
•

••
•

•

•

••
•

•

•

••
•

DRAFT

OPTIMAL CONTROL OF HYDROSYSTEMS

by

Larry W. Mays, Ph.D., P.E., P.H.

Department of Civil Engineering
Arizona State University
Tempe, Arizona 85287



•

•

•

•

•

•

•

•

•

•

•



•

••
•

•

•

••
•

•

•

••
•

PREFACE

Optimal Control of Hydrosystems is a book that addresses the mathematical

modeling of the optimal operation of hydrosystems. Optimization problems are

characterized or mathematically formulated to include an objective function that is

optimized (maximized or minimized) subject to a set of constraints which are

algebraic equations and/or inequalities. Optimal control problems are optimization

problems in which part or all of the constraints are differential equations. In

particular these systems are modeled in the framework of a certain type of

optimization problem referred to as discrete-time optimal control problems. These

types of optimization problems are unique in that the physics (laws of motion) of

the problem are described through differential equations that simulate the physical

behavior of the problem. The main theoretical approaches to solve optimal control

problem are calculus of variations, the maximum/or minimum principle, which

may be regarded as a special application of calculus of variation, dynamic

programming approaches and mathematical programming (nonlinear

programming). The methods to solve these types of problems include the combined

use of (a) the hydraulic simulation of the physical process and (b) operation research

techniques such as nonlinear programming and differential dynamic programming.

The methods to solve these types of hydrosystems problems have never been

presented in one book, but instead have only been presented in various locations in

the literature.

The term hydrosystems was originally coined by V. T. Chow to collectively

describe the technical areas of hydrology, hydraulics, and water resources.

Hydrosystem has also been a term used for reference to types of water projects

including groundwater systems, surface water storage systems, water distribution

systems, flood control systems, drainage systems, etc. Hydrosystems as used in this

book, actually applies to both definitions. Specifically the types of hydrosystems in
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this book include river-reservoir systems, groundwater systems, bay and estuary

systems, and· water distribution systems. Operation for reservoir systems include

both the long-term operation .for water supply, sediment control, and freshwater

inflow to bays and estuaries and short term operation for flood control and

sediment control.

The book is divided into three major parts: Principles and Methodologies for

Optimal Control Using Mathematical Programming Approach, Mathematical

Programming Application, and Differential Dynamic Programming Application.

The first part on Principles and Methodologies for Optimal Control has chapters that

introduce hydrosystems control problems as discrete-time optimal control problem,

introduce system and optimal control concepts, and nonlinear programming

concepts. The second part of the book has four chapters that apply the optimal

control concepts using mathematical programming to develop models and solution

algorithms for groundwater systems operation, real-time operation of river

reservoir system for flood control, water distribution systems operation, and

reservoir operation for optimizing freshwater inflows to bays and estuaries. The

third part of the book has chapters on optimal control using differential dynamic

programming, reservoir operation for water supply, groundwater systems

operation, and reservoir operation for sediment control in rivers and reservoirs.

This book is written at an advanced level for those with some background in

operations research, hydraulics, and water resources engineering. Both graduate

students and practicing engineers will find this book to be a valuable reference book

and text. The book can be used in graduate level water resources engineering

courses. Intentionally this book is not a review of the literature but instead is an

introduction to the concepts of optimal control theory and its applications to

various types of hydrosystems using mathematical programming techniques and

differential dynamic programming. A major focus is to illustrate how hydraulic
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simulators can be interfaced with optimizers in an optimal control framework to

solve realistic~ large-scale hydrosystems operation problems that are optimal control

problems.

Much of the work presented in this book is based upon the research work of

my former Ph.D. students. In particular Chapter 4 is based upon the research efforts

of Dr. Nisai Wanahule; Chapter 5 is based upon the research efforts of Dr. Oleay

Unver; Chapter 6 is based upon the research efforts of Dr. Lehar Brion; Chapter 7 is

based upon the research efforts of Dr. Yixing Bao; and Chapter 11 is based upon the

present research efforts of Mr. Carlos Carriaga at Arizona State University. Dr. Leon

Lasdon, a friend and former colleague at the University of Texas at Austin, over the

years, has been rather influential in teaching me and my former graduate students

at the University of Texas many of the concepts presented in this book, particularly

those related to the optimal control concepts using mathematical programming. I

also need to thank Dr. Lasdon for his willingness to provide us versions of his

GRG2 code and his friendly advice on its use over the years. Other former graduate

students of mine at Texas also have helped in the development of many of our

concepts in solving the optimal control problems for hydrosystems including Dr. M.

John Cullinane, Dr. Ning Duan, Dr. Joong-Hoon Kim, Dr. Kevin Lansey, Dr. Jungi

Matsumato, Dr. Chang-Kang Taur and Dr. Yeou-Koung Tung.

This book is intended to be a contribution toward the eventual goal of better

engineering and management practice in the hydrosystems field.

Larry W. Mays
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CHAPTER 1 - INTRODUCTION

1.1 Optimization of Hydrosystems

Many problems for the operation of hydrosystems can be formulated

in a general optimization framework in terms of state (or dependent)

variables (x) and control (or independent) variables (u)

and additional constraints for operation on the dependent (u) and

independent (x) variables

•

•

••

Minimize f (x, u)

subject to process simulation equations

G(x, u) = 0

w ~w(x,u) ~w

(1.1.1)

(1.1.2)

(1.1.3)

•

•

•

••
•

The process simulation equations for hydrosystems applications basically

consist of the governing physical equations (1.1.2) that simulate a physical

process such as conservation of mass, energy and momentum. These

equations are typically large in number, sparse and nonlinear in terms of the

state and control variables. In most hydrosystem applications, these

governing equations are ordinary or partial differential equations.

Conceptually, the simplest approach is to have the optimizer directly solve

the above optimization problem by embedding finite differences or finite

element equatio for the governing process equations. Unfortunately, many

of the real-world problems cannot be solved in this manner as a result ·of

,-I
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their size and nonlinearity. The existing nonlinear programming (NLP) codes

cannot solve such large, sparse problems.

An alternative approach is to use the appropriate process simulator to

solve the constraints process simulation equations (1.1.2) each time the

constraints need to be evaluated for the optimizer. The major advantage of

such an approach is the reduced size of problem seen by the nonlinear
6f

optimizer so that only a small subset of the complete set"constraint equations

is evaluated by the optimizer. The basic idea is that the optimizer[onlylsees/

the following reduced problem:

as opposed to the much larger problem defined by equations (l.1.1) - (1.1.3)..-
Minimize F(u) = f(x(u), u)

subject to w ~ w(x(u» ~ ;;

(1.1.4)

(1.1.5)

•

•

•

•-
•

The class of problems that are being considered in this book essentially

hav,e differential equations as part of the constraint set (process simulation

equation) making them more complex than the standard type of optimization

problem. These optimization problems are referred to herein as optimal

control problems. Examples of hydrosystem optimal control problems are

presented in sections 1.2 - 1.7. Each of these are nonlinear programming

problemS'that can be solved by interfacing the appropriate simulator

(simulation model) with the optimizer to solve a reduced nonlinear

programming problem. Application to systems such as groundwater systems

(1.1.1), river-reservoir systems (1.1.2) for flood control, reservoir systems

.(1.1.3) for water supply, water distribution systems (1.1.4) operation, and

estuary systems (1.1.5) for salinity control.
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The general groundwater management problem (GGMP) can be

expressed mathematically as follows:

•

•• 1.2 Groundwater Management Systems

• Objective

Optimize Z =f(h, q) 0.2.1)

•

•

where hand q are vectors of heads and pumpages (or recharge), respectively.

