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Section 1

INTRODUCTION

The purpose of this manual is to provide nonprogramming
users of the Finite Element Surface Water Modeling System:
Two-Dimensional Flow in a Horizontal Plane (hereafter referred to
as FESWMS-2DH) the information needed to use the modeling system
effectively. The manual provides sufficient description of the
programs that comprise the modeling system to allow users to
determine when and how the system can be used, and will serve as
a reference document for preparation of input data and

interpretation of results.

A user is assumed to be interested mainly in obtaining
results from the modeling system for specific applications. To
apply the modeling system and interpret results effectively, a
user needs to be aware of the logical structure of the modeling
system, the general simulation approach, and the assumptions and
limitations that affect use of the system. A user does not need
to be interested in the details of programming beyond the
required formats of input data and the presentation of results.
The rest of this manual enables a nonprogramming user of FESWMS-
2DH to understand the basic logic of the modeling system, the
input data requirements, the flow of data through the modeling
system, the output generated by the modeling system, and all

]1imitations that affect application of the modeling system.

FESWMS-2DH applies the finite element method to solve the
system of equations that govern two-dimensional flow in a
horizontal plane. An overview of the modeling system is provided
in section two to help a user determine the applicability of the
modeling system for specific needs. To understand the general

ideas of the solution procedure, some basic concepts of the

Finite element method are described in section three. The




governing equations are presented in section four so that a user
will understand how results are obtained and how empirical
coefficients are used. Finite element eguations that are formed
by applying the finite element method to the governing equations
are described in section five so that a user will understand how
boundafy conditions and other special conditions are prescribed,
and how the eguations that are formed are solved. Section six
describes how the modeling system can be used to solve a surface-
water flow problem, and includes discussions of the following:
(1) Data collection, (2) finite element network design,
(3) calibration of a model, (4) validation of a model, and
(5) application of a model to evaluate the effects of natural or
manmade influences. Section seven describes the logical flow of
data through the modeling system, from the entry of input data to
the generation of output data. Section eight through eleven
describe in detail all the input data needed to run FESWMS-2DH.

The material in these sections will serve as a reference for

anyone who runs the modeling system. Section 12 describes in
detail all the output produced by the modeling systen, including
their meaning and use. Section 13 describes procedures for

organizing 1input data to be submitted for a computer run.
Section 14 is a tabulation of warning and error messages produced
by the modeling systemn. Suggested corrective actions are
described for each error or warning. Section 15 is a 1list of
references cited in the manual. The appendix contains worksheets
that simplify entry of input data. Only one copy of each input
data worksheet is included in the appendix. Copies of the
original worksheets can be made as needed to assist in entering

most of the input data required by FESWMS-2DH.



Section 2

OVERVIEW OF THE MODELING SYSTEM

FESWMS-2DH is a modular set of computer programs developed
to simulate surface-water flow where the flow is essentially
two-dimensional in a horizontal plane. The programs that
comprise the modeling system have been designed specifically to
analyze flow at bridge crossings where complicated hydraulic
conditions exist. However, the modeling system can be applied to
many other types of steady and unsteady surface-water flows.
Three separate, but interrelated, programs form the core of the
modeling system: (1) The Data Input Module (DINMOD), (2) the
Depth-Averaged Flow Module (FLOMOD) , and (3) the Analysis of

Output Module (ANOMOD) .

DINMOD acts as a data pre-processor in the modeling systemn.
The primary purpose of DINMOD is to generate a two-dimensional
finite element network (also called a finite element grid) that
is error free. Functions performed by DINMOD include editing of
input data, automatic generation of all or part of the finite
element network, refinement of an existing network, ordering of
elements to enable an efficient egquation solution, and graphic
display of the finite element network. Processed network data

can be stored in a data file for use by other FESWMS-2DH

programs.

FLOMOD applies the finite element method to solve the
governing system of equations using the defined network. FLOMOD
can simulate both steady and unsteady (time-dependent)
two-dimensional (in a horizontal plane) surface-water flow to
obtain depth-averaged velocities and flow depths. The effects of
bed friction and turbulent stresses are considered, as are,
optionally, surface wind stresses and the Coriolis force.

Pressure flow through bridges is considered if the water is in

2-1




contact with the bottom of the bridge deck which is defined by a

"ceiling" elevation at a node point. Flow over weirs, or
weir-type structures (such as highway embankments), and flow
through culverts can also be modeled. The computed two-

dimensional flow data can be written to a data file and stored

for future use.

Results of flow simulations are presented graphically and in
the form of reports by ANOMOD. Plots of velocity and unit-flow
vectors; ground-surface and water-surface elevation contours; and
time-history graphs of velocity, unit flow, or stage (water-
surface elevation) at a computation point can be produced. Thus,

ANOMOD acts as a post-processor in the modeling system.

Modeling System Identification

FESWMS-2DH is the result of an effort to provide a means of
simulating flow at highway crossings where natural processes and
manmade structures have created complicated hydraulic conditions
that are difficult to evaluate using conventional methods. The
first version of FESWMS-2DH was developed for the Federal Highway
Administration by the author while with the U.S. Geological
Survey, Water Resources Division. This enhanced version of the
modeling system extends its simulation capabilities and provides

improved data entry and graphic output features.

The computational modules of FESWMS-2DH are written in the
Fortran 77 programming language as defined by the American
National Standards Institute (1978). The controlling shell
program, graphic display programs, and all other auxiliary

. . 1
programs are written in Turbo Pascal .

1Turbo Pascal is a trademark of Borland International.



Physical System Highlights

In many surface-water flow problems of practical engineering
the three-dimensional nature of the flow is of secondary
particularly when the width-to-depth ratio of the
In such a case, the horizontal distribution

concern,
importance,
water body is large.
of flow quantities may be the main interest,
ns can be used to great economic advantage. In
and lack of suitable data, do

and two-dimensional

flow approximatio

fact, the present state-of-the-art,

not justify more complex three-dimensional solutions to most flow

problems. Shallow rivers, flood plains, estuaries, harbors, and

even coastal seas are examples of surface-water bodies where

flows may be essentially two dimensional in character.

Throughout this manual, flow is assumed to be strictly two

dimensional, except for the special cases of weir and culvert

flow. A two-dimensional flow description is obtained by integ-

rating the governing three-dimensional flow equations with

respect to the depth of flow. Velocity in the vertical direction

is assumed to be negligible, thus pressure in a column of water

is considered to be hydrostatic. Flow depth and the resulting

depth-averaged velocities are variable in a horizontal plane.

Modeling System Applications

FESWMS—-2DH calculates depth-averaged horizontal velocities

and water depth, and the time-derivatives of these quantities if

a time-dependent flow 1is modeled. The equations that govern
depth-averaged surface-water flow account for the effects of bed
friction, wind-induced stress at the water surface, fluid

stresses caused by turbulence, and the effect of the Earth’s
rotation. Because velocity in the vertical direction 1is not
modeled, evaluation of phenomena such as stratified flow is
beyond the scope of the modeling system. Also, because water
density is assumed constant, flows resulting from horizontal

density gradients cannot be evaluated.
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FESWMS-2DH can be used to simulate flow in water bodies that
have irregular topography and geometrical features, such as

islands and highway embankments. Flow over dams, weirs, and
highway embankments, and through bridges, culverts, and gated
openings, also can be modeled. Boundary stresses (bed friction

and surface stresses caused by wind) and stresses caused by

turbulence are determined using empirical relations.

Flow through bridges and culverts can be modeled as either
one-dimensional or two-dimensional flow. One-dimensional flow is
described by an empirical equation that determines the flow rate
through a bridge or culvert on the basis of the water-surface
elevations at the upstream and downstream sides of the structure.
When two-dimensional flow through a bridge is modeled, additional
flow resistance that results from contact between the bridge deck
and water surface is considered. Although it wusually is not
practical to model bridge piers directly, the effect of bridge
piers can be accounted for indirectly by increasing resistance

coefficients within a bridge opening.

Flow over highway embankments can be modeled as either
one-dimensional or two-dimensional flow. However, for reasons
that are described later, modeling flow over highway embankments

as one-dimensional flow using empirical weir-flow equations is

usually more accurate.

When water flows over a bridge deck and pressure flow exists
within the bridge opening (combined weir and pressure flow), flow
over the bridge needs to be modeled as one-dimensional weir flow.
However, flow through the bridge can be modeled as either one- or

two-dimensional flow.

The effect of changes to the system can be forecast by
modifying the input data that describe an existing physical
system. Thus, FESWMS-2DH can be used to study the consequences

of designed works and operations.
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Methodology

A fundamental requirement of any numerical model 1is a
satisfactory gquantitative description of the physical processes
that affect the system that is being modeled. The partial

' differential equations that govern two-dimensional surface-water

flow in a horizontal plane are derived from equations that govern
three-dimensional flow by considering fiuid velocity din the
vertical direction to be negligible. Hence, pressure within the

fluid is considered to be the same as in a hydrostatic condition.

The numerical technigque used to solve the governing
equations 1is based on the Galerkin finite element method.
Application of the finite element method requires the water body
being modeled to be divided into smaller regions called elements.
An element can be either triangular or gquadrangular in shape;
shapes that can easily be easily arranged to fit complex
poundaries. The elements are defined by a series of node points
located at the element vertices, mid-side points, and, in the
case of nine-node gquadrilateral elements, at their centers.
Values of dependent variables are approximated within each
element using the nodal values and a set of interpolation

functions (also called shape functions).

Approximations of the dependent variables are substituted
into the governing equations, which generally will not be
satisfied exactly, thus forming a residual. The residual is
weighted over the entire solution region. The weighted
residuals, which are defined by equations, are set to zero, and
the resulting equations are solved for the dependent variables.
In Galerkin’s method, the weighting functions are chosen to be
the same as those used to interpolate values of the dependent

variables within each element.

The Galerkin finite element method requires the governing

equations to be weighted over the entire solution domain. The
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weighting process requires integration, which 1is performed
numerically using Gaussian gquadrature on a single element.
Repetition of the integration for all elements that comprise a
solution region produces a system of nonlinear algebraic
equatlons when the time derivatives are discretized. Because the
system of equations is nonlinear, an iterative solution procedure
is needed. Newton iteration, or a variation thereof, is applied,
and the resulting system of equations 1is solved using an

efficient frontal solution scheme.

Input and Output Data

Input data can be classified broadly as one of the following
categories: (1) Program control data, (2) network data, or (3)

initial and boundary condition data.

Program control data govern the overall operation of a
program. These data include codes that define functions to be
performed by the modeling system, and constant values that are

used as coefficients in equations and apply to the entire finite

element network.

Network data describe the finite element network (grid) .
These data include element connectivity 1lists, element property
type codes, node point coordinates, and node point ground-surface
elevations. Also included as network data are sets of empirical

coefficients that apply to a particular element property type.

Initial condition data are starting values of the dependent
variables and their time derivatives at each node point in the
finite element network. Boundary condition data are values of
dependent variables that are prescribed at particular node points

along the boundary of the network.

output from the modeling system consists o©of processed

network data, computed flow data (depth-averaged velocities and
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water depth at each node point, and the derivatives of these
quantities with respect to time for unsteady flow simulations),

and plots of both network data and flow data.

