been

performed using a central sampling unit, Lyngfelt (1975).

·....

I::Z

1:2.1

'~:

Test ~reas larger than·· 1 ha

General

••
•

Two large runoff catchments have been used in the report.

These are mainly residential areas with some central

buildings. With respect to building structure, topography

structure of sewer net, etc., the areas are very differ­

ent. For instance, the slopes of the main sewer" systems

--'-'.'
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•• are 12 and 45%0, respectively,. in the two areas.
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Scale
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The Bergsj6n catchment

BERGSJON

Surface Area Part of l\veraoe
material 104 m2 the .total slope

area
'!. %0

Aspahlt, 4.2 27 29
concrete
Roofs 1.6 11 30

Rocky areas 0.6 4

Lawns 3.4 22 65

Forest areas 4.3 28 100

Remaining 1.3 8
areas

Total 15.4 10q

Bergsj6n (15 hal is a housing area NE of central G6te­
~org. It is situated about 90 m above sea level and is

quite steep, although it has a flat central part. The
r~noffcatchment is well delimited by a road and a moun­
tain ridge. The suburb was built during the 60's and con­

tains buildings with three and six storeys. In the area
there ar~ also two parking decks and a business location.

1:2.2

Figure 1:2.1 The Bergsjon catchment, after Arnell

(1980) •

The areas chosen may be regar~ed as typical for Sweden in

all ~espects except for the available information and
quality of the sewer system. In these respects the areas

are prol:)abiy better.than the average.
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The Linkoping 2 catchment
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Surface Area Part of Average
material 104 m2 the total slope

area
% %0

stieetsl
sidewalks

lINKOF-~NG 2asphalt 3.3 18 S -
50 IRoofs 3.0 16 SO '- 1000

Lawns .8.9 48 10 - 30

Bushes and
forests 3.3 18

Total 18.5 100
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1:2.3

!
The catchment is drained<' by a separ~te urban stotmwater

system. The structure of the sewer net, measuring points

and the sizes of different types of surfaces are;illus­

trated in figure 1:2.1 (see also Stromvalletal (1976)).

Lirtkoping 2 (18.5 ha) is a part of a larger catchment,
Linkoping 1, Arrtell (1980). The area is flat and contains

lirtKhouses, villas and school premises. The catchment is

Figure 1:2.2 The Linkoping 2 catchment, after Arnell
(1980') •
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i,Rain intensity - runoff measurements1.:2.4

.....L.ClJ~UI=U. by a separate' urban stormwater system. The struc­
ture of the sewer net,measuringJ;>oints and the distribu­
tion of different types of surfaces are illustrated in
figure I: 2. 4.

Measurements'in both areas·are·basically mado in the same
way with a rain gauge at one point in the catchment and a
discharge measuring weir at the outlet. In Linkoping 1
two precipitai:,ionrecol:'ders were installed and the .flow
was r¢cc1.l:'(1ed in two points insi.de th.e catchment area.

I

e.

e

••
•

The precipitation was measured by "an instrument of the

siphon type, Which gives an accumulated precipitation
curveonachart recorder. The resolution in time is 1...2
minutes .and in volume 0.05 mrn.

The runoff was measured with different types of sharp­
crested weirs. In Bergsjon, a pond was constructed at the
outlet of the sewer system and in Linkoping 2 the weir
\oias installed ina manhole. The manhole arrangement was
calibrated by mOdel tests in the laboratory (Johanisonet

e

vi.·...

••••• e·· ••

Recorder

Overflow

••
•

Figure 1:2.3 Recorder and equipment for water level
measurements .

"j, 4
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aI, 1981). Water level measurements were made by ultra...

sonic water'level gaugesJin Bergsjon a floating gauge}
and were recorded on a chart recorder {resolution 1... 2
minhtes}, see figure 1:2.3.

As th~ rain intensity and runoff were recorded separately
it was not Possibl,e to get perfect time coordination.
Most of. the obtained records were digitized and stored

for computer evaluation (Arnell & I.yngfelt, 1975; Arnell
et aI, 1980). From these records, values of rain inten...

Sity and flowJin 1 minute intervals) for separate storms
were evaluated and used in the model simulations.
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l,\rnell (1980) analysed the sources of error in the

measurements and found a total error of about ±15% for
the rcd,n intensity measurements and ±10... 15% for the run­

off measurements. This estimation can be regarded as an

upper limit .for errors in volume for separate storms. The

error in single (or some) precipitation intensities and
flow values might, however, be more than 15%.