The objective function may be either maximization (e.g., sum of heads) or

minimization (e.g., minimize pumpage), and can be a linear or nonlinear

function. Also, it may be nonseparable or contain only terms of pumpages or

heads.

••
•

Constraints

a. The general groundwater flow constraints represent a system of

equations governing ground-water flow which are finite

difference or simulator equations when q is unknown.

G(h, q) = 0 0.2.2)

•

•

b. The upper @ and lower (,9) bounds on pumpages physically may

or may not exist. Unlike pumpage, the lower bound on heads (h)

can be viewed as the bottom elevation of the aquifer while the

upper head bound (h) can be viewed as ground surface

elevations for the unconfined cells.

s ~q~q (1.2.3).

•• h~h~h (1.2.4)

•



•

•• c. In addition to constraint Eqs. (1.2.2) - (1.2.4), other constraints

may be ileluded to impose restrictions such as water demands,

operating rules, budgetary limitations, etc.

oIWl~." en. :::.
Both head, h, and pumpage (or recharge) q are vectors of decision

U
~ \ t it: 0'

~t>ites )-(11.vY\-t-
variables which have maximum dimensions e ual to the roduct of the ~

number of active nodes within the aguifer boundar and time steEs. Fixed
('

pumpages or recharges are considered to be constants. By convention,

available pumpages have a positive value and the elements of q have a

negative value where there is available recharge. Usually the number of

refer to q will imply both pumpages and/or recharges) is small and results in

variable pumpages and/or recharges

•

•

•

••

w(h, u) $ 0

a much smaller dimension of q h.

(1.2.5)

ereafter the terms pumpages that

1.3 Real-Time Operation of River-Reservoir Systems for Flood Control

•

•

The optimization problem for the real time operation of

multireservoir systems under flooding conditions can be stated as follows:

Objective

Minimize Z = f (h, Q) (1.3.1)

•

••
•

where hand Q are the vectors of water surface elevations and discharges,

respectively. The objective is defined by minimizing: (a) the total flood

damages; (b) deviations from target levels; (c) water surface elevations in the

flood areas; or (d) spills from reservoirs or maximizing storage in reservoirs.



Hydraulic constraints are defined by the Saint-Venant equations

for one-dimensional gradually varied unsteady flow and other

relationships such as upstream, downstream, and internal

boundary conditions and initial conditions that describe the flow

in the different components of a river-reservoir system,

•

••
•

•

Constraints

a.

G (h, Q, r) = 0 (1.3.2)

•

•• b.

where h is the matrix of water surface elevations; Q is the matrix

of discharges; and r is the matrix of gate settings for spillway

structures, all given in matrix form to consider the time and

space dimensions of the problem.

Bounds on discharges defined by minimum and maximum

allowable reservoir releases and flow rates at specified locations,

• (1.3.3)

I•

•

c.

Bars above and below a variable denote the upper and lower

bounds, respectively, for that variable.

Bounds on elevations defined by minimum and maximum

allowable water surface elevations at specified locations

(including reservoir levels).

••
(1.3.4)

• /-10



•
-•• d. Physical and operational bounds on spillway gate operations.

0.3.5)

•
e. Other constraints such as operating rules, target storages, storage

capacities, etc.

The constraints of the model can be divided into two groups: the hydraulic

constraints (Eqs. 1.3.2) and the operational constraints (Eqs. 1.3.3. - 1.3.6). The

hydraulic constraints are e uali constraints consisting of the equations that

describe the flow in the system. These are: (a) the Saint-Venant equations for

all computational reaches~xceptinternal boundary reache~ (b) relationships

to describe the upstream and downstream conditions for the extremities; and

(c) internal boundary conditions which describe the flow that cannot be

described by the Saint-Venant equations such as critical flow resulting from

flm.y over a spillway or waterfall.

•

•

••
•

W(r) ~ 0 (1.3.6)

The operational constraints are basically greater-than or less-than type

constraints that define the variable bounds, operational targets, structural

limitations, and capacities. Options for an operator to set or limit the limits of

certain variables are also classified under this category. Bound constraints are

used to impose operational or optimization-related requirements.

Nonnegativity constraints on discharges are not used because discharges are

allowed to take negative values in order to be able to realistically represent

the reverse flow phenomena (backwater effects) due to a rising lake or large

tributaries into a lake or tidal condition. Nonnegativity of water surface

•

•

••
•

elevations are always satisfied since the system hydraulics are solved

I -II
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implicitly by the simulation model, DWOPER. The lower limits on

elevations' and discharges can be used to indirectly impose water quality

considerations, minimum' required reservoir releases, and other policy

requirements. The upper bound 0 on elevations and discharges can

be used to set the maximum allowable levels ( values beyond are either

catastrophic or physically impossible) such as the overtopping elevations for

major structures, spillway capacities, etc. Damaging elevations and/or

discharges must be given to the model through the constraints, as the

objective functions do not have any terms to control them.

The third model variable, gate opening, can be allowed to vary between

zero and one, which corresponds to zero and one hundred percent opening of

the available total spillway gate areas, respectively. The bounds on gate

settings are intended primarily to reflect the limitations on gate operations as

well as to enable the operator to prescribe any portion(s) of the operation for

any reservoir(s). Operational constraints other than bounds can be imposed

for various purposes. The maximum allowable rates of change of gate

openings, for instance, for a given reservoir, can be specified through this

formulation, as a time-dependent constraint. This particular formulation

may be very useful, especially for cases where sharp changes in gate

operations, that is, sudden openings and closures, are not desirable or

physically impossible. It is handled by setting an upper bound to the change in

the percentage of gate opening from one time step to the next. This constraint

can also be used to model another aspect of gate operations for very short

time intervals, that is, the gradual settings that have to be followed when

opening or closing a gate. For this case, the gate cannot be opened (or closed)

by more than a certain percentage during a given time interval.

I-I z..



Reservoir system operation is for the purposes: to meet water supply

demand; recreation demands; maintain minimum flow levels for navigation

•

•• 1.4 Reservoir System Operation for Water Supply

•
and environmental concerns; provide flood protection, power production,

and flood control. The mathematical formulation of the reservoir system

operation problem can be stated in general form as follows :

•

•

Objective

T

Maximize Benefits = Max ~) (5t, Vt, t)
o

Constraints

S=5~
~« '(~

I : 'l.M.~<.o-w+

L = II)~S' ,
(1.4.1)

•• a) The system equations which are the conservation of mass

equations for the reservoirs and river reaches are

t = 0, .... , T - 1 (1.4.2)

•

•

•
b)

where 5t+1,5t are the vectors of reservoir storages at the

beginning of time period t+1 and t respectively; Vt is the vector

of the reservoir releases for M reservoirs during time t; It is the

vector of hydrologic inputs (such as inflow to reservoirs); and Lt

is the vector of reservoir losses.