Graphic Output

For the purpose of transportation and long-term storage of
graphical information, graphic output from FESWMS-2DH is written
in a specified format to a data file that is called a plotfile.
A plotfile can be read by a utility program that displays the
graphic output on a specific hardware device. Graphic output
stored in a plotfile can be processed afterward as often as

necessary, stored for future use, or transported from one place

to another.
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Section 3

BASIC CONCEPTS OF THE FINITE ELEMENT METHOD

The finite element method is a numerical procedure for
solving differential equations encountered in problems of physics
and engineering. originally devised to analyze structural
systems, the finite element method has developed into an
effective tool for evaluating a wide variety of problems in the
field of continuum mechanics. Development of the finite element
method has been encouraged primarily by the continued advancement
of high-speed digital computers, which provide a means of rapidly
performing the many calculations that are needed to obtain a

solution. only in recent years has the finite element method
been used to solve surface-water flow problems. Nevertheless, a
large amount of literature on the subject has already emerged.
Lee and Froehlich (1986) provide a detailed review of literature
on the finite element solution of the equations of two-

dimensional surface-water flow in a horizontal plane.

FESWMS-2DH uses the Galerkin finite element method to solve
the governing system of differential equations. The solution
begins by dividing the physical region of interest into a number
of subregions, which are called elements. An element can be
either triangular or gquadrangular in shape, and is defined by a
finite number of node points situated along its boundary or in
its interior. A list of nodes connected to each element is
easily recorded for identification and use. Values of a
dependent variable are approximated within each element using
values defined at the element’s node points, and a set of
interpolation (shape) functions. Mixed interpolation is used in
FESWMS-2DH; that is, quadratic interpolation functions are used
to interpolaté depth-averaged velocities and linear functions are

used to interpolate flow depth.



The method of weighted residuals is applied to the governing
differential equations next to form a set of equations for each
element. Approximations of the dependent variables are
substituted into the governing equations, which generally are not
satisfied exactly, to form residuals. The residuals are required
to vanish, in an average sense, when they are multiplied by a
weighting function and summed at every point in the solution
domain. In Galerkin’s method, the weighting functions are chosen
to be the same as the interpolation functions. By requiring the
summation of the weighted residuals to egual zero, the finite
element equations take on an integral form. Coefficients of the
equations are integrated numerically, and all the element (local)
equations are assembled to obtain the complete (global) system of

equations. The global set of algebraic equations 1s solved

simultaneously.

Method of Weighted Residuals

The method of weighted residuals is a technique for approx-
imating solutions to partial differential equations. Although the
technique provides a means of forming the element equations, it
is not directly related to the finite element method. Applying
the method of weighted residuals involves two basic steps. The
first step is to assume a general functional behavior of a depen-
dent variable so that the governing differential equation and
boundary condition equations can be satisfied approximately.
Substitution of the assumed value of the dependent variable into
the governing equations usually results in some error, called a
residual. The residual is required to vanish, in an average
sense, within the solution region. The second step of the method
is to solve the residual eqguation for the parameters of the

functional representation of the dependent variable.

To be more specific, let the differential equation for a

problem be written as



$fa-f=0, (3-1)

where ¢ is a differential operator, u is the dependent variable,

and f is a known function. The dependent variable is assumed to

be represented by G, which is defined in terms of some unknown

parameters, C, and a set of functions, N, as follows:
n
u=xau-= z N.C. . (3-2)

When u is substituted for u in equation 3-1, it is unlikely the

equation will be satisfied exactly. In fact, a trial solution is

defined as

g -f =€, (3-3)

where € is the residual (error) of the approximate solution. The
method of weighted residuals attempts to determine the m unknown
parameters, C, so that the error, &, is as small as possible
within the solution region. One way of minimizing € is to form a
weighted average of the error and to require the average to
vanish when integrated with respect to the entire solution

region. The weighted average is computed as

J W.c dR = 0; for 1 =1, 2,..., My (3-4)
R

where R 1is the solution domain, and W are the m linearly
independent weighting functions. After the weighting functions
have been specified, a set of m simultaneous equations remain to
be solved for the unknown parameters C. The second step in
applying the method of weighted residuals is to solve for C, thus

obtaining an approximate representation of the unknown dependent

variable u, using equation 3-2.




There are several weighted residual methods that can be
used. Each method is defined by the choice of weighting
functions. The method used most often in finite element analysis
is known as Galerkin’s method. Application of Galerkin’s method

requires that the weighting functions be the same as those used

to approximate u (that is, wi = Ni, for i =1, 2,...,m). Thus,
Galerkin’s method requires that
J N (£8 - £) 4R = 0; for i =1, 2,..., M. (3=5]
R

After the approximating functions N are specified, the equatiocns

can be evaluated explicitly, and the solution found in a routine

manner.

Elements and Interpolation Functions

The basic idea of the finite element method is to divide a
solution region into a finite number of subregions, called
elements. Within each element, it is assumed that the value of a
continuous quantity can be approximated by a set of piecewise
smooth functions using the values of that gquantity at a finite
number of points. The piecewise smooth functions are known as
interpolation or shape functions, and are analogous to the
functions N described in the previous section. The points at
which the continuous quantity is defined are called node points,
and the values of the guantity at the node points are analogous

to the undetermined parameters C described 1in the previous

section.

The approximation of a continuous quantity within an element

is written as

n

i®) = § ni® uie) (3-6)

!
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where Nge) are interpolation functions defined for an element,and

uie) are unknown values of u at the n node points in the element.

Equation 3-6 applies to a single point in the solution region, or

to any collection of points, such as those comprising an element.

When Galerkin’s method is applied, the left-hand side of equation

3-5 is computed as the sum of expressions of the form

J N__?Le) ga(® _ gy gr(®); for i =1, 2,..., 0, (377)
()

where R(e) is an element domain, and f(e) is a function defined

for an element.

A set of expressions like 3-7 is developed for each element

that comprises a system. The element (local) expressions are

assembled to form the complete set of system (global) equations.
In a finite element solution, the values of a quantity at the
node points are the unknowns. The behavior of the solution
within the entire assemblage of elements is described by the

element interpolation functions and the node point values, when

they have been determined.
Before element equations can be assembled, the particular

types of elements that will be used to model a region, and the

associated interpolation functions, need to be specified; that

is, the functions N need to be chosen. The interpolation
functions also need to satisfy certain criteria so that
convergence of the numerical solution to an exact solution of the
governing differential equations can be achieved. Interpolation
functions depend on the shape of an element and the order of
approximation that is desired. Because the fundamental premise
of the finite element method is that a region of arbitrary shape
can be modeled accurately by an assemblage of elements, most

finite element solutions use elements that are geometrically

simple. The most commonly used two-dimensional elements are
triangles and quadrilaterals. Although it is conceivable that
3=5



many types of functions could be used as interpolation functions,
almost all finite element solutions use polynomials because of

their relative simplicity.

If polynomial interpolation functions are wused, linear
variation of a quantity within an element can be determined by

the values provided at the corners (vertices) of a triangular or

guadrangular element. For quadratic variation of a quantity,
additional values need to be defined along the sides, and
possibly in the interior, of an element. FESWMS-2DH uses three
types of two-dimensional elements: (1) 6-node triangles, (2)

8-node "serendipity" quadrilaterals, and (3) 9-node "Lagrangian"
quadrilaterals. Both types of quadrilateral elements use
identical 1linear interpolation functions, but their quadratic
functions differ because of the presence of an additional node at
the center of the 9-node qguadrilateral element. The three types
of elements used in FESWMS-2DH are illustrated in figure 3-1.

It may be desirable to model some complex geometric features
using elements that have curved sides rather than straight sides.
The basic idea behind development of curved-side elements is
mapping (transformation) of a simple "parent" element, defined in
a natural coordinate system, to the desired curved shape, defined
in a global Cartesian coordinate system. Coordinate mappings for
triangular and gquadrangular elements are illustrated in figure
3-2. The transformation from straight to curved sides is
accomplished by expressing the global coordinates (x,y) in terms
of the natural coordinates (€£,7m) using interpolation functions in

just the same way that a solution variable is interpolated within

an element. Thus, the global coordinates are computed as
n
- ‘(e) _(e) -
X Z N, Xi (3-8a)
i=1



/ Node point

Figure 3-1. Examples of the three types of
two-dimensional elements used in FESWMS-2DH: (A) A 6-node
triangle; (B) an8-node "serendipity" quadrilateral; and (C) a
9-node "Lagrangian'quadrilateral.
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—_— b
1—AX

@ Corner ncde

—

e B e

O Midside node

nLE I
e—O—0

L.

Figure 3-2. Illustration of coordinate mapping of a triangular
and a quadrangular element.



and

n
y = ¥ n;® yle), (3-8b)

where Ni(e) = N (e)(g,n). Quadratic interpolation functions are

used in FESWMS-2DH to transform natural coordinates to global

coordinates.

The natural coordinates (£ and m) depend on the shape of an
element (that is, triangular or quadrangular) . The natural
coordinate system and interpolation functions for parent elements
of triangular and gquadrangular global elements are illustrated in
figures 3-3 to 3-5. Both linear and gquadratic interpolation
for each element shape because mixed

functions are given

interpolation is wused to solve the governing differential

equations (that is, linear functions are used to interpolate

depth, and quadratic functions are used to interpolate depth-

averaged velocities).

If a finite element equation contains derivatives of
dependent variables with respect to the global coordinates x and
y, then the derivatives of interpolation functions with respect

to x and y also need to be defined because, for example,

% - ax[z Ny (e)] o) axl u£e)‘ et

Because the interpolation functions are given in terms of natural
coordinates, it is necessary to transform the derivatives with
respect to natural coordinates to derivatives with respect to

global coordinates. By the general rules of partial

differentiation,



PARENT ELEMENT NATURAL COORDINATE INTERPOLATION FUNCTIONS

@ Corner node E =& ., n =1nn
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Corner nodes
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Midside nodes

Ni= 15&0710« 8(nO * &O)(1 - & - m)

Figure 3-3. Natural coordinate system and interpolation
functions for a triangular parent element.



PARENT ELEMENT NATURAL COORDINATE INTERPOLATION FUNCTIONS

@ Corner node Eo-Ef . mo=mm
O Midside node o} 1 o 1

Linear Interpolation
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1 (@) 1
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| o 1

Figure 3-4. Natural coordinate system and interpolation
functions for a "serendipity" quadrangular parent element.




