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Summary Report

Christown Mall Area Floodplain Study
2-Dimensional Flow Analysis Results

Introduction

This report summarizes the results of the 2-dimensional flow analysis portion of the Christown Mall Area
Floodplain Study currently underway. This report has been prepared to update the County on current
project progress, and to identify and discuss the characteristics of the floodplain within the study area as
indicated by the results of the latest modeling efforts.

Study Area

The area modeled for this study is located within the city of Phoenix, and is bounded by Glendale Avenue
on the north, the Grand Canal on the south, 17th Avenue on the west and 3rd Avenue on the east. Figure
1 is an aerial photo of the study area, with the major streets identified.

Major Features in Study Area

The study area lies within the historical flood path of the Cave Creek Wash. The study area has been cut
off from a large portion of the upstream watershed by the Arizona Canal Diversion Channel (the ACDC),
which is located about 2 miles north of the northern boundary of the study area. The predominant slope
of the study area is from north to south, with a general trend toward the southeast comer of the study area.
Figures 2 through 6 illustrate the profiles of the major east-west streets within the study area. The
southeasterly trend of the historical Cave Creek Wash may be seen through comparison of these figures.

A major feature located within the study area is the Christown Mall. Located at the intersection of 17th
Avenue and Bethany Home Road, this large structure stands in the way of flows proceeding southward
down 17th Avenue. The 17th Avenue flow path is cut off, and the runoff is forced eastward, to mix with
those flows carried southward by 15th Avenue.

The Grand Canal is an additional major feature located within the study area. This canal is banked on
its north side by a slight berm, which forces flow reaching it from the upstream watershed to parallel its
path. Two street crossings of the Grand Canal are located within the study area -- at 7th Avenue and
15th Avenue.

Computational Mesh

An elemental mesh of interconnected nodes was developed to model the flow characteristics of the study
area using the U.S. Army Corps of Engineers' TABS model. Figure 7 illustrates the final mesh
configuration, which was created after many trial meshes were attempted and detennined to be unstable.
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The characteristics of the study application (relatively steep grade in an urbanized area with gradual east­
west relief and very shallow flooding depths), stretched to the limit the capabilities of TABS routines, and
required the development of a fairly intricate arrangement of computational elements. The fmal mesh
consists of a total of 6,614 nodes and 2554 elements. Each node was defmed in three dimensions (x,y,z),
with the z value representing the local ground elevation at the given point, and with east/west and
north/south coordinates of x and y, respectively. Each element, composed of three or four nodes, was
assigned a Manning roughness value and an eddy viscosity value. In initial mesh development, high
values of both Manning n and eddy viscosity were used to develop the initial steady state condition. As
the mesh was further developed and a stable steady state solution was achieved, these values were
incrementally adjusted to represent more realistic conditions. Final computations were preformed using
Manning n values of 0.020 for the streets within the mesh (identical to the value used in the previous
floodplain analysis for the study area), and 0.200 for the areas surrounding the street network. The order
of magnitude higher Manning roughness assigned to the non-street areas was applied to model the extra
resistance of the buildings, vegetation, etc., located in these areas, and to encourage the flow to concentrate
in the streets as much as deemed appropriate. The size of the area being modeled did not allow elemental
definition down to the level of the curb and gutter, and the large contrast in flow resistance between street
and non-street areas was used to compensate for this lack of topographic refmement. Figure 8 identifies
the street and non-street areas within the computational mesh. Final eddy viscosity values were reduced
to 25.0 (all directions), which is of appropriate magnitude for the given flow conditions (as indicated by
the FastTABS manual) and provided Peclet numbers of 50 or less, which ensured numerical stability.

Boundary Conditions

Boundary and interior inflows to the study area were determined from the previous HEC-1 modeling of
the Cave Creek Wash performed by Cella Barr Associates. Rows of concern to the study area include
inflows from concentration points upstream, split flows into the study area from concentration points
adjacent to the study area, split flows and storm drain flows out of the study area, and watershed runoff
from sub-basins enclosed within the study area. In the previous hydrologic analysis, rating curves were
used to determine the characteristics of the flow splits that are expected to occur at all major street
intersections. For the current analysis, the previously computed sub-basin runoff quantities, storm drain
losses and split flow quantities were used to defme flows which enter and split out of the study area, but
interior flow splits, flow distributions within the study area, and the outflow hydrograph at the major
downstream outlet location (Grand Canal and 15th Avenue) were computed using the 2-dimensional TABS
flow model.