The bound constraints on reservoir releases, V t, are

lJ. ~ V t ~V
t t t =1, .... , T (1.4.3)

••
•

where lJ. t and V t are lower and upper bounds on the reservoir

releases.

I-l~
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•• c) The bound constraints on reservoir storages are

deterministically defined as

t = 1, .... , T (1.4.4)

•
-

where S and S are the lower and upper bounds on storage or
t t

The bound constraints on reservoir storage could be defined in

probabilistic form as storage reliability constraints as

where P [ ] denotes the probability and a~ and ar;ax represent

the minimum and maximum reliability or tolerance levels on

storage, respectively.

•

•

••

d)

P[St ~SJ :s a~

and

t =1, .... , T

t =1, .... , T

(1.4.5)

(1.4.6)

• e) Other reservoir operational constraints are expressed as

(1.4.7)

• 1.5 Water Distribution System Operation

•

••
•

The optimization problem for water distribution system operation can

be stated in terms of the nodal pressure heads, H, pipe flows, Q I tank water

surface elevations, E, and pump operating times, D. The objective is to

minimize energy costs

1-14
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•

Objective

Minimize energy costs = f (H, Q, D) (1.5.1)

Constraints

a. Conservation of flow and energy constraints

G(H, Q, D, E) = 0

b. Pump operation constraints

w(E) =0

(1.5.2)

(1.5.3)

c. Nodal pressure head bounds

••
•

d.

H~H~H

Bounds on pump operating times

(1.5.4)

(1.5.5)

•

e. Bounds on tank water surface elevation

1.6 Freshwater Inflows to Bays and Estuaries

(1.5.6)

•

••
•

The overall optimization model can be stated in the following general

nonlinear programming format using an objective to minimize freshwater

inflows or to maximize harvest.



•

•• Objective

Optimize z =f(Q, s, H) (1.6.1)

•
The general mathematical model can consider the following objective

functions:

•
(a) minimize the sum of freshwater inflows into the bay and

estuary over an operational time frame, such as a year;

•

••

(b) maximize the harvest over an operational time frame, such as a

year; and,

(c) multiobjective to minimize freshwater inflows and maximize

the harvest over an operational time frame, such as a year.

Constraints

•
a. Hydrodynamic transport equations that relate salinity, s, at a

given point in an estuary to inflow, Q,

G(Q, s) =0 (1.6.2)

•

• b.

where Q is the independent variable (control variable) as a

function of time and s is the dependent variable (state variable)

as a function of time and location;

Regression equations that relate inflow to fish harvest

••
•

h(Q,H) =0

I-/b

(1.6.3)



•

•• c. Constraints that define limitations on freshwater inflows due to

upstream demands and water uses, and historical ranges

(1.6.4)

• d. constraints that define limitations on salinity.

(1.6.5)

• 1.8 General Problem Formulation

•

Each of the above optimization problems in Sections 1.2 - 1.7 can be

written in the following general form:

Objective

•

•

Optimize z = f (x, u)

Constraints

t =0, ..., T-1

t =0, ... , T

t =0, ..., T - 1

(1.8.1)

(1.8.2)

(1.8.3)

(1.8.4)

•

••
•

where Xt is a column vector of dependent (state) variables at time t; Ut is the

column vector of independent (control) variables at time t; Kt and Y.t are

column vectors of lower bounds; and it and ut are column vectors of upper

bounds. The objective function is assumed to be continuously differentiable

in (Xt, Ut)· Time t can take only a finite number of discrete values.

I-I,
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•

The above optimization problem defined by equations (1.8.1) - (1.8.4) is

a discrete.;.time optimal control problem. Note that in each of the different

hydro- systems problems in sections 1.2 - 1.7 there is a set of hydraulic process

(simulation) equations G ( ) =O. These process simulation equations define

the physics of the problem, that is, the governing physical equations that

simulate the physical process. These are the conservation of mass,

conservation of energy, and/or conservation of momentum.

Groundwater Management

In the case of the groundwater management model, equation 1.2.2,

G(h,q) =0 is the set of general groundwater flow equations. For nonsteady

state groundwater flow the governing physical equations for two

dimensional flow are

where Tij is the transmissivity vector; h is the hydraulic head; W is the

volume flux per unit area; 5 is the storage coefficient; xi, Xj are Cartesian

coordinates; and t is time. The above partial differential equations can be

written in a finite difference form

•

••
•

•

i, j =1,2

t=O, ... , T-l

(1.8.5)

(1.8.6)

•
letting the volume flux to be replaced by the pumpage or recharge q.

Alternatively equation (1.8.6) can be written as

••
• /- '8

t=O, ... , T-l (1.8.7)
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which is in the form of equation (1.8.2). In this case the state variable is the

hydraulic head, h t, and the control variable is the pumpage or recharge qt.

The finite difference cell map for an aquifer is shown in Figure 1.8.1.

Real-Time Operation of River-Reservoir System for Flood Control

In the case for the real-time operation of river-reservoir systems for

flood control, the set of governing physical equations, G(h,Q,r) = 0 are the

Saint-Venant equations for one-dimensional unsteady flow,

Continuity:

•

••
•

•

dQ d(A + A o)
d["+ at -q =0

. ~~
Momentum: ~tV-

dQ d(f3Q2/ A ) (dh ) (at + dX + gA dX + Sf + S e - pwv x +W fB = 0

where
/

x = longitudinal distance along the channel or river

t = time

A = cross-sectional area of flow.

(1.8.7)

(1.8.8)

•

••
•

A o = cross-sectional area of off-channel dead storage (contributes to

continuity, but not momentum)

q =lateral inflow per unit length along the channel

h =water surface elevation

/-/9
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The above set of partial differential equations can be expressed

respectively in general form with the continuity and momentum,

respectively as

•

••
•

•

•

••
•

•

V x = velocity of lateral flow in the direction of channel flow

Sf = friction slope

Se = eddy loss slope

B =width of the channel at the water surface

Wf = wind shear force

~ = momentum correction factor

g = acceleration due to gravity.

Gc (htl ht+ll Qtl Qt+ll It+l) =0

GM (htl ht+ll Qtl Qt+ll It+l) =0

or respectively as

h t+1 = gc (htl Qtl Qt+ll It+l)

Qt+l = gM (htl Qtl Qt+l, It+l)

(1.8.9)

(1.8.10)

(1.8.11)

(1.8.12)

•

••
•

The state variables in this problem are the water surface elevations, h, and the

discharge, Q. The control variable is the gate setting (spillway operation), I.