PARENT ELEMENT NATURAL COORDINATE INTERPOLATION FUNCTIONS
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Figure 3-5. Natural coordinate system and interpolation
functions for a '"Lagrangian" guadrangular parent element.
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6N 6N, 6N
I 1 iam i}
l 8x G o&x T 5n ox (B=L0aY
and
6N, 6N, 6N
l r i 8g én N
sy ~ &€ oy ' am &y ' o Satd
I where the superscript (e) has been dropped for convenience.
However, & and 7 usually cannot be expressed explicitly in terms
l of "'x sandv. vy It is first necessary to consider Ny to be a
function of x and y. Writing the derivatives of N, with respect
l to € and m yields, in matrix form,
l oN Y 1 | &Ny
3E €  3¢E 5%
4 = 4 S (3-11)
8N, ax 8y 8N,
i = T i
om L . £y 5y
l where
l ) BEN D
8¢ 3¢
[ =
ox 8y
an an
l is known as the Jacobian matrix. Using equation 3-8, the
Jacobian matrix can be computed explicitly in terms of the
l natural coordinates as
I Sl ) N s,
Lo Z i
). 3 i g Yi
I ROl e S (3-12)
s, T 4N,
Y by
' an 1 an 1
L oi=1 i=1 .
I 3=13




/

where Ni is the function that defines the coordinate

transformation. The global derivatives are then computed as

4 \ 4
BNl BNi
8x -1 3¢
{ y = [J] : b (3-13)
6N 6N
— _*
oy an
\ \ J
O
ON. 6N, 6N,
n S -1 8y 1 _ 8y 1 _
= - 19l "GyaE ~FE ) (F=24a)
and
6N, 6N. oN
i_ 1,6x i _ax i _
oy - IJI a_g' 3M 3n BE ) (3-14b)
where
= 9% 9y _.0X By -
191 = 3¢ &7 ~ an o€ (3-15)
is the determinant of [J]. The operations indicated in equations

'3-13 and 3-14 depend on the existence of [J] everywhere in each
element. In addition, the coordinate mapping provided by

equation 3-8 is one-to-one only if |J| does not vanish within an

element.

The area of an element also needs to be expressed in terms

of the natural coordinates £ and n. It can be shown (Sokolnikoff

and Redheffer, 1966, p. 355) that
dx dy = |J| d€ dn . (3-16)

Using equation 3-16, a function can be integrated numerically
with respect to the area of a two-dimensional triangular or

quadrangular element that has straight or curved sides.
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Numerical Integration

Numerical integration is used to evaluate the integrals that
appear in the finite element equations. To integrate numerical-
ly, the function being integrated is evaluated at specific loca-
tions within an element, multiplied by a weighting factor, then

summed. The summation process for a two-dimensional element is

i f(El,"f?i) ’ (3-17%)

j[A £(g,m) d€ dn = Ag

e i

IR
>

ho~1 =
=

where A is the element area; f is the function being integrated;
k is the number of numerical integration points; Wi is a
weighting factor for the ith integration point; and £ and m are
natural coordinates of the ith integration point. The natural
coordinates, Ei and n;, are invariant with respect to the shape

of the element in the global coordinate system.

A numerical integration scheme needs to be of sufficient
accuracy to assure convergence of a finite element solution.
Strang and Fix (1973) suggest that convergence will occur if a
numerical integration scheme is accurate enough to compute exact-
ly the area of an element. 2An exact integration of element area
requires that a formula that provides at least third-order accur-
acy be used to integrate curve-sided quadratic elements. At
least 2 by 2 Gaussian integration is needed for parabolic gquadri-
laterals. Parabolic triangles require at least a 3-point formula
for third-order accuracy. However, it has been found that al-
though an exact integration of element area may guarantee conver-
gence as the size of an element approaches zero, an integration
formula that has greater accuracy may be needed to integrate
accurately some terms in an equation. For this reason, numerical
integration formulas that provide sixth-order accuracy are used.
The locations of numerical integration points and the associated

weighting factors are shown in figure 3-6.
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Section 4

GOVERNING EQUATIONS

The equations that govern the hydrodynamic behavior of an
incompressible fluid are based on the classical concepts of
conservation of mass and momentum. For many practical surface-
water flow applications, knowledge of the full three-dimensional
flow structure is not required, and it is sufficient to use
mean-flow guantities in two perpendicular horizontal directions.
Equations that describe depth-averaged two-dimensional flow are
presented in this section. Additional equations that are used to
model special cases of one-dimensional flow through bridges and
culverts and one-dimensional flow over weirs and highway embank-
ments are described. 1Initial and boundary conditions needed to

solve the set of governing equations are also discussed.

Depth-Averaged Flow Equations

The depth-averaged velocity components in the horizontal x

and y coordinate directions, respectively, are defined as

1 S
U = —E—J u dz : (4-1a)
2y
and
VA
1 S
= —H—J’ v dz , (4-1Db)
2y

where H is the water depth; z is the vertical direction; Zy is
the bed elevation; zo = 2y + H is the water-surface elevation; u
is the horizontal velocity in the x direction at a point along
the vertical coordinate; and v is the horizontal velocity in the

y direction at a point along the vertical coordinate. The coord-




inate system and variables used are illustrated in figure 4-1.
Depth-averaged velocity is illustrated in figure 4-2. The depth-
averaged surface-water flow equations are derived by integrating
the three-dimensional mass and momentum balance equations with
respect to the vertical coordinate from the bed to the water
surface, assuming that vertical velocities and accelerations are

negligible (see Jansen and others, 1979, p. 41 for a thorough

derivation). The vertically-integrated momentum equations are
3 3 RO 3 ozy,
=g (HU) + =-(B, HUU + 3gH%) + gy(BuVHUV) + gHgz; - QHV
& l[rb - S - S (we ) - L (ue )] =0 (4-2)
pl = % 6% XX 8y Xy

for flow in the x direction, and

82

8 8 3 1.2 b
¢ (HV) + 7z (B,fIVU) + 5§(3VVHVV + FgH") * gHgy + QHU
+ l[tb e 2—(Ht ) = 2—(Ht )] =0 (4-3)
PLY Y oX yX 8y YY

for flow in the in the y direction, where Buu’ Buv’ Bvu’ and va

are momentum correction coefficients that account for the
variation of velocity in the vertical direction; g is

gravitational acceleration; Q is the Coriolis parameter; p is the

density of water, which is considered to be constant; t: and t;

are bed shear stresses acting in the x and y directions,

. S s . i
respectively; Ty and ty are surface shear stresses acting 1in the

—-— txy’ tyx’ and tyy are

shear stresses caused by turbulence where, for example, txy is

the shear stress acting in the x direction on a plane that is

¥ and y directions, respectively; and T

perpendicular to the y direction. The vertically-integrated mass

balance equation (that is, the continuity equation) is

Q)

Q>
2

(HU) + Z—Y<HV) - q, (4-4)

Q| @
<]

where g is a unit source (inflow) or a unit sink (outflow) term.



Figure 4-1. Illustration of the coordinate system and variables
used to derive the depth-averaged surface-water flow equations.
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Momentum Correction Coefficients

The momentum correction coefficients Buu’ Buv’ Bvu' and va
result from the vertical integration of the momentum balance
equations and account for vertical variations of u and v. The
momentum correction coefficients are used to multiply the
advective momentum flux terms in equations 4-2 and 4-3, and are

computed as

Z

1 s
Buu = 000 J uu dz , (4-5a)
z
b
z
1 S
Buy = Byy = T I uv dz , (4-5b)
z
b
and
z
1 s
va = vV J vv dz . (4-5c)
Zp

The momentum correction coefficients depend on the vertical
velocity distribution, and often are assumed to equal unity (that
is, a uniform vertical velocity distribution is assumed). If the

velocity in the vertical direction can be computed as

S O R 4-6

u = —~log|——| . (4-6)

where U, = Vc U is bed shear velocity; Ce is a dimensionless bed
shear-stress coefficient (to be discussed later); « 1is von

Karman’s constant; and k is a constant that has a dimension of
length; then the resulting momentum correction coefficients are

all equal and are computed as

v £ <
B =1+ — . (4-7)



The momentum correction coefficient in FLOMOD is computed

using the expression

B = Bo + chf : (4-8)
Equations 4-7 and 4-8 are equivalent when Bo = 1.0 and CB = 1/&2.
The coefficient k has been found to equal approximately 0.4, from
which CB equals 6.25. A constant momentum correction coefficient
can be specified by setting BO equal to the desired value, and
setting CB equal to zero. The default values in FLOMOD for'BO
and c are 1.0 and 0.0, respectively. Acceptance of these

B

default values means that vertical variations in velocity are

considered to be negligible.
Coriolis Parameter

The Coriolis parameter, Q, is equal to 2w sin ¢, where w is
the angular velocity of the rotating Earth (7.27 x 107° radians
per second), and ¢ 1is the mean angle of latitude of the area
being modeled. The terms in the momentum equations that contain
Q account for the effect of the Earth’s rotation on water
movement. The sign of ¢ is positive in the northern hemisphere
and negative in the southern hemisphere. A constant value of the
Coriolis parameter is used in FLOMOD (that is, the variation of Q

within the area covered by a finite element network is considered

to be negligible). For most shallow flows where the width to
depth ratio is large (for example, flows in rivers and flood
plains), the Coriolis effect will be small and can be safely
ignored.
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Bed Shear Stresses

The directional components of the bed shear stress are

computed as

b _ / .2 2 »
T, = pPCeM uw U + Vv (4-9a)

b

and

b _ / ;.2 2 i
‘L'y = pcfmbU U+ Vv ' (4-9Db)

where Ce is a dimensionless bed-friction coefficient, and

8z, 2 82,12
i b b i
My = /1 + (&) * lor) Gl

is a coefficient that accounts for increased shear stress caused

by a sloping bed.

The bed friction coefficient Cp can be computed either as

- g
c. = = (4-11)
f C2
or
gn2
cp = p (4-12)
£ gut/3

where C is the Chézy discharge coefficient; n is the Manning
roughness coefficient; and ¢ is a factor that equals 2.208 when

U.S. Customary units are used, or 1.0 when S.I. units are used.

FLOMOD allows Manning roughness coefficients to be varied as
a function of flow depth. Vertical variation of roughness

coefficients can be used to model flow through areas where the
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surface roughness either increases or decreases with the depth of
flow, depending on the ground cover and the type and density of
vegetation. FLOMOD does not allow Chézy coefficients to be

specified as a function of flow depth.

Values of Chézy discharge coefficients and Manning roﬁghness
coefficients for natural and man-made channels, as well as flood
plains, can be estimated using references such as Chow (1959),
Barnes (1967), and Arcement and Schneider (1984). However,
coefficients in these references have been determined on the
basis of assumed one-dimensional flow, and implicitly account for
the effects of turbulence and deviation from a uniform velocity
in a cross section. Because the depth-averaged flow equations
directly account for horizontal variations of velocity and the
effect of turbulence, values of c. computed using coefficients
based on a one-dimensional flow assumption may be slightly
greater than necessary. Little information is available to help
select <coefficients for two-dimensional depth-averaged flow
computations. For the time being, it is suggested that Chézy or

Manning coefficients be estimated on the basis of available

references and experience.

Surface Shear Stresses

The directional components of surface shear stress caused by

wind are computed as
S
T. = c p_W (4-13a)
and
° = ¢ W2 sin Y (4-13Db)
Y sPa

where Cg is a dimensionless surface stress coefficient; P4 is the

density of air; W 1is a characteristic wind velocity near the



water surface; and ¥ is the angle between the wind direction and

the positive x-axis.