The following table summarizes the flow items considered at each of the major concentration points
within the study area (see also Figure 9):
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Intersection

Glendale and 17th Ave.

Glendale and 15th Ave.

Glendale and 12th Ave.

Glendale and 7th Ave.

Bethany and 17th Ave.

Bethany and 15th Ave.

Bethany and 11th Ave.

Bethany and 7th Ave.

Camelback and 15th Ave

Camelback and 11th Ave

Camelback and 7th Ave.

Camelback and 3rd Ave.

Grand Canal and 15th Ave.

Grand Canal and 7th Ave.

Grand Canal and 3rd Ave.

Flows Considered

Inflow from Glendale and 19th Ave flow split
Sub-basin runoff

Inflow from upstream watershed
Outflow to storm drain

Sub-basin runoff

Inflow from Glendale and Central flow split
Inflow from Northern and 7th Ave flow split
Sub-basin runoff

Inflow from Bethany and 19th Ave. flow split

Sub-basin runoff
Outflow to storm drain

Sub-basin runoff

Inflow from Bethany and Central flow split
Sub-basin runoff
Outflow to storm drain

Inflow from Camelback and 19th Ave. flow split
Sub-basin runoff
Outflow to storm drain

Sub-basin runoff

Sub-basin runoff

Inflow from Camelback and Central flow split
Sub-basin runoff

Sub-basin runoff
Outflow to storm drain
Outflow to downstream system

Flow split over canal

Inflow from Grand Canal and Central flow split

3
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The boundary inflows, sub-basin nmoff values, and losses from the study area are actually hydrographs
rather than steady-state discharges. Figures 10 though 13 illustrate the boundary inflow hydrographs
computed using the HEC-l model for the study area. (Note that the acronyms used in the previous HEC­
1 modeling for the concentration point locations have been used for the legend in the figure -- Le.
GLENl2 is the intersection of Glendale and 12th Ave., etc.). These boundary inflow hydrographs, as well
as those previously computed for sub-basin runoff, storm drain loss, and split flows out of the system,
were used to compute the time-varying floodplain for the study area.

Flood Simulation

Application of the TABS model requires an initial flowing or "wet" condition through the mesh.
Boundary flows at each of the inflow points to the mesh were reduced to the extent possible to minimize
distortion of the fmal results, while maintaining a stable model. The 100-year hydrograph for each of
the boundary inflow points (reduced to account for the loss to the storm drain system, where appropriate),
was added to the base flow required for the initial steady state condition. Forty time steps, each 10
minutes apart, were computed in the simulation of the 100-year flood event The flow depths and unit
discharges at each node under each time step were adjusted to account for the initial condition, and the
results were plotted.

Three conditions were analyzed to investigate the sensitivity of the solution to the condition applied to
generate the "wet" initial conditions. The first condition was that described above: initial flows at each
boundary inflow point that were the minimum required for a stable steady state condition. The second
condition used flows at each inflow point that were double those used in the first condition. For the third
condition, the z values of each of the nodal points were reduced by an amount equal to the flow depth
computed in condition 2, and condition 2 was recomputed, resulting in "wet" topography which
approximated (but still slightly distorted) that of the original, non-wet topography. Each of these
procedures produced comparable results, but the effect of the distortion is identifiable -- the larger the
flows used at the initial condition, the larger the spreading that will occur as the flood hydrographs pass
over this initial condition, and the smaller the local flood depths tend to be. Thus, the areas with flow
depths of 0.4 feet or greater is larger under condition 1 than under condition 2, and condition 3 results
appear to be between those of 1 and 2. The absolute magnitude of the depth differences under each
condition are actually very small, however.

Figures 14 through 19 illustrate these points. Figures 14 through 16 illustrate the maximum flow depths
computed for each node throughout passage of the simulated 100-year flood event, for conditions 1, 2,
and 3, respectively. Figure 17 highlights the areas with flooding depths exceeding 0.5 feet under condition
1, and Figures 18 and 19 highlight the areas with flooding depths exceeding 0.4 feet under conditions 2
and 3, respectively. Comparison of Figures 17 through 18 indicates that, although different results are
obtained under the differing "wet" conditions applied at startup, the magnitude of the difference is on the
order of 0.1 foot. The condition 1 startup is judged to provide the most accurate results, as this condition
minimizes the wetting depth used as a baseline.