1- 'Ll
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Reservoir System Operation for Water Supply

The system quations basically describe the dynamics of a reservoir

system which is a configuration of reservoir whose coordinated operation is a

function of hydrologic condition and/or institutional requirements. The

dynamics of a particular reservoir j is represented by the conservation of mass

•
dS

it
-=1 -u -L
d t j,t i,t i,t (1.8.13)

•

••
•

•

•

••
•

The dynamics of the reservoir system can be described in a vector differential

equation form as :

(1.8.14)

where St is an ns - dimensional state vector including all reservoir storage

variables; Ut is the nu - dimensional vector of controllable releases; It is the nl

- dimensional vector of hydrologic inputs; F(St, t) is an ns - dimensional time

varying nonlinear function with storage dependant term as shown in the

above dynamic equation for a single reservoir; Band Care ns * nu and ns *

nu - dimensional permutation matrices associating and each control and

input vector element with the pertinent differential equation.

The state vector describes the storage in the various reservoirs and

other system elements such as river reaches throughout the system as a

function of time. At a particular time tk when the state vector is known and

for a known or specified set of inputs It and release Ut over the time interval

t s [tk, T], then the s,tate trajectory {St, t s [t, Tn can be computed by integrating

the above equation. A state vector summarizes the knowledge or information

from the system history prior to time tk. This information is necessary to
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compute (predict) the reservoir system's future resource to input and output

sequences~ The purpose of reservoir operation control model is to identify

control scheduler (reservoir releases) which generate optimum (desirable)

state trajectories (storage).

Freshwater Inflows to Bays and Estuaries

In the case of the optimization of freshwater inflow to estuaries the

governing physical equations (1.6.2), G(Q, s) = a for a two-dimensional (plan)

formulation (see Figure 1.8.2) are the vertical-mean equations of momentum,

continuity, and salinity mass budget given respectively as

•

•

••
D D

du g J 1 J 'tS-'t b
dt =- gVh + 0 z p Vpdz dz + D

b Z P

ah
¥+DVeu=O

(1.8.13)

(1.8.14)

(1.8.15)

•

where d/dt =a/at + u e V and all vectors are referred to the plane coordinates

lj}L

Here

•

••
•

u =ui + vj

D =h(t)

s

/-2.3

vertical-mean current

total depth, a function of position (x,y)

horizontal stress at surface and bottom

vertical-mean salinity

horizontal "dispersion" coefficients



•

.-
•

•

•

.-
•

•

•

•-
•

Typical computation cell

x
1.&, ~

Figure J::2 Conceptual lliustration of Discretization of a Bay

for Depth-Averaged Two-Dimensional Flow

(Modified from: TDWR, 1980)
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and density p and salinity s are related by an equation of state p =Po + Ls. The

tidal-mean equations are exactly the same, except that the dependent variables

h, u, s are now tidal-mean quantities (as well as vertical means) and the

dispersion terms absorb the effective flux due to time correlation in sand u.

The finite difference grid for the Lavaca-Tres Palacio Esturary along the Gulf

of Mexico in Texas is shown in Figure 1.8.3.

/-25
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• CHAPTER 2

SYSTEMS THEORY AND OPTIMAL CONTROL

2.2 Concepts of Systems

2.2.1 Concept of the State

In the "classical" system theory, the output is directly related to the

input through a transfer function, $.

y =cpu (2.2.1)

•

••
•

•

•

••
•

Differential equations are often used for the purpose of describing the transfer

function. For a system to be amenable to state variable modeling analysis it

must be I umped. This means that it must evolve in only one dimension

such as time or space and be describable by ordinary differential or difference

equations. Water resource systems are usually aistributeCP and properly

described by partial differential equations with respect to time and space.

Since the nature of hydrosystems are inherently qistributed, ty icall they are
-+ ~ ,

divided into several subs stems such that each individual subsystem is

treated as a lumped system. It is possible, in many cases, to obtain a good'--------_..-:_-=--
approximation to distributed system behavior by using linked luml2.ed

s stems.

In the so called "modern" system theory, the system structure is given

explicit representation as a vector x, where x = (Xl, .. 'f'n) and the state

variables Xl ... , Xn, are a function of time. The state of the system at any given

time tl, is given ~y the value of state variables XI(tl), X2(tl), ... , Xn(tl) which

constitutes the s~te vector, X(tl). This is the fundamental concept of state-
variable modeling. In hydrosystems, the state variables are usually expressed

in volumetric or E'ass units and can represent, for example, the volume of
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•
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water or the amount of prescribed pollutants contained in various parts of the

system. The input and output variables commonly correspond to volume or

mass flow rates, which may be expressed as rainfall intensity or the rate of

discharge of pollutant. The state of the s stem is a measure of the level of

ctivit in each of its components and can be thought of as the interfac~

between the past and the future of the s stem's time history.

Formally, the state vector may be defined as the minimum number of
\

variables needed so that if the state at time tI, X(tI) is known and the input

from time t1 to some later time t2, u(t), tl< t< t2 is also known, then the state,

X(t2), is completely determined from this information. Sometimes the state

variable methodology is also called "state space" analysis.

Comparison between the "classical" and "modern" approaches to

dynamic systems modeling, shown in Figure 2.2.1, may be visualized in

vector space mappings. If an "input space" for the input vector, u, and an

"output space" for the output vector, y, are defined in the same way as the

stat~ space has been defined, the transfer function is seen as a mapping from

the input space directly to the output space, Figure (2.2.1a). In the "modern"

approach, Figure (2.2.1b), the input space is first related to the state space

through the so-called "state equation" which is a differential or difference----------
~n. Then the state space, and in some cases the input space, are related

to the output space through the so-called "output-equation" which is

al ebraic.

Descriptions of continuous-time and discrete-time deterministic state

variable models are given in the following two sections. Where vector

matrix operations are used, the notation employed is that a lower case letter,

a, is a scalar; an underlined lower case letter, a, is a vector; and an upper case

letter, A, is a matrix.

2-2..
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2.2.2 Continuous-Time Deterministic State Variable Model

A deterministic model is one in which a given input always produce

the same output. The continuous-time deterministic state variable model is

mathematically formulated by means of two equations: the state equation

and the output equation. The state equation is a set of ordinary, first-order

differential equations, one for each state variable, which is written in vector

matrix form to simplify the notation. The state e uation describes the chan e

'n the state of the system over time in res onse to the in uts. The output

equation is a set of algebraic equations, one for each output variable relating

the output to the state of the system and in some cases to the inputs. The

output equation is also commonly written in vector-matrix form. For the

most general case, the state and output equations may be expressed as in

equations (2.2.2a) and (2.2.2b), respectively:

•

•

•

stCA.k~ x(t) = g[x(t),u(t),t]

~~ y( t) = h[ x( t), u( t), t]

x)(t) x)t)

xlt) x
2
(t)

x(t) = x(t) =

x n(t) Xn(t)

and

(2.2.2a)

(2.2.2b)

y)(t) u)(t)

YIt) u
2
(t)

y(t) = u(t) =

y.(t) up(t)

•-
•

. d [x)(t)]. d[x 2(t)]. d[xn(t)]
x)(t) = dt ' x 2(t) = dt ' xn(t) = dt

The functions, g [ L in equation (2.2.2a), and h [ ] in equation (2.2.2b) are

nonlinear an ie-variant. They are nonlinear because products or powers
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of the variables may occur, and time-variant because the time, t, is included as

an explicit variable.