The surface stress coefficient has been found to be a

function of wind speed, and is computed as

c . x 1073 if W= W_,
sl min
< By (4-14)
[csl + Ccg, (W = Wmin)} X 1076gG 0L W= WL

For wind speed in meters per second, measured 10 meters above the

water surface, Garratt (1977) reports that Cgq = 1.0 Cqs = .067,
and wmin =4 m/s. Wang and Connor (1975) compare several
relations for Cq and conclude that Cgq = 1.1, Con = 0.0536, and
wmin =0 m/s. Hicks (1972) reports that Gy = 1.0, Cop = 01,055
and W_._= 5.0 m/s.

min

Factors other than wind velocity can influence the value of
the surface stress coefficient Cg- For example, Hicks and others
(1974) show that as water becomes shallow (less than 2.5 m deep)
long period waves are not able to develop fully. As a result,
the water surface will be smoother and the value of Cq remains

close to 1.0 X 10—3 for all wind speeds.

Equation 4-15 is wused in FLOMOD to compute the surface

stress coefficient. The coefficients Coq and Coor and the
minimum wind velocity Woinr can be specified. Default values of
Cqq and c,, are 1.0 and 0.0, respectively. The default value of
wmin is 0.0 m/s.

Stresses Caused by Turbulence

The depth-averaged stresses caused by turbulence are
computed using Boussinesq’s eddy viscosity concept whereby the
turbulent stresses, like viscous stresses, are assumed to be

proportional to gradients of the depth-averaged velocities. The



turbulent stresses are computed as follows:

5 = [29 + QH} (4-15a)
XX XX | 0X 8%
= ple wfi6 Y -
txy = tyx = pny[ay + ax] ; (4-15b)

~ av av
yy = P yy{ay ay] ’ ( :
where Vrsg t ny’ Vyx’ and v are directional values of the depth-
averaged kinematic eddy viscosity or turbulent exchange

coefficient. In FLOMOD, the depth-averaged Xinematic eddy
viscosity is considered to be isotropic (that is,
v =V = v =y ), and is denoted by V.

674 Xy yX vy

Eddy viscosity is related to eddy diffusivity for heat or

mass transfer, I', as

i _
=2, (4-16)

where o is an empirical constant called the Prandtl number (for
diffusion of heat) or Schmidt number (for diffusion of mass).
Many experiments on spreading of dye in open channels (Fischer
and others, 1979) have shown that values of dimensionless
diffusivity, e, = f/U*H, usually are between 0.1 and 0.2 in
straight uniform open channels, and that channel curves and
sidewall irregularities increase e,. vValues of e, in natural
streams hardly ever are less than 0.4. The turbulent
Prandtl/Schmidt number has been found in heat and mass transfer
experiments to vary from 0.5, in free shear flows, to 0.9, in
flow regions near walls (Rodi, 1982, p. 587). Assuming that the
turbulent exchange of mass and momentum are similar (that is,
o, = 1.0), eddy viscosity in natural open channels can be related

t
to the bed shear velocity and depth by

v = (0.6 + 0.3) UH , (4-17)



where larger values are likely to occur if a channel has sharp

curves or rapid changes in geometry.
Eddy viscosity is computed using the formula

v o= EO + c“U*H , (4-18)

where 50 is a base kinematic eddy viscosity, and ¢, is a
dimensionless coefficient. Comparing equations 4-17 and 4-18, an

approximate value for c in natural channels is 0.6. A constant

eddy viscosity is assigned by specifying eh 0.0 and 50 > 0.

Weir Flow and Roadway Overtopping

The depth-averaged flow equations were derived by assuming
that velocity in the vertical direction is negligible. However,
flow over weirs, or weir-like structures such as roadway embank-
ments, can have a significant velocity component in the vertical
direction and cannot always be simulated accurately using the
depth-averaged flow equations. Flow over weirs (roadway embank-
ments) is modeled more accurately using an empirical equation to

calculate discharge over a horizontal weir.

One-dimensional flow over a weir or roadway embankment is
modeled by dividing the weir or roadway into sections that are
called weir segments. Each weir segment is described by either
one or two boundary nodes, a discharge coefficient, and the
length and crest elevation of the segment. Two boundary nodes
are needed, one on each side of the segment, if the areas on both
the upstream and downstream sides of a weir segment are included
in the finite element network. Water that flows over a weir

segment defined by two nodes is considered to leave the network

at the upstream node (the .node with the highest water surface)

and to enter the network at the downstream node. If the area on
only one side of a weir segment 1is included in a network, only

one boundary node is needed for each welr segment. Water flowing
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over a weir segment defined by only one node is considered to

leave the network at the node and not return to the network.

Flow over a weir segment, Qw’ is computed as

) h _ 3/2 _
Qw = Kw(ze zc) . (4-19)
where K is a weir coefficient; zg is the elevation of the energy
head at the upstream node; and z is the crest elevation of the

weir segment. The weir coefficient, Kw, is computed as

K = csubchw@ , (4-20)
where C_ . is a coefficient that adjusts K, for submergence of a
weir segment by tailwater; s is a dimensionless discharge
coefficient for free (that is, not submerged) weir flow (usually
about 0.53); and L, is the length of the weir segment. The
submergence coefficient, Coub’ is determined automatically using
a relation taken from Bradley (1978) which is presented in table
4-1. If only one boundary node is used to define a weir segment,

free flow is assumed (that is, Coub is set equal to 1.0).

Bridge and Culvert Flow

Flow through bridges and culverts can be modeled as either
one-dimensional or two-dimensional flow. If the width of a
bridge or culvert is small in relation to the width of the
channel or flood plain on which it is 1located, it is probably
best to model the flow as one-dimensional flow. If the width of
a bridge or culvert is large in relation to the width of the

channel of flood plain, two-dimensional flow probably needs to be

modeled.



Table 4-1. Submergence factor, Csub' for

weir flow over a roadway embankment for
various ratios of submergence.

Submergegce Submergence
ratio factor, CSub
less than or
equal to 0.75 1.000
0.80 0.995
0.84 0.987
0.86 0.975
0.88 0.960
0.90 0.930
0.92 0.885
0.94 0.885
0.96 0.710
0.98 0.575
0.99 0.450
1.00 0.000
*Submergence ratio = (zt - 2 )/(zh -z )i
s c e c

where zz is the water-surface elevation at
the downstream side of the roadway; zg is
the roadway crest elevation; and ZZ is the

energy head elevation at the upstream side
of the roadway.

One-Dimensional Bridge/Culvert Flow

One-dimensional flow through a small bridge or a culvert is
calculated using an equation developed for flow through culverts.
Each bridge/culvert is described by either one or two boundary
nodes, a discharge coefficient, and the physical characteristics
of the bridge or culvert. If the areas at both ends of a
bridge/culvert are included in a finite element network, two
boundary nodes are needed. Water flowing through a one-
dimensional bridge or culvert is considered to leave the network
at the upstream node (the node with the highest water surface)
and to enter the network at the downstream node. If the area on
only one end of a bridge/culvert is included in a network, only

one boundary node is needed for the culvert. Water flowing

>
I

13




through the culvert is considered to leave the network at the

node and not return to the network.

Flow through a culvert is calculated as either type 4 flow
or type 5 flow as described by Bodhaine (1968). For type 4 flow
(fully submerged), a culvert is submerged by both headwater and
tailwater. For type 5 flow (inlet control), the top edge of a
culvert entrance contracts the flow in a manner similar to a
sluice gate, and the culvert barrel flows partly full, at a depth

less than critical depth, and culvert flow rate is computed as

h t
Kc zg ~ 2g i Type 4 flow

K V/zh = Zx
C S 1

" Type 5 flow

where K_ is a coefficient that depends on the type of flow in the
culvert; zg is the water-surface elevation at the upstream end of
a culvert (that is, the headwater elevation); zz is the water-
surface elevation at the downstream end of the culvert (that is,
tailwater elevation); and z, is the invert elevation at the

inv
culvert entrance. For type 4 flow, the culvert coefficient is

computed as

29

K., =CA 29 C2n2L (4-22)
C cc 1+ c e c
R4/3
c

where C_ is a dimensionless discharge coefficient; B is the
cross section area of the culvert; n, is the Manning roughness
coefficient of the culvert barrel; Lc is the 1length of the
culvert barrel; and R is the hydraulic radius of the culvert

barrel flowing full. For type 5 flow, the culvert coefficient is

computed as

K, = C,A_V29 (4-23)



Type 4 flow discharge coefficients
The discharge coefficients, Cc’ for type 4 flow conditions
that are described in the following subsections are taken from

Bodhaine (1968).

Flush setting in vertical headwall.—Discharge coefficients
for box or pipe culverts placed flush in a vertical headwall are

presented in table 4-2. The coefficients in table 4-2 apply to

square-end pipe or box culverts, corrugated-metal culverts,
concrete-pipe culverts that have beveled or bell-mouthed ends,
and box culverts that have rounded or beveled sides. The
discharge coefficient for pipe culverts with flared ends is 0.90

for all culvert diameters.

Table 4-2. Type 4 flow discharge coefficient,
Cor for box or pipe culverts placed flush in

a vertical headwall for various ratios of
entrance rounding or beveling.

Entrance rounding Discharge
or beveling ratio® coefficient,
r/b, w/b, r/D, or w/D CC
0.00 0.84
0.02 0.88
0.04 0.91
0.06 0.94
0.08 0.96
0.10 0597
0.12 0.98
®r = radius of entrance rounding;
b = width of box culvert;
w = length of a chamfer;
D = minimum inside diameter of pipe culvert.
Wingwall Entrance.—The addition of wingwalls to the

entrance of a pipe culvert placed flush in a vertical headwall
does not affect discharge, so coefficients given in table 4-2
also apply to pipe culverts that have wingwalls. Discharge
coefficients for box culverts that have wingwalls are given in
table 4-3. If a box culvert has a wingwall angle equal to 90

4=15



degrees, and a rounded or beveled entrance, the discharge
coefficient needs to be adjusted. Adjustment coefficients kr and
k that account for rounded and beveled entrance edges,

respectively, are given in tables 4-4 and 4-5, respectively.

Table 4-3. Type 4 flow discharge coefficient, CC, for box

culverts that have wingwalls and a square, rounded, or
beveled entrance.

Wingwall Discharge coefficient for entrance that is
angle

in degrees Square Rounded or beveled

30 to 75 0.87 Value from table 4-1 but

no less than 0.87

90 0.75 0.75 k_ or 0.75 k
I W

Table 4-4. Discharge coefficient
adjustment factor, kr , that accounts for

entrance rounding of pipe or box culverts
placed flush in a vertical headwall.

Entrance Discharge
rounding coefficient
ratio adjustment
rfb or x/B” factor, k_
0.00 1.000
0.02 1.042
0.04 1.082
0.06 1.120
0.08 1.155
0.10 1.180
0.12 1.195
greater than
or equal to 0.14 1.200

I

radius of entrance rounding;
width of box culvert;
= minimum inside diameter of pipe culvert.

oo H
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Table 4-5. Discharge coefficient adjustment factor, kw’

that accounts for entrance beveling of pipe or box culverts
placed flush in a vertical headwall.