Small test: areas

General

.;(- 5

\
From the rain intensity and runoff records it was poss-
ible to estimate the contributing runoff area and the

average surface depression.storage. Those parameters were
calculated by regression analysis of rainfall and runoff

volumes for all separate storms, see Arnell & Lyngfelt
(1975) and Arnell (1980).

1:3

1:3.1

When discussing d~fferent approaches to base catchment

modelling, it is of interest to compare simulated runoff
with the corresponding measurements in small areas. A

series of measurements has been made in such catchments.
In this section three of them, where measurements and
evaluations have been made in a similar way, are de­
scribed•

• I

••

•

•
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~he airport surface AASP1:3.2

measurements were concen~rated in a short period of

summer in order to obtain 5-10 separate, intensive
storm events.

~he runoff area is one part of the so called freight
apron at Landvetter airport (20 km E of Goteborg). The

surface is situated at the side of the rlinway and is sur­

rounded on two sides 'byperrneable surfaces (grass and

crushed stone respectively). The other sideS are ridges
that delimit the surface from other parts of the freight

apron. From the ridges the surface slopes towards a low

point line and the collecting sewer. The water is col­

lected in 8 inlets 30 m apart, see figure 1:3.1. The

greatest flow~length of the surface is about 65 m and the

average slope is 100
/00. The collecting sewer has adia­

meter of 0300 rom and the slope 2.5%0. The total catch­
ment area is 10 130 m2 .

Q '

• Y'

••

•

•

•
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;.~ ..

Rain gauge
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......................................: .
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Water divide on the surface
Border for the catchment
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Figure I: 3.1. The airport area AASP.
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The parking place PASP1:3.3

The parking 10tPASP is situated at Landvetter airport
between two administration buildings. The area is de­

limited by these buildiT''}s and the kerbstone towards a
grass area. At the entrance and exit the area is l.imited

by ridges, see figure 1:3.2. From the ridges the area

slopes towards a lowpoint line and the collecting sewer.

At the upstream end of the sewer net there are three in­
lets, 30 m apart. The runoff area is quite evenly sloping
with the greatest slope measured being 11% 0. The

greatest flow length is about 30 m. The diameter of the

sewers is 0300 rom, and the slope is 10% 0. The runoff..,
area is 4 260 m-.

",q, ,',., ....
i
i
I
The area consists of even and easily defined asphalt

surfaces. The location is advantageous as the area has

low traffic load. The runoff area with measurements are
also described by Nordqvist et al (1982).

•••

Building

'--Q-----!---.,-----<!-- - - - - --l

Building

Scale:
o 1020

Asphalt surface

TRunoff
gauge
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rr----------.....1
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•
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Figure 1:3.2

Water divide on the surface
Border for the cat~hment

The parking 10tPASP.



The traffic load on the surface is low, and the area was
not used ~s a car park during the measuring period. The

runoff afea, with measurements, is also described by Jo­

hansson et al (1981) ~

The runoff area is situated in a housing area in central

H~lmstad. The runoff surfaces consist of street surfaces,

drained separat~ly to a percolation pond. The streets are
1j.raditicmal with pavement and roadway (slope around 3%).

'rhesurfaces are in general well delimited by kerbstones
and hbuses.Thecollecting sewers have the diameter

¢225 mm. The average slope in the network system is
around 70 100. The sewer system was reconstructed when the

percolation pond was built. The structure of the system

is shown in figute 1:3.3. The runoff area is 3 670 m2 •

.4It
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1:3.4 The street surface SASP
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Falkeno~rgsgatail

The street surface SASP.Figure 1:3.3
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I Mapping and pres:ipitation-runo~fmeasurements were made

as a part of the analysis of the function of the percola-

4Itl! ~_ :ion pond (Ericsson et a1, 1978).
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( b)

A

¢800

Rain intensity - runoff measurements

¢400

A

(a)

..
\.

1:3.5

b The measuring point at the PASP and SASP

catchment.

Measurement of rain intensity and discharge, in the three

areas were made in almost the same way as the m~asure­
ments described in section II:2andthe same equipment

was used as well. Although the catchments are small the

characteristic times of concentration are 101.g, for two

of them longer than corresponding time in Bergsjon. For

these areas the resolution in time can be re.garded as

acceptable. In the .smallest catchment this resolution is

too sm(3.l1. However, in this case the· measuring pond
showed significant influence on the attenuation of run­

off. In view of this attenuation the resolution in this

area can also be regarded as acceptable.