Figure 20 complements Figure 14, with areas of varying flow concentration (maximum unit discharge
throughout passage of the simulated 100-year flood event) shown rather than flow depth. These two
figures indicate that areas of maximum flow depth and unit discharge are concentrated in seven major
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areas: (1) 17th Avenue between Glendale Avenue and Bethany Home Road; (2) 15th Avenue between
Maryland Avenue and Missouri Avenue; (3) the extension of 11th Avenue between Glendale Avenue and
Maryland Avenue; (4) 7th Avenue between Glendale Avenue and Camelback Road; (5) the area north of
Camelback Road between 7th Avenue and 15th Avenue; (6) 3rd Avenue between Camelback Road and
the Grand Canal; and, (7) the area paralleling the Grand Canal between 3rd Avenue and 15th Avenue.

The above-described maximum depth and maximum flow concentration figures were developed through
screening the results of the 40 computational times steps (with a delta time of 10 minutes) used for
simulation of the 100-year flood event. Figures 21 through 40 and Figures 41 through 60, illustrate
the time varying depth and unit discharge conditions, respectively, for the odd-numbered time steps used
in simulation.

Flood hydrographs within the computational mesh were tracked at numerous locations, identified by string
number in Figure 61. The inter-mesh hydrographs associated with these strings are plotted by street and
location in Figures 62 through 73. The variations in peak discharge for the 100-year flood as it passes
through each of the major streets are summarized below, and are compared to the values determined in
the previous HEC-1 analysis.

Street Location HEC-l Peak TABS-2 Peak Discharge Variation
cfs (north to south), cfs

17th Ave. Glendale-Bethany 419 464 312 171 62 68 61 101

15th Ave. Glendale-Bethany 15 34 151 426461 485 520489
Bethany-Camelback 470 511 536452436 300292294214
Camelback-Grand Canal 358 285294460

11th Ave. Glendale-Bethany 519 433 324 373 399 335 356 390
Bethany-Camelback 490 348 397415 403 386 359 373 330
Camelback-Grand Canal 352 438328

7th Ave. Glendale-Bethany 254 395 233 179 170 191 138 133
Bethany-Camelbac k 495 462 501 389 388 470401 472 440
Camelback-Grand Canal 386 376456330

3rd Ave. Camelback-Grand Canal 602 452 388 241

Grand Canal 3rd Ave.-7th Ave. 203 475
7th Ave.-11th Ave. 515 319
11th Ave.-15th Ave. 771 552
15th Ave. (outflow) 765 785
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Discussion of Results

The results of the 2-dimensional flow analysis are quite different from those previously determined using
the HEC-l model at several locations. The major differences are along 17th Avenue and 15th Avenue
north of the Christown Mall. The TABS model results indicate that, due to the large west-to-east slope
that exists between these two streets, a good portion of the flow that enters 17th Avenue at the Glendale
Avenue concentration point passes over to 15th Avenue via the cross streets that exist between Glendale
Avenue and Maryland Avenue. Another area of major difference is evident along 7th Avenue between
Glendale Avenue and Bethany Home Road. The 2-dimensional modeling indicates that a large fraction
of the flow that enters 7th Avenue at the Glendale Avenue intersection flows to the west to mix with the
flows passing south along the 11th Avenue extension.

Both the previous HEC-lfHEC-2 and current TABS analyses indicate that the major flooding potential
within the study area occurs along the Grand Canal. Due to the shape of the underlying topography, flows
tend toward the southeast corner of the study area (the intersection of 3rd Avenue and the Grand Canal),
and then are forced back to the west-south-west by the raised berm which parallels the canal. This
redirection of the flow along a path which does not follow that of the historic Cave Creek Wash thalweg
causes the flow to increase in depth, until an outlet (storm drain, 7th Avenue bridge, or 15th Avenue
bridge) is reached or weir flowing occurs.

An area of probable flow accumulation which was apparently overlooked in the previous floodplain study
is the golf course which exists near the intersection of 15th and Maryland Avenues. This golf course is
located within a well-defmed depression (the low point of the historical flow path of the Cave Creek
Wash), and is indicated as a major flow accumulation point by the TABS analysis.