Entrance Discharge coefficient adjustment factor kw
beveling for a bevel angle, in degrees, of
ratio
w/b or w/D? 30 45 60
0.00 1.000 1.000 1.000
0 )s 1.014 1.033 1...045
.02 1.027 1.063 1.088
.03 1.039 1.087 1.128
.04 1.500 1.107 1.162
.05 1.060 1.123 1.194
.06 1.068 1035 1.220
.08 1.080 1.150 1.260
.10 1.088 1.150 1.280
°r = radius of entrance rounding;
w = length of a chamfer;
D = minimum inside diameter of pipe culvert.
Projecting Entrance.—The discharge coefficient for

corrugated-metal pipe and pipe-arch culverts that extend past a
headwall or embankment is computed by multiplying the appropriate
coefficient from table 4-2 by the adjustment factor kL given in
table 4-6. The discharge coefficient for concrete-pipe culverts
that have a beveled entrance and that have a projecting entrance

are the same as those given in table 4-2.

Mitered pipe set flush with sloping embankment.—The

discharge coefficient for pipes mitered and placed flush with a
sloping embankment is 0.74. For corrugated-metal pipe culverts
and pipe-arch culverts that project beyond an embankment, the
base coefficient 0.74 is multiplied by the adjustment factor kL

given in table 4-6.

Type 5 flow discharge coefficients

The discharge coefficients, Cc’ for type 5 culvert flow
conditions described in the following subsections also are taken

from Bodhaine (1968).




Table 4-6. Discharge coefficient adjustment
factor, kL’ for pipe and pipe-arch culverts that

extend beyond a headwall or embankment.

Value of Adjustment Value of Adjustment
Lp/D factor, kL Lp/D factor, kL
0.00 1.00 0.00 1.00

.01 s 89 .1 .92
<102 .98 -2 .92
.03 .98 o .92
.04 «97 .4 <191
.05 +96 .5 .91
.06 .95 .6 .91
+107 .94 .7 <1911
.08 .94 .8 « 20
.09 .93 .9 .90
.10 .92 1.0 .90

aLp = distance a culvert barrel projects beyond a
headwall or embankment; and

D = the inside diameter of a pipe culvert or

the maximum inside height of a pipe-arch
culvert.

Flush setting in vertical headwall.—The discharge coeffi-

cient for box or pipe culverts placed flush in a vertical head-

wall is given 1in table 4-7. The coefficients in table 4-7 apply
to square-end pipe and box culverts, corrugated-metal pipe and
pipe-arch culverts, concrete pipe culverts that have a beveled
entrance, and box culverts that have rounded or beveled sides.

Type 5 flow usually will not occur in a pipe culvert that has

flared ends.

Wingwall entrance.—For pipes placed flush in a vertical

headway, the addition of wingwalls does not affect the discharge
coefficient given in table 4-7. The discharge coefficient ]Jfor
box culverts that have wingwalls and a square entrance is given
in table 4-8. If the entrance is rounded or beveled, the value
of g or % for the entrance is used to select a discharge coeffi-
cient from table 4-4. However, the discharge coefficient

obtained from table 4-8 is used as a lower limit.



Table 4-7. Type 5 flow discharge coefficient, Cor for box or

pipe culverts placed flush in a vertical headwall for various
ratios of entrance submergence and entrance rounding or

beveling.
Entrance |Discharge coefficient CC for an entrance rounding
submergence or beveling ratio r/b, w/b, r/D, or w/D of
ratio®
0.00 0.02 0.04 0.06 0.08 0.10 0.14
1.4 0.44 0.46 0.49 0.50 0.50 0.51 0.51
1.5 .46 .49 + 52 «53 53 .54 .54
1.6 .47 .51 .54 D5 s55 .56 <56
157 .48 52 . 55 .57 L5 D7 +57
1.8 «49 54 .57 .58 .58 < 58 .58
1.9 .50 w55 58 « 98 «60 .60 .60
2.0 :51 .56 .59 -~ 60 61, <61 52
2+5 .54 .29 .62 .64 .64 .65 .66
3.0 <55 .61 .64 .66 « 67 .69 .70
3.5 « 577 .62 .65 .67 .69 .70 .o 71
4.0 .58 63 .66 .68 .70 .71 « 712
5.0 .59 .64 .67 .69 A7 .72 « 7.3
®Entrance submergence ratio = (22 = zinv)/D’ where z is the

water surface elevation at the culvert entrance; Z4nv is the

invert elevation at the culvert entrance; and D is the inside
height of a box culvert or the inside diameter of a pipe
culvert.

Projecting entrance.—The discharge coefficient for pipe or

pipe-arch culverts that extend past a headwall or embankment is
computed by multiplying the coefficient obtained from table 4-7
by the adjustment factor, k , giVen in table 4-6. The discharge
coefficient for projecting concrete pipe culverts is obtained

from table 4-7 but is not adjusted for a projecting entrance.

Mitered pipe placed flush in an embankment.—The discharge

coefficient for mitered pipe culverts placed flush in a sloping
embankment is computed by multiplying the coefficient obtained
from table 4-7 by 0.92. If the mitered pipe is thin-walled (for
example, a corrugated metal culvert) and projects beyond the

embankment, the discharge coefficient also is multiplied by the

adjustment factor k. given in table 4-6.



Table 4-8. Type 5 flow discharge coefficient, Qo for box

culverts that have wingwalls for various ratios of entrance
submergence and various wingwall angles.

Entrance Discharge coefficient G for a wingwall
submergence angle in degrees of
ratio® :
30 45 60 75 90
1.3 0.44 0.44 0.43 0.42 0.39
1.4 .46 .46 .45 .43 .41
1.5 .47 .47 .46 .45 .42
1.6 .49 .49 .48 .46 .43
1.7 .50 .50 .48 .47 .44
1.8 . 5d a5l «50 .48 «45
1.9 .52 .52 et .49 .46
2.0 .53 .53 .52 .49 .46
2.5 .56 .56 .54 «52 .49
340 .58 « 58 «56 .54 .50
3.5 .60 .60 «58 « 55 .52
4.0 .61 .61 .59 » 56 +53
5.0 .62 .62 .60 «58 .54
®Entrance submergence ratio = (22 - zinv)/D’ where 22 is the

water surface elevation at the culvert entrance; B s is

the invert elevation at the culvert entrance; and D is the
inside height of the culvert.

Two-Dimensional Bridge/Culvert Flow

Two-dimensional flow through a bridge or culvert is modeled
exactly as ordinary free-surface flow when the water surface is
not in contact with the top of the bridge or culvert opening
(unconfined flow). When the water surface is in contact with the
top of the opening (hereafter referred to as the !'"ceiling")
confined, or pressure, flow conditions exist. The depth-averaged
flow equations are modified at node points where pressure flow
occurs, and pressure head rather than depth is computed.
Although it wusually 1is not practical to include them in a
network, the effect of piers and piles on flow can be taken into

account by increasing bed friction coefficients within a bridge

opening.



Depth-averaged pressure flow through a bridge or culvert is

modeled by specifying a "ceiling" elevation at node points within
the opening. When the water surface is in contact with the
ceiling, pressure flow exists and the governing depth-averaged

flow equations are modified. The momentum equations become
0z 8z
au 3 1 ..2 8 b _ _ (o}

1(_b c 3 3 s _
- QHV + E[tx + T = 5§(Htxx) 5§(Htxy)] =0 (4-24)

in the x direction, and

av 8 3 e oz
2L + Zo(BHVU) + 55 (BHVV + gHP - 5gH ) + gPgs> - 9(P - H) 55
1{_ b G 3 a
+ QHU + =|z° + € - L (Ht = 2 (HE =0 4-25
p[ y y T % y) T oy yy)] ( )

in the y direction, and the continuity equation becomes
8 _(nu)y + Luv) = (4-26)
8% 3y q .

where P 1s pressure head; zc_is.the ceiling elevation; ti and
tCare directional components of shear stress at the ceiling; and
H=12_- 2y- The dependent variables in the confined flow case
are U, V, and P. The effect of increased frictional resistance
created by contact between water and the ceiling is described by
the surface shear stress term. The directional components of

ceiling shear stress are computed as
0 = pcom 0 U PO (4-27)

and

c _ ST 2y .
pcfmcv U~ + Vv (4-28)
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where

v// azc 2 azc a2 -

is a factor that accounts for increased resistance caused by a
sloping ceiling, and C. is considered to be the same dimension-
less friction coefficient used to model the bed shear stress.

When pressure flow occurs, surface stresses caused by wind are

not considered.

Initial and Boundary Conditions

Initial conditions and boundary conditions need to be
specified to solve the system of depth-averaged flow equations.
From the mathematical point of view, the initial conditions and
the number and kind of boundary conditions that are specified
need to make the problem well-posed (that is, stable). A well-
posed problem is one in which increasingly smaller changes to
boundary conditions produce increasingly smaller changes in the
solution at points not located on the boundary. When an
incorrect number of boundary conditions or boundary conditions of
the wrong type are prescribed, small changes to the boundary
conditions may result in large changes in the solution on the
interior of the modeled region. A system of equations that

exhibits this kind of unstable behavior is said to be ill-posed.
Initial Conditions

To obtain a solution, both the water depth and the depth-
averaged x and y velocity components need to be specified as
initial conditions of the problem throughout the entire solution
region. When initial conditions are unknown, a cold-start
procedure 1is used. During a cold-start procedure, the same
water-surface elevation is assigned to every node point in a

finite element network, and velocities are set to zero every-



where. When results from a previous run are available, they can

pe used as initial conditions for a subsequent run. The use of
results from a previous run as initial conditions is referred to

as a hot start.

Boundary Conditions

Boundary conditions are specified around the entire boundary
of a network for the duration of a simulation. Boundary
condition specifications consist of either the normal mass flux
(normal flow) or the normal force (normal stress), in addition to
either the tangential mass flux (tangential flow) or the

tangential force (shear stress) at all points on the boundary of

a network.

The required boundary information depends on the type of
boundary and the flow condition. Physically, there are two types
of boundaries that are encountered in surface-water flow

problems: (1) A solid, or no-flux, boundary; and (2) an open

boundary.

Solid boundary
A solid boundary defines a geometric feature such as a

natural shoreline, a highway embankment, a jetty, or a seawall.

The flow across a solid boundary generally equals zero. In
addition, either the tangential velocity or tangential stress
needs to be specified on a solid boundary. Three types of
conditions can be prescribed on a solid boundary: (1) a "slip"
condition, (2) a "no-slip" condition, and (3) a "semi-slip"
condition.

Slip condition.—A slip condition allows flow in a direction

that is tangent to the boundary at a node point and imposes zero
tangential shear stress at the boundary. The tangential
direction at a boundary node is determined by requiring that the

net flow across the solid boundary resulting from velocities at




the node be zero. Slip conditions are usually applied when the
solid boundary represents an imaginary vertical wall where flow

depths are shallow and lateral shear stresses are negligible.