For practical purposes, this model is usually simplified to the form

shown in the following equations, which is the basic continuous-time,

deterministic, state variable model
I

•

•

x(t) =Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

where A, B, C, and D are the matrices:

all a 12 ... a ln

a 21 an··· a 2n

b ll b12 b lp

b 2l b n b 2p

(2.2.3)

(2.2.4)

••
•

A=

Cll C 12 ••• C In

C 2l C n ...C 2ft

c=

C rl C r2 •••C m

B=

D=

d ll d 12 ••• dip

d 2l d 22 •••d 2p

•

•

••
•

The system representation given the the above equations is shown

schematically in Figure (2.2.2). From Figure (2.2.2), it may be seen that the

time rate of change of the state of the system, x(t), is formed as the sum of

the modified inputs, Bu(t), and the modified current state, Ax(t). The matrix

A is the most important of the four system matrices because it represents the

proportion of the current system state, x(t), which contributes to changing that

state. This state feedback has a major role in determining the future behavior.

of the system. The elements of matrix B are scalars and represent the
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proportion of the value of each of the input variables that affects each of the

state variables.

The rate of change of the state, x(t), is continuously integrated with

the current state to produce the new state. The outputs, yet), are formed by

summing the new state which has been scaled by matrix C with a direct

contribution from the modified input, Du(t). The elements of C and D are

scalars which represent the proportions of each of the state and the input

variables which produce the outputs, respectively.

The behavior of water resources systems often changes with time. For

example, as the urbanization proceeds the proportion of the urbanized

watershed area which is impervious increases causing the relationship

between storm rainfall and~unoff change,. This time-variant behavior can

be incorporated into state variable models by making some of the elements in

the matrices A, B, C, and D functions of time. Non-linear response occurs

when changes in the system's inputs do not produce linearly proportional

changes in the system's outputs. These effects may be accounted for in state

variable models, by formulatin some of the elements in the four system

matrices A, B, C and D as functions of the current s stem state.

2.2.3 Discrete-Time Deterministic State Variable Model

Although the nature of water resources systems operate continuously

in time, the data are often collected and analyzed using discrete-time

intervals, especially when a digital computer is involved in the data storage

and analysis. For this situation, it is advantageous to formulate a discrete

time version of the deterministic state variable model. To do this, the time

horizon is divided into K intervals or stages, k =1, 2, ..., K; of length.11. Time

2-?
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•• intervals, .1t, are not necessarily equal. The state, x(t + .1t) may be related to

the state, x(t), at time, t by using Taylor's expansion:

b.;..
~-r..

"k.~
~t...tc. V~
~

(2.2.5)

(2.2.6)

(2.2.7)

. .1t 2
M( )x(t+.1t)=x(t)+(.1t)x(t)+Tx t + ...

where
_ d1x (t)]
x( t) = 2' If the terms of order of (.1 t)2 and higher are

dt

neglected, equation (2.2.5) may be written as:

yet) =Cx(t) + Du(t)

x( t + .1t) = x(t) + x(t) • .1t

and the output equation is

•

•

•

••
Equations (2.2.6) and (2.2.7) form the basic discrete-time, deterministic, state

variable model. In the situation when the t!me intervals are equal and set to

one unit of time, then t = k.1t where k is the ~tate index. The state equation..
(2.2.6) and output equation (2.2.7) can then be expressed as equation (2.2.8) and

(2.2.9), respectively, by substituting Ax(t) + Bu(t) in equation (2.2.3) for x(t).

• x(k+l) = (A+I)x(k) + Bu(k) (2.2.8)

y(k) =Cx(k) + Du(k) (2.2.9)

I

•

•

where I is an identity matrix of rank n.

In the discrete time model, the input and output variables

corresponding to the volume or mass of flow across the system boundaries in

the unit time interval instead of being volume or mass flow rate as they are

in the continous-time model.

••
At first the input instruction to the system is divided into several

stages with total number N. The time interval between two adjacent stages is

not necessarily equal. Once the initial state of the system, x (to), and initial

• 2-8
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input to the system, u (to), are given equations (2.2.6) and (2.2.7) may be solved

to obtain the state, x (to + ~t), at the next stage and the output, y (to), at the

current stage. Since the In ut at each sta e is know, the process can be

erformed recursivel until the last sta e is reached. The algorithm for

solving the discrete-time model is illustrated as a flow diagram shown in

Figure 2.2.3.

2.2.4 Applications of State Variable Model in Water Resources

State variable modeling has been applied to only a few water resource

systems. Fan et al. (1973) developed a model to find control strategies for

biological waste treatment using a state variable model of a contineously

stirred tank reactor. Young and Beck (1974) formulated a state variable model

for dissolved oxygen and biochemical oxygen demand in a river. This model

was used to determine control schemes for sewage effluent discharges to

rivers. Erscheler et al. (1974) developed a control strategy for the operation of

the penstrock inlet gates in a hydroelectric power station based on a state

variable model of the system. State variable approaches have also been used

to model the storm rainfall and runoff processes. Muzik (1974) used a state

variable approach to model overland flow. Duong et al. (1975) applied

stochastic estimation theory to fit the parameters of a state variable rainfall

runoff model. Maidment (1976) developed a stochastic state variable dynamic

programming model for reservoir operation. Tung and Mays (1978)

developed a kinematic wave model for sewer network flow routing based

upon the state variable approach. Tung and Mays (1981) developed a rainfall

runoff model using the concepts of state variables modeling as described

below.
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•• Because of the characteristics of a watershed, the system is inherently

non-linear. The linear reservoir storage-discharge relation,

•
S=kQ

was modified by Prasad (1967) having the form

N dQ
S = K1Q + K

2dt

(2.2.10)

(2.2.11)

• where kl, k2, and n are assumed to be constants. Combining equation (2.2.10)

with equation (2.2.11) for the conservation of mass, the following differential

equation is obtained:

•

••
2

d Q N-I dQ
K 2--2 + NK1Q -d + Q = 1

dt t

Equation (2.2.11) is rearranged to

2 K
d Q = __I NQN-I dQ __1_ Q+ _1_ 1
dt 2 K 2 dt K 2 K 2

(2.2.12)

(2.2.13)

•
The simulation diagram of equation (2.2.13) is illustrated in Figure 2.2.4. The

state variable formulation of equation the state equation in matrix form is

written as follows:

• (2.2.14)

•

••
•

1 K1 N-I 1
h e - - e l =K NQ ,and h =Kwere 0 - K '

2 2 2

matrix form is

Definition of Optimal Control Problems

2-1 (

and the output equation in

(2.2.15)
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Optimization problems are typically thought of as problems with

constraints that are algebraic equation~and/or inequalities. Another

important class of optimization problems are optimal control problems

which have constraints that are differential equation? Nf"" ..··;J -\u_.-<... ~.:; 3£i. eF~'
Optimal control problems can be stated as follows:

Given:

•

•

(1)

(2)

(3)

state equations;

a set of boundary conditions on the state variables at the

initial time and the terminal time; and

a set of constraints on the state variables and control

variables;

••
Determine the admissible control (values of the control variable) so that an

objective function (performance index) is optimized (minimized or

maximized).