Next Phase of Analysis

The next phase of analysis will involve application of the HEC-2 water surface profile model to the study
area. The HEC-2 analysis will use the results of the TABS analysis for discharge variation along each
of the major streets. Difference in results between the HEC-2 analysis results and the TABS results are
to be expected, since the HEC-2 analysis will assume simultaneous peaking of discharge at all locations,
whereas the TABS model results are indicative of the time-varying nature of the flood event.
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Figure 2 Glendale Avenue Profile between 17th Avenue and 7th Avenue
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Figure 3 Maryland Avenue Profile between 17th Avenue and 7th Avenue
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Figure 4 Bethany Home Road Profile between 17th Avenue and 7th Avenue
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Figure 5 Missouri Avenue Profile between 17th Avenue and 7th Avenue
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Figure 6 Camelback Road Profile between 17th Avenue and 7th Avenue
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Figure 14 Maximum Computed Flow Depths - 100-Year Flood
Condition 1 Analysis (minimum initial wet condition)
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Figure 15 Maximum Computed Flow Depths - 100-Year Flood
Condition 2 Analysis (increased initial wet condition)
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Figure 16 Maximum Computed Flow Depths - 100-year Flood
Condition 3 Analysis (altered initial geometry condition)
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Figure 17 Areas with l00-Year Flow Depth Exceeding 0.5 feet
Condition 1 Analysis (minimum initial wet condition)
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Figure 18 Areas with l00-Year Flow Depth Exceeding 0.4 feet
Condition 2 Analysis (increased initial wet condition)
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Figure 19 Areas with l00-Year Flow Depth Exceeding 0.4 feet
Condition 3 Analysis (altered initial geometry condition)
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Figure 20 Maximum Unit Discharge Variation - 100-Year Flood
Condition I Analysis (minimum initial wet condition)
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Figure 21 Dynamic Simulation of the IOO-Year Flood through the Study Area
Computed Flow Depth at Time Step I
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Figure 22 Dynamic Simulation of the lOO-Year Flood through the Study Area
Computed Flow Depth at Time Step 3
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Figure 23 Dynamic Simulation of the IOO-Year Flood through the Study Area
Computed Flow Depth at Time Step 5
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Figure 24 Dynamic Simulation of the IOO-Year Flood through the Study Area
Computed Flow Depth at Time Step 7
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Figure 25 Dynamic Simulation of the IOO-Year Flood through the Study Area
Computed Flow Depth at Time Step 9
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Figure 26 Dynamic Simulation of the lOO-Year Flood through the Study Area
Computed Flow Depth at Time Step 11
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Figure 27 Dynamic Simulation of the IOO-Year Flood through the Study Area
Computed Flow Depth at Time Step 13
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Figure 28 Dynamic Simulation of the 100-Year Flood through the Study Area
Computed Flow Depth at Time Step 15



I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

DEPTH> 1.0

.8< DEPTH < 1 .0

.6< DEPTH < .8

.4< DEPTH < .6

.2< DEPTH < .4

DEPTH < .2

Figure 29 Dynamic Simulation of the lOO-Year Flood through the Study Area
Computed Flow Depth at Time Step 17
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Figure 30 Dynamic Simulation of the 100-Year Flood through the Study Area
Computed Flow Depth at Time Step 19
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Figure 31 Dynamic Simulation of the lOO-Year Flood through the Study Area
Computed Flow Depth at Time Step 21
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Figure 32 Dynamic Simulation of the lOO-Year Flood through the Study Area
Computed Flow Depth at Time Step 23
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Figure 33 Dynamic Simulation of the IOO-Year Flood through the Study Area
Computed Flow Depth at Time Step 25
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Figure 34 Dynamic Simulation of the IOO-Year Flood through the Study Area
Computed Flow Depth at Time Step 27
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Figure 35 Dynamic Simulation of the lOO-Year Flood through the Study An
Computed Flow Depth at Time Step 29
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Figure 36 Dynamic Simulation of the 100-Year Flood through the Study An
Computed Flow Depth at Time Step 31
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Figure 37 Dynamic Simulation of the lOO-Year Flood through the Study Area
Computed Flow Depth at Time Step 33
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Figure 38 Dynamic Simulation of the lOO-Year Flood through the Study Area
Computed Flow Depth at Time Step 35
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Figure 39 Dynamic Simulation of the lOO-Year Flood through the Study Area
Computed Flow Depth at Time Step 37
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Figure 40 Dynamic Simulation of the 100-Year Flood through the Study Area
Computed Flow Depth at Time Step 39
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Figure 41 Dynamic Simulation of the lOO-Year Flood through the Study Area
Computed Unit Discharge at Time Step 1
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Figure 42 Dynamic Simulation of the lOO-Year Flood through the Study AI
Computed Unit Discharge at Time Step 3
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Figure 43 Dynamic Simulation of the IOO-Year Flood through the Study Area
-Computed Unit Discharge at Time Step 5
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Figure 44 Dynamic Simulation of the IOO-Year Flood through the Study Are~