No-slip condition.—A no-slip condition is prescribed at a
solid boundary node by setting the velocities equal to zero;

hence the requirement of zero net flow across the boundary is

automatically satisfied. No-slip conditions are usually applied
when velocities along a boundary are kKnown to be very small and a
network of closely-spaced node points is constructed to resolve

any large velocity gradients that may exist near the boundary.

Semi-slip condition.—A semi-slip condition is imposed on a

solid boundary by allowing flow in a direction that is tangent to
the boundary just as for a slip condition, and by prescribing a
non-zero tangential shear stress caused by friction generated by
flow against a vertical wall. Vertical wall friction T, is

computed as

where cCg is the same dimensionless friction coefficient used to
calculate bed shear stresses within an element, and Ut is the
velocity tangent to the wall (that is, at the boundary node where
a vertical wall is assumed to exist). Semi-slip conditions are
usually applied when the solid boundary represents an actual
physical boundary such as a wall that is vertical or nearly

vertical. Increased frictional resistance caused by the wall

will then be considered.

Open boundary
An open boundary, which is exactly what the name implies,

defines an area where flow is allowed to enter (an inflow
boundary) or leave (an outflow boundary) a finite element
network. The values that need to be specified at an open
boundary depend on the type of boundary (inflow or outflow) and

the type of flow (subcritical or supercritical) .
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Inflow boundary.—If the flow at an inflow boundary node is

subcritical, either (1) unit flow normal to the boundary and unit
flow tangential to the boundary, or (2) water-surface elevation

and tangential shear stress need to be prescribed.

If the flow at an inflow boundary node is supercritical,
unit flow normal to the boundary, unit flow tangential to the

boundary, and water-surface elevation need to be prescribed at

the node.

Tangential shear stresses acting on an open boundary are
automatically set to zero if unit flow tangent to the boundary is
not specified. Velocity rather than unit flow can be specified
at an open boundary node. However, the ability to prescribe

velocity directly at a node point seems to offér ~no practical

advantages.

Usually unit flow in both the x and y directions will be
specified at inflow boundary nodes, and water-surface elevation
(from which depth 1is determined by subtracting the ground
elevation) is specified at outflow boundary nodes of a
channel/flood plain model. Total flow at a cross section
composed of nodes lying on the network boundary can also be
specified. Assigning open boundary inflows using this feature of
FLOMOD greatly simplifies the specification of unit flows at
upstream boundaries of channel/flood plain models (outflows can
be specified as well). Water-surface elevations along a cross
section composed of boundary nodes can also be specified. Water-
surface elevations may be constant across the section, or slope

from one side of the cross section to the other.

outflow boundary.—If flow at an outflow boundary node 1is

subcritical, water-surface elevation and tangential shear stress
need to be prescribed. Tangential shear stresses are set to zero

automatically, so only water-surface elevation needs to bDe

specified.




If flow at an outflow boundary node is supercritical, only
tangential shear stresses are prescribed, and this 1is done
automatically. However, the fact that a node is a supercritical

outflow boundary node still needs to be specified.



Section 5

FINITE ELEMENT EQUATIONS

The method of weighted residuals using Galerkin weighting is
applied to the governing depth-averaged flow equations to form
the finite element equations. Because the system of equations is
nonlinear, Newton’s iterative method is used to solve them (see,
for example, Zienkiewicz, 1977, p. 452). At each iteration of
the solution, the finite element equations express a residual;
hence, these equations are referred to as residual expressions.
In addition, a matrix of derivatives with respect to each
dependent variable for each residual expression 1is required.
This matrix is called the Jacobian matrix and each of its members
is defined by a derivative expression. The finite element
formulations of the residual and derivative expressions at the
ith node point are presented in the following sections.
Application of boundary and other "special" conditions also is

described.

Residual Expressions

Finite element expressions for the residuals of the depth-
averaged momentum equations weighted with respect to a function

defined at node 1 are written as follows:

8z

_ 8U 6H f5 - i Bk B
£, = ; JA {Ni[HE + UZg + gHzp - QHV + (T ”CX):I
e
8N N .
i A ~ 8U i ~ 83U , 8V
+ - ol A s — PRIt —
=5 [ BHUU - 5gH” + 2VH6X] £ [ BHUV + VH (5o + ax)]} da_

s )
4 ; Js Ni[(BHUU + ZgH) L, + BHUVEY:I s,

e



~_ 6U ~ .80 av
; IS Ni[ZVHégéx + VH(zg a—i)ey] ds, (5-1)

e

for flow in the the x-direction, and

8z
_ 8V éH b 1, b _ _s
e
8N, 6N .
1 ~.,00 ev 1 1 ..2 ~ .6V
% ZJ' N, [pHUve + (BHVV + igu®)e | as
& Jg 1 X 2 Y e
e
-y J N. [EH(?—U + Voo v 258 ] ds (5-2)
& Jg 1 oy oX’® X oYy e
e
for flow in the the y-direction, where Z indicates a summation
e

with respect to all elements, A indicates an element surface, S,
indicates an element boundary, and £X and Ey are the direction
cosines between the outward normal to the boundary and the x and
y directions, respectively. All second-order derivatives in the
momentum expressions have been integrated by parts using the
Green-Gauss theorem. Reduction of the order of the expressions
in this way allows use of quadratic functions to interpolate
velocities. The advection and pressure terms in the momentun
equations also have been integrated by parts. Integration by
parts of the advection terms simplifies the finite element
equation formulation, and integration by parts of the pressure
terms facilitates application of normal-stress boundary
conditions. The last boundary integral in the two momentum
residual expressions represents the lateral stress resulting from

the transport of momentum by turbulence.

The expression for the weighted residual of the continuity

equation is



. 6H . .8U . .8H . .8V , OH a B
£, = ; JA Mi[gg + BEZ + U + Hzo + Vay] da_ - Q; (5-3)

where

Qi E z J Mi d dAe
e Ae

is the total source/sink flow attributed to node G
Time Derivatives

Expressions 5-1, 5-2, and 5-3 apply to a particular instant
in time. For a steady-state solution all the time derivatives
are equal to zero and do not need to be evaluated. However, if
the solution is time-dependent the residuals need to be
integrated with respect to time as well as with respect to space.
The temporal derivative of a dependent variable, U for example,

is integrated as follows:

; . j j+1
Ittt =yl 4 At[(l—e)g% + eg% } ' (5-4)

where At is the length of time (that is the time step) between

time levels j and j+1, and the factor 6 controls the degree of

implicitness of the time integration. For 8 = @, the <The
integration scheme is explicit (forward Euler), for 6 = 1, the
integration scheme is implicit (backward Euler), and for 6 = 0.5,
a trapezoidal (Crank-Nicholson) integration scheme results.

Setting 6 equal to 0.67 has been found to produce an accurate and
stable solution even for relatively large time steps (King and
Norton, 1978). An approximation of 8U/ét at the advanced time

level is obtained from equation 5-4:
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The expression for 8U/st at the advanced time 1level can be

rewritten as

aUj+l

j+1
= = aud™t B, (5-6)
where a = i and
At '
B, = an + (=8 égj (5-7)
1 e |)at

is a factor that contains values known from the solution at the

previous time step.

In a similar way, time derivatives of V and H are

approximated as

j+1

AL eIl By (5-8)
and
R ;
&£ = atd™t + B, (5-9)
where
3 1-8)avy |
B, = ov) + |57 |5 i (5-10)
and
3 1-6) 847
{33 = oH + T —a—“ . (5’"11)



Derivative Expressions

The finite element formulations of the the expressions for

derivatives of residuals at node 1 with respect to variables at

node j as defined as follows:

8f . . 3 2 2
6Ull =y J {NiN.[aH + %% 2h ti (2U2 u Vz)]
5 € a, ] P Uwe + V)
oN BNy N, _ 6N 6N; ANy
t x Nj[_ZBHU] * Ix Bx [2VH] Yy Nj['BHV} t Iy &y [VH]} dag

&N . 8N,
[ {N.N.[2BHU£ + BHVZ ] - N :—5[25H£:] e A e 1[VH£:]} ds
A o | X y i 6x X i ay y e

+
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e
(5-12)
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where
e 0, if Chézy discharge coefficients are used
3H san ;
—%73, if Manning roughness coefficients are used
H
and
"0.151 for U.S. Customary units
¢ = .
0.333 for S.I. units

Application of Boundary and Special Conditions

The Galerkin finite element formulation allows complicated
boundary conditions to be automatically satisfied as natural
conditions of the problem. Natural boundary conditions are
implicitly imposed in the problem statement and require no
further treatment. Boundary conditions that are imposed
explicitly are known as forced or essential conditions.
Essential boundary conditions are prescribed by modifying the
finite element eguation governing that variable. In addition,
special boundary conditions imposed by one-dimensional flow at

culverts and weirs can be easily applied.

Open Boundaries

Velocities and depth can be applied as essential boundary
conditions at any node point on an open boundary as long as the
system of equations does not become overconstrained. Velocities
and depth are prescribed at node point i by redefining the

residual expressions as



*
£.. = U, (5-21)

1i i/’
*
f2i = Vi 7 (5-22)
and
. .
f3i = Hi H (5-23)

* * * . .
where Ui’ Vi' and Hiare the specified values; and redefining the

derivatives as

3f _ . 1, if i =3 3f . . 8f . .
ll _ ' 1l _ ll _
au. I ozw = 0i g, =i (5-24a,b,c)
J 0, 1f 1 # 3 j 3
L5 of 1, 1f 1 =7 6t
21 21 ! 21
o, - % &, °© i =g = 0; (5-25a,b,c)
J J 0, if 1 # J j
of of . . 6f 1, if 1 = 3
31 31 31 !
= = 0; = = 0; = = 4 (5-26a,b,c)
on ij on { 0, if i =# j

Unit flow rates are applied at node i in a similar manner by

redefining the momentum equation residuals as

*
£11 = Uiy = Gyj et
and
R * 5-28
21 = ViHi T Qyyd ( )

* * . g
where 9y and g ; are specified unit flow rates in the x and y
directions, respectively, at node 1i; and by redefining the
conservation of momentum residual expression derivatives as
= 0; = -

0, if i # 3 oV OH

A

0, if i # j
(5-29a,b,c)

H;, if 1 = j. 8f 5 8f, 4 { u.., if 1 =3

Q Q
(onf I )
}_l
}_l
n
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and
af2i ¥ o afzi - Hi, if 1 = j' afzi _ Ui’ if 1 = j.
= / i 4 - !
S Ay 0o, it i=3 0, if i = 3
(5-30a,b,c)
Depth also can be applied as a natural boundary condition by
*
using the specified value of depth at node i, Hy to evaluate
the boundary integral terms 1in the conservation of momentum

residual expressions 5-1 and 5-2. Contributions from the

boundary-integral terms are taken as zero when derivatives of the

. . . *
momentum equation residuals with respect to Hi are computed.

When water depth 1is specified as a natural boundary
condition, global mass conservation is insured and total inflow
will equal total outflow in steady-state simulations. However,
water depths computed at nodes where the water-surface elevation
is applied as a natural boundary condition may differ slightly
from the specified values. When water depth is specified as an
essential boundary condition, the computed depth will equal the
specified depth, but the total outflow may differ slightly from
the total inflow in steady-state simulations because the mass

conservation equations at node points along the boundary have

been replaced.