Figure 1:3.4 a The measuring point at the AASP catchment.

The discharge measuring weirs have in all cases been

located in manholes in the sewer system. The two

measuring points at the airport were prepared for

•

•

•

•

••
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measurement by increasing the manhole diameter in one

case and, in the other, by enlarging the incoming pipe.

The measuring points are shown in figure 1:3.4.

None of the weirs have good inflow conditions. All

measuring points were calibrated by using fire-hydrant
water and fire-fighting water from a fire engine. Thus

calibration flow corresponding to at least 80% of the

. highest runoff measured were obtained. The accuracy of
flow values should therefore be at least as good as the

one for large area measurements.

;J- 10

In Bergsjon initially five small areas were chosen for a

close. study:

General

Small test catchments i.n Bergsjon

A parking deck of concrete

A grass surface

A roof surface (one half of fin apartment house)

A small asphalt surface (street area)

A part of the catchment consisting of several roof

and asphalt surfaces

*

*

*

*

*

I:4.1

1:4

In each catchment the participating impermeable surface
and depression storage was determined by linear regres­

sion analysis •

The main objective was to get a basis for. testing differ­

ent runoff models. During the first measuring season

there was no runoff from the grass surface although it
was very large and ·had a steep slope (more than 1000 /00).

The study of this surface was then suspended.

•

•
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The "roof surfac~'" catchment consists 'of half the roof
surf~l(;:e:)fa.roughly 100 m long block of flats (area

abou~ 800 m2)~ith a collecting sewer at the side and the
measuring point at on~ gable. A closer analysis of the
runoff, cOnditions showed that this system was heavily

influenced by the collecting. sewer. There was a depres­

sion abou.t 10m upstream of the measurement point, from

which significant backwater effects were obtained. The

test catchment was therefore not used in the final model
simulations.

;... Oct•... ··..··.·.··".··.:'··;1··:.·.'·.·...·.
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The area consists of a part of a road surface arid a pave­

ment that is drained through a guttt;lr towards a gully.
The gutter length is about 50 m. The runoff area is
430 m2 , see figure 1:4.1.

Analysing the runoff from small surfaces requires a

h~gher resolution in time compared with the measurements

described previously. Therefore a special data collecting

s1'stem was built with a central unit where all data were
registered on tape, see below, Lyngfelt (1975).

•

••
•

1:4.2 The streetrcatchment ARPH
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• .It
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Grass

Grass

Scale
o 20m
I I

Figure 1:4.1 The street catchment ASPH.
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The parking place PCON1:4.3

Scale:
o 10 20 m, ,

I
The water divide at the upstream end might be expect~d to

vary a little with the flow during a rainfall. Therefore.
. .' .!. .

a dividing asphalt line was laid along this divide. This

also continued over the gutter to prevent inflow fro~ the

upstream gutter.

The catchment consists of the upper floor of a two storey

car park and the area is thus well defined. The deck is
drained.by six inlets at one side of the rectangular

deck. The surface material is rough concrete, the flow
length 14 m and the slope 14°/00. The collecting sewer

goes along the long side of the deck to the measuring

point and is thus relatively long, just more than 100 m,
see figure 1: 4.,2. The sewer diameter is ¢225 rom and has

the average slope 36°/00. The runoff area is 1700m2•

Figure 1:4.2 The parking place PCON.

'The catchment consists of a coarser asphalt material than

in the ones described in the preceding chapter and is

also considerably more "uneven". The slope is also
greater - around 44%0.
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The cltch~cnt is a part of, Bergsj6n(see 1:2.2) and can

be:regardedas representative for Bcrgsjon its,elfas well

as a small urban catchment in general. The composite

catchment has several quite large surfaces, a roof area

of about 1400 mZ and a parking area of 700 m2• The other

areas attached are mainly road surfaces, pavements and

foot paths. The sewer system has the diameters 0225 rom

and 300 rom. The average slope in the system is 22%0.

The structure of the system is shown in figure I:4.3. The

total area of the catchment is 3490 m2
•

The co~positecatch~entCOMP

------------------------------."''''''-,
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o 30m
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Figure 1:4.3 The sewer system and runoff areas in the

composite catchment COMPo
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The choice of runoff catchments is to a great extent
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1:4.5 Rain intensity - runoff measurements
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l
,.governed by the possibiEty of finding suitable places
fer discharge measurements. It has not been· possible to

I

create any ideal llleasur~Itlent conditions in Bergsjon, bl,lt

since the catchments are quite small, it has been possi
ibieto calibrate the discharge weirs with the aid of

fire-hydrant water.