Mathematically the optimal control model in continuous form is to

optimize the objective function

•

•

•

••
•

Optimize F(u) = J: f( x( tt u( t), t) dt

subject to the state equations,

x = g(x( t), u ( t) )

the set of boundary conditions

x S x(t) S x

arid the set of constraints on x(t) and u(t)

w (x(t), u(t» =0

2-1~

(2.3.1)

(2.3.2)

(2.3.3)

(2.3.4)

(2.3.5)
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where u(t) is the control variable u = [ul ' ... I um]T with lo~and upper

bounds of l!. and u , respectively; and x(t) is the state variablW (xl' ... I xn)

with lower and upper bounds of x of x, respectively.

The objective function f is a given continuous real-valued function

and the integral in equation (2.3.1) is interpreted as taking a control u(t) such

that !! < u(t)...s u ; solving the state equation to obtain the corresponding x(t);

then calculating fo as a function f time. The control variables and state

variables are related through the state equation which is expressed as a

differential equation in (2.3.2)

for a discrete system.

In many applications of control theory the objective function (or

performance index) has the form

F(u) = <I> (x(T») + J: f(x(t),u(t)dt (2.3.8)

1
where T > 0 is fixed and <I> (xCf» is a given continuously differentiable function

that represents the terminal objective value at the final time T.

The optimal control problem in discrete form is to

•

••
•

•

: = g(x(t),u(t)

for a continuous system and as

x(t+1) = g(x(t), u(t»

(2.3.6)

(2.3.7)

• T
F(u) = If (x(t), u(t)

t=l

••
•

subject to the state equation in discrete form

x(t+1) = g(x(t), u(t»



•

••
•

2.5 Continuous Systems

2.5.1 No Terminal Constraints, Fixed Terminal Time

Consider the optimal control problem to minimize (or maximize) the

scalar performance index of the form of equation (2.3.8)

•
T

F(u) = <1>[ x(T), TJ + Jf[ x(t), u(t), t Jdt
o

subject to the state equation (nonlinear differential equations)

(2.5.1)

• x = g[ x(t), u(t), tJ (2.5.2)

••
•

•

with x(O). x(t) is an n-vector function determined by u(t) an m-vector

function.

The system differential equation (2.5.2) can be adjoined to the F(u)

using the multiplier function A(t)

F(u) = "'[ x(T), TJ + !{ f[ x(I), u(I), I] + AT(t){ g[ x(I), u(I), I] - x} } dl (2.5.3)
o

A scalar function H referred to as the Hamiltonian is

•

••
•

T
H[ x(t), u(t), A(t), tJ = f[ x(t), u(t), tJ + A (t)g[ x(t), u(t), tJ

Integrating the last term on the right side of (2.5.3) by parts yields

- [ ] T TF = <I> x(T), T - A (T) x(T) + A (0) x(O) +

I{H[ x(t), u(t), tJ + AT(t) x(T) } dt
o

2. -tS

(2.5.4)

(2.5.5)



•
-

•• The variation in F (oF) due to variations in the control vector u(t) for fixed

times t = 0 and t = T is

To determine the variation ox(t) produced by a given ou(t) would be difficult,

so the multiplier function A(t) can be selected to cause the coefficients of ox in

(2.5.6) to vanish

•

•

•

••
•

•

. T aH af Tag
A =-- =-- - A -ax ax ax

with the boundary conditions

T <XI>
A (T) = ax(T)

"
Equation (2.5.6) then becomes

T T
dF = A (t=O) ox (t=O) + f ~~ OU dt

o

+

(2.5.6)

(2.5.7)

(2.5.8)

(2.5.9)

•

Thus AT(t=O) is the gradient of F with respect to variations in the initial

condition while holding u (t) constant and satisfying (2.5.1). For an

extremum, of must be zero for an arbitrary du(t) which occurs when

••
•

aH _ 0
au - (2.5.10)



•

.-
•

•

Equations (2.5.7), (2.5.8), and· (2.5.10) are known as the Euler-Lagrange

equations in the calculus of variations.

The above functions A(t) are called influence functions on F of

variations in x(t) since t is arbitrary. The function ~~ are called impulse

fun t · S· ch f aH h···response c Ions. IDce ea component 0 au represents t e VarIatIOn In

F due to a unit impulse (Dirac function) in the corresponding component of

du at time t, while holding x(t=O) constant and satisfying (2.5.1).

Summarizing, to determine the control vector function u(t), solve the

following differential equations

•

.-
•

•

•

•-
•

x = g(x, u, t)

. (ag)T (af)T
A = - ax A - ax

where u(t) is determined by

T T

~~ = (~:) A + (:~) = 0

Boundary conditions for (2.5.11) and (2.5.12) are

x(O) given

and

T

A(T) = (~~)

sp that multista e system 0 tima! control roblems are two- oint

value roblems.

(2.5.11)

(2.5.12)

(2.5.13)

(2.5.14)

(2.5.15)



•

•• The first integral of the boundary-value problem exists if f and g are not

explicit functions of t since

.T
H=H +Hx+Hil+Ag

t x U

• (2.5.16)

•
where H t represents the partial derivative of H with respect to t holding x and

.T (.T)
u constant. According to equation (2.5.7), A = - H x so that H x + A = 0,

then

• H=H +Hil
t U (2.5.17)

••
•

If f and g (hence H) are not explicit functions of t and u(t) then H = 0 or H is a

constant on the optimal trajectory. For F to be a local minimum then ~~ = 0

and the second-order expression for of, holding that x - g = 0, must be non

negative for all values (infinitesimal) of ou so that

•

•

••
•

a2
H

T 2
1 J[ T TJ ax+"2 ox, ou L_

o aH
auax

where o(x - g) = 0 or

d ag as
-(ox) = -ox + -ou
dt dX au ox(t=O) = 0

(2.5.18)

(2.5.19)



•I

••
•

The above equation (2.5.19) expresses 8x(t) in terms of 8u(t) in a some what

complicated fashion.