If total flow through a cross section that forms part of the
open boundary of a finite element network 1is specified, a
constant friction slope along the section is assumed and the
total flow is divided among the node points on the basis of
conveyance. The cross section is defined by a 1list of node
points that form a connected series of element sides. Each
element side is composed of three nodes (1, 2, and 3) where nodes

1 and 3 are corner nodes, and node 2 1is a midside node.

Conveyance through each element side is defined as



K = AVgR/c, (5-31)

where R is the hydraulic radius (area divided by wetted
perimeter) of the element side; and A is the area of the element
side below the water surface. Total conveyance for the cross
section is computed as the sum of the conveyance of each element

side that is contained in the section.

Conveyance through each element side is distributed among

the three nodes that form the side as follows:

K =

2 1
1 K(1r -¢); K, = 3 K; K3 =3z K(1 + Q); (5-32a,b,c)

o

where ¢ = 5AH/12H; AH = H, - H,; H= (H, +Hy)/2; H is the depth
at node 1; and H3 is the depth at node 3. Total flow normal to
the open boundary at each cross section node point is computed on
the basis of the ratio of conveyance assigned to each node to the
total conveyance computed for the cross section. The velocities
and depth computed at each node are required to satisfy the
condition that the net flow across the open boundary resulting
from flow at the node will egual the assigned portion of the
total cross section flow. The procedure used to specify net flow
across a boundary that results from a single node point 1is

described in a subsequent section.
Solid Boundaries

Solid boundaries define features such as natural shorelines,
jetties, or seawalls. For viscous fluids, the velocity at a
solid boundary is actually zero. This is commonly referred to as
a "no-slip'" boundary condition. A no-slip condition can be
specified by applying x and y velocities of zero as essential
boundary conditions. To accurately model the flow near a

boundary at which a no-slip condition has been imposed, a network



composed of relatively small elements is needed. However, for

practical purposes a "slip" condition usually is applied at a

solid boundary whereby flow is allowed to move in a direction

tangent to the boundary. Imposing a slip condition at solid

boundaries reduces the total number of elements needed 1in a

network and thus decreases the number of equations that need to

Slip conditions are applied at a solid boundary node
m equations that are

be solved.
by first transforming the x and y momentu
associated with that node  into equations that  express

conservation of momentum in directions that are tangent and

normal to the boundary. The conservation of momentum equation
for flow in the normal direction is then replaced by a constraint
w across the solid boundary
This

equation that requires the net flo
that results from flow at the node point to equal zero.

procedure is described in the following section.
Total Flow Across a Boundary

Total flow across a boundary (normal flow) at a node point

comes from several sources. Flow across an open boundary is

defined as

6. =0 0 , (5-33)

where Qgi is the flow normal to the boundary at node i that is
specified directly; and QXi is the amount of the total flow
through a cross section that is assigned to node i by the
procedure discussed in the subsection on open boundaries. Flow
across a solid boundary is defined as

S s

0y = Qg3 T Qi t Qi (5-34)

where in is the flow normal to the solid boundary at node i that
is specified directly; Q. ; is the computed flow over a welr
(roadway empankment) segment at node 1i; and Qi is the computed

flow through a culvert at node i.

5-11



Along a boundary (either open or solid) where flow normal to
the boundary is to be prescribed, the conservation of momentum
residual expressions for flows in the x and y directions first
are transformed into conservation of momentum residual
expressions for flows in directions that are tangent and normal

to the boundary. At node point i, the transformation is

accomplished as follows:

f1i = f1i cos 8§ + f2i sin & , (5-35)

f2i = —fli sin & + f2i cos & , (5-36)

7

where f.. and f,, are the transformed residual expressions in the
tangential and normal directions, respectively; and & 1is the

angle between the positive x direction and a tangenﬁ to the

boundary at node 1i.

If flow normal to an open boundary at node i is specified,

the residual expression for flow tangent to the boundary is
redefined as

_ O O _ A° -
fli = aiUi + bivi Qi S (5-37)

If flow normal to a solid boundary at node i is specified, the

conservation of momentum equation for flow normal to the boundary
is redefined as

I - S _ a8 _
£, = ajUu; + bV, - Q7 . (5-38)

The coefficients ai, b?, ai, and bi in expressions 5-37 and 5-38

are determined by requiring the computed flow across an open or

solid boundary at node i to equal the specified flow, that is

' o o _ _O B
U, 2 J o NHE dSg + Vv Z J o NjHE, dSg = Q; (5-39)
) Se e Se



and

s - —
U. Ee: '[SO N HE, dSS + Vv, ; J.s NjHL, dSg = 0 . (5-40)

where N, is the interpolation function for velocity at node i;
SZis the part of the network boundary that is open; and Si is the
part of the network boundary that is solid. Comparing expression
5-37 to equation 5-39, and expression 5-38 to equation 5-40, it

is readily seen that

o _ o ¥
aj = ; JSO N.He, dS] ; (5-41)
e
b = ¥ J' o N3HL, as? ; (5-42)
e °S
e
ai = J o NiH dsz ; (5-43)
e °S
e
and
S s %
by = Z J g NjHL, dS_ (5-44)
e Se

Derivatives of the residual expression for total flow across

an open boundary are defined as follows:

o . Mg
afli B ajs 1f 1 = j.
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o

as, (5-49)

Derivatives of the residual expression for total flow across a

solid boundary are defined as follows:
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Depth-Averaged Pressure Flow

When two-dimensional flow through a bridge is in contact
with the ceiling, pressure flow exists and the pressure, P, at

node points replaces the flow depth, H, as the solution variable.
Residual Expressions

In the case of pressure flow, the residual expressions at

the ith node point are written as follows:

38U azb azc b cC
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~ . &U , &V ~ 86U
Z JS Ni[uH(W + g0l 2VESL ] ds, . (5-59)
e
= &y oH ov oH -
£, = ; IS M [HzZ + Uz + Hgo + Vo] da , (5-60)

e
is the height of the full flowing opening (that

where H = zg ~ 24
is, the distance between the bed and the ceiling).

Derivative Expressions

Derivatives of the depth-averaged pressure-flow residuals

are written for variables at node i with respect to variables at

node j as follows:
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Section 6

MODELING SYSTEM OPERATION

The steps generally taken to operate FESWMS-2DH are:

(1) Data collection, (2) network design, (3) calibration,

(4) validation, and (5) application. These five steps are common
to the operation of almost any type of numerical model and are

described in this section.

Data Collection

the

s of

After a surface-water flow problem has been defined,

first step in the operation of the modeling system consist

gathering data. The required data are classified as either

topographic or hydraulic data.
geometry of the physical system and
surface roughness to be used in estimating Dbed

Topographic data describe the
include an evaluation of
friction

Hydraulic data include measurements of stage and

coefficients.

flow hydrographs; spot measurements of stage, flow, and velocity;
high-water marks left by floods; rating curves; limits of
flooding; and wind measurements. Hydraulic data are used to
establish model boundary conditions, and to calibrate and
validate a model. Data requirements are summarized in table 6-1.

The type and amount of data that are needed to design a
network properly and to apply a model mainly depend on the
purpose of the model. The more data that can be obtained the
petter, and all of it can be used to improve the quality of a
model’s output. Theoretically, any surface-water flow can be
simulated as accurately as desired provided the important

physical processes are represented adequately by the governing

equations. However, the purpose of a model needs to be

considered when deciding what and how much data 1is needed to

provide results of the desired accuracy. For example, a finite
6—-1



Table 6-1. Summary of data that may be needed to apply the
modeling system, their use, and possible sources.

Data item Use of data Source of data

Ground-surface Assignment of ground Hydrographic and

elevations surface elevations topographic charts
at each node, and and field surveys

layout of a network

Bridge and culvert Layout of a network, Design drawings

dimensions assignment of 1-D and field surveys
bridge and culvert
parameters
Channel and Evaluation of bed Aerial and ground
overbank surface friction coefficient| photographs, field
roughness and eddy viscosity inspection
Water-surface Establishment of Field measurements,
elevations boundary conditions, | gauge records

model calibration,
and model validation

current velocity Establishment of Field measurements,
or flow rate boundary conditions,| gauge records
model calibration,
and model validation

Wind velocity Computation of Field measurements,
water-surface weather station
stresses records

Water temperature Determination of Field measurement,
water density gauge records

Latitude Computation of Map

Coriolis force

model’s output. Theoretically, any surface-water flow can be
simulated as accurately as desired provided the important
physical processes are represented adequately by the governing
equations. However, the purpose of a model needs to Dbe
considered when deciding what and how much data is needed to
provide results of the desired accuracy. For example, a finite
element model of flow in a laboratory flume might require a

computational resolution of inches (or less) to provide the



desired results. On the other hand, a model of a tidal estuary

t require a computational resolution of a mile or more.

migh

It is difficult to determine the minimum data requirements

for a particular application. Model construction (that is,

network design, calibration, and validation) and subsequent
application require consideration of the objective of the study
and funding. Because time,
decisions need

and the available time, manpower,

and funding always have finite 14mits,

manpower,
1 to be represented by

to be made regarding the degree of detai
the model and the extent of calibration and validation to be
If a high level of detail is provided by a network,
al system properly will be
of obtaining a

performed.
the risk of not representing a physic

reduced, but the difficulty (in time and expense)

solution will be increased. on the other hand, if a simple

the risk of not accurately representing a
increased, but the difficulty of

network is designed,

physical system will Dbe
obtaining a solution will be reduced. A knowledge of the

important physical processes that govern the response of a system

under study is needed to evaluate the trade-off between risk of

not accurately representing the system and difficulty of

obtaining a solution. Sometimes constraints on time, manpower,or

ljevel of discretization to be used

and/or the amount of calibration and validation to be performed,
f a larger amount of risk than would

funding will predetermine the

thus requiring acceptance o

otherwise be desired.

Network Design

The next step in applying FESWMS-2DH is to design a finite

Network design can be defined simply as the
is

element network.
whereby the surface-water body being modeled
The basic goal

process
subdivided into an assemblage of finite elements.

of network design 1is to create a representation of the water body

that provides an adequate approximation of the true solution of

the governing equations at a reasonable cost. There are no set
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rules for achieving this goal because of the many different
conditions encountered from one problem to the next. The design
of a satisfactory finite element network depends largely on the
use of sound engineering judgment gained from previous modeling

experience. However, some helpful guidelines are presented in

this section.

General Network Layout

Design of a finite element network requires decisions as to
the number, size, shape, and configuration of elements used to
provide an adequate representation of the water body that is to
be modeled. As long as the elements obey some basic requirements
for a convergent solution, the accuracy of the solution will
improve as the size of the elements in a network 1is reduced.
However, increasing the number of elements in a network also
increases computational expenses. Elements need to be made small
enough to provide a solution of sufficient detail and accuracy,

yet large enough to obtain the solution at a reasonable cost.