The sharp crested measuring weirs were made of metal,

v~sr.aped in three cases and rectangular in one. The·angle

of the V-shaped weirs were adjusted so that the two year

rainfall, calculated according to the Rational Method,

could be registered for an overflow height of 25 em.

The measurement weirs in the PCON and COMP catchments
were installed· in existing manholes, 0900 rom, see figure

1:4.4. The weir was placed at such a level that discharge

mappe was aired, and the influenced area upstream of the

weir was small. The lowering of the magazines during dry

weather was small due to careful jointing and the low

evaporation in closed systems •

The measuring weir of the ASPH catchrop-ntwas placed in a

gully. A metal box was constructed to get as slow an·in­
flow as possible towards.the overflow. A perforated metal

sheet with holes was· placed in the middle of the box to
distribute the water over the cross section, see figure

1:4.4.

The measurement system consists of point level gauges

placed in the measurin'::t stations and a central, regis-
. ~ ..,

teiing unit. The point gauge is motor-driven and Con-

nected to a potentiometer, see figure 1:4.5.

The central unit consists of a data logger (Epsylon) re­

cording the data on magnetic tape and a clock unit, see
figure 1:4.5. Each measuring sequence is started by the

clock unit which gives a pulse to the gauge motor to lift

)..-14
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f
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l weight (for 7 secOnds) and then lower it to the water
I

~urface. When the weight renchcs the water surface the

motor power is cut off. The measuring sequence is ended

with a pulse from the clock to the data logger, to record
the potentiometer values.

COMP - and PCON surface

A$PH - surfact'

Figure 1:4.4 The discharge measuring stations at Berg­
sjon.

The demand for high resolution in time for the records

results in large amounts of data. To reduce the amount of

data a special level gawJe was placed at.~he measuring
, ~ '.:"

point of the asphalt surface. When the water level at

this point exceeded a fixed value, a sampling interval of
30 seconds was used. Below this level the interval was 10
minutes.

The central unit was placed.in a manhole at the centre of
the catchment and signal cables were drawn from the
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gaueJes in the sewer net. In this way the sampling system
could"be placed beneath the ground which is an advantage

whenth~ risk for damage is considered.

e-y-

•

•

Calibration of overflows
--------~---------------
The measuring weirs were calibrated by fire-hydrant
water. The flow was measured by flow meters connected to

the fire-hydr.ant heads. At each measuring point the
response was registered by the data logger for five dif­

ferent flows.". Thus a direct correlation between the
digital unit Of the data logger and the flow was

achieved. As the calibration waS made also for the
greatest flows, the calibration curve was used directly
at the evaluation and no analytical relation between

wat~r level and flow was evaluated •

Figure 1:4.5 Measuring system for the small catchments

in Bergsjon •
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II SIMULATED AND RECORDED RUNon' HYDROGRAPHS

In order to facili tate comparisons all hydrogl.'aphs have
been gathered in thi.J appendix. The plots are divided. """". " " " " !

into two main groups, II:! and II:2, corresponding to the
simulations in chapters Band 9, respectively.

WIthin each group hydrographs simulated bya specific
model have been put together for all catchments and
storms.

As the rain intensities and storm durations vary cQn­
siderably between storrnsit was necessary to use differ­
entscalings. The runoff rates are expressed in the same
unit as the rain intensity [l/s'hal.
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Hyetograph
..-+- 'Recorded hydrograph
-+- Detailed simulation

IASPI+ .:. catchment]

5

Comparison between the recordeda.1'ld simulated
runoff

Hydrographs from the small catchments « 1 ha)
,-. .

In section the hydrographs from the six catchments
discussed in chapter 8 are presented.
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••.' recorded-simulated hydrographs, continued
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' •. hygrographs, continued
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KW6S-S and KW4G-I modril hydrographs, continued
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KW6S-S and KW4G-I model hydrographs, continued'
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and KW4G-~rnodel hydrographs, continued
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•• and KW3 modei hydrographs, continued
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KW6S and KW3'model hydrographs, continued
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11:1.4 Comparison: the detailed kinematic wave model
and the Time-Area Method
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Time-Area Method, continued
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Method, continued
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Time-Area Method, continued••••
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