Computed Unit Discharge at Time Step 7
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Figure 45 Dynamic Simulation of the IOO-Year Flood through the Study Area
Computed Unit Discharge at Time Step 9



I
I

UNITQ> 1.0

.8< UNITQ < 1.0

6< UNITQ < .8

.4< UNITQ < .6

.2< UNITQ < .4

UNITQ < .2

I
I

Figure 46 Dynamic Simulation of the lOO-Year Flood through the Study Area
Computed Unit Discharge at Time Step 11
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Figure 47 Dynamic Simulation of the IOO-Year Flood through the Study Are;
Computed Unit Discharge at Time Step 13
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Figure 48 Dynamic Simulation of the 100-Year Flood through the Study Area

Computed Unit Discharge at Time Step 15
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Figure 49 Dynamic Simulation of the lOO-Year Flood through the Study Arc
Computed Unit Discharge at Time Step 17
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Figure 50 Dynamic Simulation of the 100-Year Flood through the Study Area
Computed Unit Discharge at Time Step 19
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Figure 51 Dynamic Simulation of the 100-Year Flood through the Study Area
Computed Unit Discharge at Time Step 21
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Figure 52 Dynamic Simulation of the tOO-Year Flood through the Study Area
Computed Unit Discharge at Time Step 23
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Figure 53 Dynamic Simulation of the IOO-Year Flood through the Study Area
Computed Unit Discharge at Time Step 25
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Figure 54 Dynamic Simulation of the lOO-Year Flood through the Study Area
Computed Unit Discharge at Time Step 27
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Figure 55 Dynamic Simulation of the IOO-Year Flood through the Study Area
Computed Unit Discharge at Time Step 29
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Figure 56 Dynamic Simulation of the 100-Year Flood through the Study Area
Computed Unit Discharge at Time Step 31
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Figure 57 Dynamic Simulation of the lOO-Year Flood through the Study Area
Computed Unit Discharge at Time Step 33
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Figure 58 Dynamic Simulation of the IOO-Year Flood through the Study Area
Computed Unit Discharge at Time Step 35
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Figure 59 Dynamic Simulation of the IOO-Year Flood through the Study Area
Computed Unit Discharge at Time Step 37



Figure 60 Dynamic Simulation of the 100-Year Flood through the Study Area
Computed Unit Discharge at Time Step 39
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Figure 61 Inner-Mesh Flood Hydrograph Computation Sectior
(TABS-2 GC Strings)
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Figure 62 Computed Inner-Mesh Flood Hydrographs
17th Avenue within the Northern Portion of the Study Area
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Figure 63 Computed Inner-Mesh Flood Hydrographs
15th Avenue within the Northern Portion of the Study Area
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Figure 64 Computed Inner-Mesh Flood Hydrographs
15th Avenue within the Middle Portion of the Study Area
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Figure 65 Computed Inner-Mesh Flood Hydrographs
11th Avenue within the Southern Portion of the Study Area
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Figure 66 Computed Inner-Mesh Flood Hydrographs
11th Avenue within the Northern Portion of the Study Area
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Figure 67 Computed Inner-Mesh Flood Hydrographs
11th Avenue within the Middle Portion of the Study Area
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Figure 68 Computed Inner-Mesh Flood Hydrographs
15th Avenue within the Southern Portion of the Study Area
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Figure 69 Computed Inner-Mesh Flood Hydrographs
7th Avenue within the Northern Portion of the Study Area
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Figure 70 Computed Inner-Mesh Flood Hydrographs
7th Avenue within the Middle Portion of the Study Area
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Figure 71 Computed Inner-Mesh Flood Hydrographs
7th Avenue within the Southern Portion of the Study Area
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Figure 72 Computed Inner-Mesh Flood Hydrographs
3rd Avenue within the Southern Portion of the Study Area
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Figure 73 Computed Inner-Mesh Flood Hydrographs
Along the Grand Canal