The first step in the design process is to obtain a map of
the surface water body to be modeled. The map scale and detail
that are required depend on the degree of solution accuracy that
is desired. Because some trial-and-error probably will be needed
during network design, it 1is best to overlay the map with a
clear, gridded mylar sheet that has a matted surface that can be
drawn on with a pencil. It will be much easier to erase and
redesign on the mylar sheet than on paper. A gridded mylar sheet
also provides an easy means of determining coordinates of node
points. Node point coordinates can be recorded in any system of

units and then converted to the desired units (feet or meters) by

the FESWMS-2DH programs.

Next, the limits of the area to be modeled are defined. As
a general rule, model boundaries are located where water-surface

elevations and flows can be specified accurately. The effect
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that errors in boundary conditions will have on a solution needs
to be considered. If the accuracy of boundary conditions is not
certain, the 1limits of a model can be placed as far away as
possible from areas of primary interest so that any errors

introduced at the boundaries will have little influence at the

points of interest.

After boundaries have been defined, subdivision of the
solution domain proceeds by dividing the area to be modeled into
relatively large regions that have similar topographic and
curface cover characteristics. The subdivision lines between the
regions are located, as much as possible, where abrupt changes in
topography or surface cover occur. The regions then are divided
into elements the size and shape of which will depend on the

desired level of detail in that particular area.

FESWMS-2DH will accept any combination of 6-node triangular,
8-node quadrangular, or 9-node gquadrangular elements that have
straight or curved sides - so that complex geometries can be
modeled in detail. curve-sided elements are created simply by
specifying the coordinates of the midside node as well as the
corner nodes of sides that are curved. If the midside-node
coordinates are omitted, an element side 1is assumed to be
straight and the midside node coordinates are interpolated

halfway between the two adjacent corner nodes.

Some conditions regarding the shape of an element need to be
satisfied so that the determinant of the Jacobian matrix will not
vanish within the element (that 1is, the isoparametric mapping

between a global element and its parent element needs to be

one-to-one). It is a good idea to make sure that a midside node
is located within the middle third of the curved element side
that it defines as shown in figure 6-1. Also, it is suggested

that internal angles of all elements be kept much less than 180
degrees as shown 1in figure 6-1. For quadrilaterals, it 1is

suggested that internal angles not approach zero degrees.
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a < 180°

Safe zone for
midside node

EXPLANATION

e CORNER NODE
X MIDSIDE OR CENTER NODE

Figure 6-1. Some rules to insure one-to-one mapping of
two-dimensional isoparametric finite elements.



A uniform network in which all the elements have about the
same size and shape throughout may be easy to construct but may
not always be practical. The ability to vary the size and shape

of elements within a single network is a major advantage of the

finite element method. In regions where the gradients of
dependent variables are expected to be large, small elements will
provide a more accurate solution than large elements. Locations

where gradients of velocities and depth can be large include
stream channels, constrictions, and areas near large inflows or
outflows. Small elements also need to be used to model
boundaries that have irregular shapes. In regions where the
solution variables are expected to change very slowly, or in
areas of the model that are of minor interest, relatively large
elements may provide a solution of sufficient accuracy. The
transition between a section of a network that is composed of
large elements and a section of a network that is composed of
much smaller elements needs to be gradual; that is, very large
elements should not be connected to very small elements. Aleo, it
is a good idea to position nodes at locations where point inflows

or outflows are to be applied.

The question of which type of element to use to construct a
network (that is, a 6-node triangle, an 8-node gquadrangle, or a
9-node quadrangle) 1is not answered easily. The ease of
approximating a two-dimensional region with an asseﬁblage of
arbitrary triangular elements has been demonstrated in many
applications. The two kinds of gquadrangular elements are similar
except for the presence of an internal node in the 9-node
Lagrangian element. The additional node in a 9-node
quadrilateral element requires a little more computational
effort, but provides a slightly more accurate solution than an
8-node quadrilateral element. For mést networks, a mixture of
6-node triangular elements and 9-node quadrangular elements will

provide the best representation of the water body that is being

modeled.




Another characteristic of network design that affects a
finite element solution is the aspect ratio of elements used in
the network. The aspect ratio of a two-dimensional element is
defined as the ratio of the 1longest element dimension to the
shortest element dimension. The optimum aspect ratio for a
particular element depends on the local gradients of the solution
variables. If the gradients can be estimated in advance, it is
best to align the longest element dimension to the direction of
the smallest gradient, and to align the shortest element
dimension to the direction of the largest gradient. Elements
that have aspect ratios that are much greater than unity need to
be designed cautiously. A well-designed network usually will be
composed of elements that have a variety of shapes, sizes, and a

wide range of aspect ratios.
One-Dimensional Weirs and Culverts

One-dimensional flow modeled at weirs, culverts, and small
bridges is treated as a either a point flow on the boundary of a
finite element network when the nodes defining the structure are
network boundary nodes, or as a sink/source term when the nodes
defining the structure are interior nodes. A point flow is the

total flow that crosses the network boundary because of flow at a

single node point.

One-dimensional weirs and culverts are described by a set of
parameters and two node points, one on either side of a welr or
on either end of a culvert. Flow over a weir or through a

culvert is computed on the basis of the water-surface elevations

and velocities at the two node points, and the specified
parameters. The following items need to be specified for each
welir segment: (1) A discharge coefficient for free-flow
conditions; (2) length of the weir segment; and (3) crest
elevation of the welr segment. The following items need to be
specified for each culvert: (1) A discharge coefficient;

(2) cross-sectional area of the culvert barrel; (3) hydraulic
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radius of the culvert barrel flowing full; (4) length of the
culvert barrel; (5) Manning roughness coefficient of the culvert

barrel;and (6) invert elevation at the culvert entrance.

Flow over roadway embankments is modeled best as one-

dimensional weir flow. To model weir flow over roadway

embankments, a finite element network needs to be designed so
that solid boundaries are located on both sides of an
embankment.The embankment is divided into a number of weir
segments, and appropriate parameters assigned to each segment.
The number of segments to use depends on the: variation of the
roadway elevation along the embankment and the spacing of node
points on the solid boundaries that define the embankment. Node
points that define the sides of a weir segment need to be located
approximately at the center of the weir segment. The location of
a weir segment needs to be considered during initial design of a

finite element network in the vicinity of a roadway embankment.

A single node point can be used to define the side (end) of
more than one weir segment (culvert). The same two node points

can be used for both a weir segment and a culvert as shown in

figure 6-2.

Two-Dimensional Bridges

Two-dimensional flow through a bridge or a culvert is
modeled exactly as ordinary free-surface flow when the water

surface is not in contact with the top of the bridge or culvert

opening. However, when the water surface is in contact with the
top of an opening pressure flow exists. When pressure flow
conditions «can occur at a bridge or culvert, special

consideration needs to be given to the design of a finite element

network in the vicinity of the structure.



top of roadway

S NSNS S/ TSNS S

top of roadway

@ Corner node

¢ Midside node

Figure 6-2. A finite element network at a roadway embankment
that contains a culvert and is divided into weir segments



If pressure flow within a bridge opening is to be modeled,

elements need to be constructed to conform to the two-dimensional

plan of the bridge deck as shown in figure 6-3.
the ceiling (that is, the underside of the bridge deck) also
needs to be specified for each of the corner nodes contained in
elements that conform to the bridge deck. More than two rows of

elements within an opening may be needed to model pressure flow

The elevation of

accurately. Increased resistance to flow caused by shear along

the underside of the bridge deck is included when pressure flow

occurs.

Combined pressure flow through a bridge opening and weir
flow over the bridge deck can be modeled by specifying weir
segments that define the top of the bridge deck. The bridge
opening can be either completely or partially submerged. The two
nodes on either side of the weir segment will be the nodes on the
upstream and downstream sides of the bridge that correspond to
the location of the weir segment. These nodes will always be
internal nodes, except at the point where the bridge deck inter-
sects a network boundary. However, weir flow over a bridge deck
is treated as a source/sink term in the continuity equation, even

when the upstream and downstream nodes are boundary nodes.

Model Calibration

A finite element model is a simplified, discrete
representation of a complex and continuous physical flow
system.Three-dimensional topographic features are represented by
two-dimensional elements and the physics of flow are assumed to
obey differential equations in which several empirical
coefficients appear. As soon as a model produces useful results
it needs to be calibrated if enough data are available. Model
calibration is the process of adjusting the dimensions of
simplified geometric eleménts and empirical hydraulic
coefficients so that values computed by a model reproduce as

closely as possible values measured on site.
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Figure 6-3. A finite element network at a bridge where pressure
flow within the bridge opening is modeled.



The ability of a model to reproduce and predict measured
values depends on the amount and quality of topographic, topology,
and hydraulic data that have been collected. Although model
parameters can be adjusted to obtain close agreement between
computed and measured values, an adjustment may not be extended
beyond physically reasonable values. For example, 1f good
agreement can be obtained only by using Manning roughness
coefficients three times as large as estimated initially, the
finite element network probably is a poor representation of the
physical region being modeled. The purpose of model calibration
is to obtain an accurate mathematical representation of

reality,not a force-fitting of a poorly constructed model.

Model calibration proceeds by adjusting parameters in _a
systematic fashion so that computed and measured values agree as
closely as possible. Measured values of water-surface elevation,
total flow rates, and velocities can be used to calibrate a
model. An impression of the sensitivity of computed values to
changes in model data can be obtained from initial adjustment
runs. Sensitivity of results to changes in model data can
indicate a need to measure more accurately those parameters for

which small changes have a significant affect on model output.

Roughness (or discharge) coefficients are empirical
coefficients that have the greatest effect on a solution.
Roughness coefficients estimated during the initial design of a
network will not have to be adjusted much if sufficient and
accurate topographic data have been collected. Changes to
roughness coefficients need to be made carefully so that adjusted
values are appropriate for the bed material, channel slope, and
végetative cover that exist in the area covered by a particular
element. For example, two channel reaches that have about the
same bed material and cross section shape, or two flood plains
that have about the same vegetative cover and topographic

characteristics, also need to be assigned roughness coefficients

that are about equal.



Eddy viscosity coefficients usually affect a solution much
less than roughness coefficients. The largest influence of eddy
viscosity occurs where velocity gradients are large. Increasing
eddy viscosity coefficients will cause velocity gradients to be
reduced, and the horizontal velocity distribution will become
more uniform. - Reducing eddy viscosity coefficients will cause

velocity gradients to increase.

If close agreement between measured and computed water-
surface elevations, flow rates, and velocities cannot be obtained
using roughness and eddy viscosity coefficients that are within
reasonable ranges, then model discretization and the accuracy of

topographic and hydraulic data need to be examined.

If a model has been thoroughly calibrated and is still not
capable of reproducing measured values satisfactorily, one or

more of the following kinds of problems may exist:

e The time step or element sizes may be too large to
resolve short wave components in wunsteady flow

simulations. The time step needs to be made small
enough to model accurately time-dependent boundary
conditions. The only definite way to determine

whether or not the time step is too large is to
simulate the same event using a successively smaller
time step. If the size of the time step
significantly affects computed values, it is too
large and needs to be reduced.

e The data measurement technigues or frequency of
observations may be inaccurate. Errors may be caused
by inaccurate leveling, erroneous high-water marks,

or faulty gauges.
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