Consider the motion of a conservative system from time t = 0 to t = T

such that

T

F = Jf(x, u) dt
o

(2.5.20)

•

•

has a stationary value where f = Ek (x, u) - Ep (x) such that Ek is the kinetic

energy of the system and Ep is the potential energy of the system; x is the

generalized coordinate vector defining the state of the system, and u = x is

the generalized velocity vector. The Hamiltonian is then

which happens to be Lagrange's equation of motion for a conservative

system. H f is not an explicit function of time, the first integral of the motion

is H = constant:

••
•

•

•

••
•

and the Euler-Lagrange equations are

. T aH af
A. =-ax = ax

Combining the above two vector equations

A ( at ) _ af = 0
dt ax ax

df aEk
H = f - dU U = E

k
- Ep - dU U = constant

(2.5.21)

(2.5.22)

(2.5.23)

(2.5.24)

(2.5.25)



•

•• where f = Ek - Ep. Ek is a homgeneous quadratic form in u, which is the

velocity vector so that

•

•

im
k-u = 2Eau k

From equation ( ? )

H = Ek - Ep - 2Ek = constant

so that

-H = Ek + Ep = constant

(2.5.26)

(2.5.27)

••
•

which says that the kinetic energy plus the potential energy is constant during

motion. The above argument for the motion of conservative system is

referred to as Hamilton's principle in mechanics.

2.5.2 Function of State Variable Prescribed at a Fixed Terminal Time

Some hydrosystems problems may have constraining functions of the

terminal state,

where 'If is a j vector (j ~ n - 1 if f =0, j ~ n if f # 0). Equation (2.5.28) is also

adjoined to the performance index (2.5.3) by a multiplier vector v (a j vector).

•

•

••
•

'V[ x(T), TJ = 0

T

F(u) = <1>[ x(T) J + vT'If[ x(T), TJ + J{f [x(t), u(t), t J
o

+ AT(t) {g[ x(t), u(t), t] - x} }dt

(2.5.28)

(2.5.29)



•

•• The development presented in section 2.5.1 applies here. Bryson and Ho

(1975) present the following necessary condition for F to have a stationary

value

•
x=g(x, u, t) (n differential equations) (2.5.30)

(n differential equations) (2.5.31)

• (m algebraic equations) (2.5.32)

•
Xk (t=O) given as ~ (t=O) = 0, k = 1, ... , n (n boundary conditions) (2.5.33)

(n boundary condition) (2.5.34)

•• 'II[ x(T), TJ = 0 (j side condition) (2.5.35)

•

•

•

••
•

The stationarity condition (2.5.32) determines the m-vector u(t). The 2n

differential equations (2.5.29) and (2.5.30) with the 2n boundary conditions

(2.5.33) and (2.5.34), from a two-point boundary value problem with j

parameters v to be found in (2.5.34) so that the j side condition (2.5.35) are

satisfied.



(2.6.1)

(2.6.3)

•

••
•

•

•

••
•

•

•

••
•

2.6 Optimal Control Problem for Multi-reseryoir Operation

The optimal control problem for multi-reservoir operation can be based

upon a deterministic optimai control algorithm to find an optimal release policy

for the future time periods (typically months) of operation using current storages

and forecasted or historical inflows and demands. Only decision (releases) for the

next time period are implemented, and the entire procedure is repeated in each

subsequent time period.

Mathematically the objective function for the multi-reservoir operation

problem for N reservoirs can be stated as follows:
T / cost tu..",c-+W'I'

Minimize Z =ep[S (T+1)] + L Gt [S(t+1), R(t)]
t=l t. R..e.\~c;.-Q..s

where S(t) is the state variable sequence (reservoir storages) of N-vectors (N

reservoirs); R(t) is the decision variable sequences of M-vectors (M releases); ep [ ]

is the cost function of the terminal condition; Gt [ ] is the cost function for each

stage t (time period) under consideration.

The basic constraints of the multi-reservoir problem consist of mass

balance constraints, minimum and maximum storage constraints, and

minimum and maximum release constraints. Mass balance is expressed as
~L.ss

S(t+1) = S(t) + ~.R(t) + Q(t) - L(t) (2.6.2)
( ~) t- 1'l+L.n.>

in which A is the routing matrix with N-rows and M-columns where a member

n,m is 1 if link m delivers water to node n or -1 if link m takes (releases) water

from node n or 0 if link m is not connected to node n; Q(t) is the inflow vector to

the reservoir; and L(t) is the reservoir loss vector.

Constraints on minimum and maximum reservoir storages (states) are

expressed as

Smin ~ S(t) ~ Smax

2..-2'Z.



•• where Smin is the minimum storage and Smax is the maximum storage,

respectively. Constraints on minimum and maximum releases are expressed in a

where Rmin and Rmax are the minimum and maximum releases, respectively.

The discrete maximum principle (Section 2.5) can be applied to the above

multi-reservoir operation problem (Mizyed, et al. 1992). To derive the

Hamiltonian function, H, the mass balance constraint (2.6.2) is combined with the

objective (2.6.1) using the Lagrange multiplier vector, A(t),

•

•

•

••

similar manner as

Rmin ~ R(t) ~ Rmax

Initial conditions of the reservoir system define the storage as

S (1) = So

T T
H = ep [S(T +1)] + L G[S(t + 1), R(t)] + L AT (t) [S(t) + A·R(t)

t=l t=l

+ Q(t) - L(t) - S(t + 1)]

(2.6.4)

(2.6.5)

(2.6.6)

T
H = ep [S(T +1)] + L Gt[S(t + 1), u(t)] + l1(t)TPr1(t)}

t=l

•

•

•

To include the state-variables constraints (2.6.3) a penalty function is added ~

to the objective function in order to minimize violations in these constraints. 1"
Adding the penalty function, the objective function becomes y ~ ~f ,

rf('1/'l
~ (I'?> ~

J.l- '(). 1--:' I.' / \' \£,v- ~."-) ,
{u ~~. 1-- ~~, \0)

T / /~.
+ L AT (t)[S(t) + A·R(t) + Q(t) - L(t) - S(t + 1)]

\.u-
t=1 Vptr(~ (2.6.7)

in which P is a diagonal weighting (penalty) matrix; and l1(t) IS e violation in

The differential changes in H(dH) due to differential changes in R(t) as follows:

••
•

state variables (N-vectors), or

l1(t) =min[O,S(t + 1)L - Smin ] + max[O,S(t + 1) - Sm x (2.6.8)



•

•• dH =±[dG t + AT (t)A] dR(t) [ aep _AT(T) + 211T(T)P + dGr 1
t=l aR(t) . . as(T +1) as(T + l)J

To determine the differential change dS(t) produced by a given dR(t) sequence so

that dH is determined in terms of R(t). The following multiplier sequence A(t),

(Bryson and Ho 1975)

•

•

•

••
•

•

for t = l~~,...T - I, and

AT (T) = aq{S(T + 1)] + 2 T(T)P + dGr
as(T + 1) 11 as(T + 1)

is introduced.

Equation (2.6.9) becomes

dH =±[aaGt + AT (t)A] dR(t)
t=l R(t)

(2.6.9)

(2.6.10)

(2.6.11)

JJt
./ ytJ'

(2.6.12) ~.

•

••
•

For an extremum, dH must be zero for any arbitrary dR(t); so that (Bryson

and Ho 1975)

aH dGt T
aR(t) =aR(t) + A (t)A =0

An optimal solution for (2.6.7) should satisfy (2.6.2), (2.6.3), (2.6.5), (2.6.10), (2.6.11),

and (2.6.13).



•

••
•

•

-

~,#L~~ .
wuA ~-It<;, (/'{5', ~......: )

Mizyed, . al. (1992) implemented the following conjugate gradient

metho to solve the reservoir operation problem.

1. Assume a set of penalty values for the matrix P. Starting with small

values.

2. Guess an initial decision vector R(t)(o).

3. Determine 5(t)(0) from (2.6.3) and (2.6.2)

4. Determine A.t from and (2.6.10) and (2.6.11). Solve (2.6.11) for A.(T), then

solve (2.6.10) backwards from t = T - 1 to t = 1.

5. Determine the gradient of H from (2.6.13), or

•

••
At optimum, gi = 0 where i is the iteration number

6. Select a search direction 0 1 to be

(2.6.14)

•
Y"'i . I 19i II Oi-l
1J - gl + --=--

I Igi-1 112
for i ~ 2

(2.6.l5a)

(2.6.15b)

• 7. Determine the step size 0 by one-dimensional search to minimize H

(u'), where u' is the revised decision vector, R - 00. Details of the one-

R(i + 1) = R' otherwise

ifR'2~ax

if R <Rmin

•

••
•

dimensional search may be found in Hiew (1987).

8. The new estimate of u or u(i + 1) is given by

R' = R - oOi

R(i + 1) = R
max

R(i + 1) =R .
A'mln

(2.6.16)

(2.6.17)

(2.6.18)

(2.6.19)



•

••
•

•

•

••
•

•

•

••
•

9. Go to step 3 using this new estimate for R(t).

10. Continues until the gradient or 0 vanishes, set gl = 0 if R is equal to

Rmax or Rmin.

11. Check the values of n , or the violations in the state variables. If the

violations are not permissible, then increase the penalty values (P) are

increased and the procedure is repeated. Continue increasing the

values of P until the procedure converges to a feasible solution. The

convergence to a feasible optimal solution is discussed in a later section.

Constraint (2.6.5), bounds on decision variables, is invoked at every

iteration of the conjugate gradient procedure. Bounds on states are handled

through penalty terms, (2.6.7). Pagurek and Woodside (1968) presented a slight

refinement of the above procedure for handling bounded control variables;vhich

ensures that the method converges to the true optimum. Mizyed, Loftis, and

Fontane (1992) applied the above algorithm to the Mahaweli reservoir system in

Sir Lanka which includes 19 reservoirs and 35 release links. This application was

to minimize hydroelectric energy shortage with prespecified irrigation demand

constraints.
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••
•

••
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•
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CHAPTER 3
NONLINEAR OPTIMlZAnON MEfHODS

Earlier hydrosystems applications of operations research techniques

relied mainly upon the use of linear and dynamic programming techniques.

The use of these techniques applied to solving hydrosystem problems has

been rather widespread in the literature. Linear programming codes are

widely available whereas dynamic programming requires a specific code for

each application. The use of nonlinear programming in solving

hydrosystems problems has not been as widespread even though most of the

• problems requiring solutions are nonlinear problems. The recent

development of new nonlinear programming techniques and the availability

of nonlinear programming codes have attracted new applications of

nonlinear programming in hydrosystems. Unconstrained nonlinear

optimization procedures are described followed by descriptions of constrained

nonlinear optimization procedures.

••
• 3.1 Matrix Algebra for Nonlinear Programming

•

•

••
•

To explain the concepts of nonlinear programming, various techniques

of matrix algebra and numerical linear algebra are used. A brief introduction

to some of the concepts is provided in this sedon.

A function of many variables f (x) at point x is also an important

concept. For a function that is continuous and continuously differentiable,

there is a vector of first partial derivatives called the gradient or gradient

vector

:3- 2



•

•• T
. [ af ] (i)f af af )Vf(x) = iJx = ax' ax , ... ,~

1 . 2

(3.1.1)

•

•

•

••
•

•

•

where V is the vector of gradient operator (a/aXl,. ..,iJ/axn)T. Geometrically, the

gradient vector at a given point represents the direction along which the

maximum rate of increase in function value would occur. For f(x) twice

continuously differentiable there exists a matrix of second partial derivatives

called the Hessian matrix or Hessian

2 2 2
2...1 a f a f
iJx2 ax ax iJxl~

1 1 2

2 2 2
2 a f a f a f

H(x) = V f(x) = ax ax ax2 iJx·iJx
2 1 2 2 n

(3.1.2)

2 2
a f a f

axniJx
1 ~

The Hessian is a square and symmetric matrix.

The concepts of convexity and concavity are used to establish whether a

local optimum, local minimum or local maximum, is also the global

optimum, which is the best among all solutions. In the univariate case, a

function f(x) is said to be convex over a region if for every Xci and "h, Xa;l!:Xb'

the following holds

(3.1.3)

••
•

The function is strictly convex when the above relation holds with a less than

«) sign.



•

•• Conversely, a function is concave over a region if for every Xa and "h,

xa~xb' the following holds ..

The function is strictly concave when the above relation holds with a greater

than (» sign.

•
f[ 6xa + (1-6) "b] ~ 6f (xa) + (1-6) f ("bY 0 S 6 S 1 (3.1.4)

•

•

••
•

Equations (3.1.4) and (3.1.5) are not convenient to use in testing for

convexity or concavity of a univariate function. Instead, it is easier to

examine the sign of its second derivative, d2 f(x) / dx2
. From fundamental

2 2
calculus, if d f < 0 then the function is concave and if d f > 0 then the

ctx2 ctx2
function is convex.

The convexity and concavity of multivariable functions f (x) can also be

determined using the Hessian matrix. First, the definitions of positive

definite, negative definite and indefinite are used to identify the type of

Hessian, Le.

•

•

••
•

Positive definite H:

Negative definite H:

Indefinite H:

Positive semidefinite H:

Negative semidefinite H:

xTHx > 0 for all x ~ 0

xTHx < 0 for all x ~ 0

xTHx < 0 for some x;

> 0 for other ~

xTHx ~ 0 for all x

xTHx S 0 for-all x



•

••
•

•

•

••
•

•

•

••
•

The basic rules for convexity and concavity of a multivariate function

f(x) with continuous second partial derivatives are:

(1) f(x) is concave, H(x) is negative semidefinite;

(2) f(x) is strictly concave, H(x) is negative definite;

(3) f(x) is convex, H(x) is positive semidefinite;

(4) f(x) is strictly convex, H(x) is positive definite.

To test the status of H(x) for strict convexity, two tests are available

(Edgar and Himmelblau, 1988). The first is that all diagonal elements of H(x)

must be positive and the determinants of all leading principal minors, det

{Mi(H)}, and also of H(x), det (H) are positive (> 0). Another test is that all

eigenvalues of H (x) are positive (> 0). For strict concavity all diagonal

elements must be negative and det (H) and det {Mi(H)} > 0 if i is even (i = 2, 4,

6, ... ); det (H) and det {Mi (H)} < 0 if i is odd (i =1,3,5, ... ). The strict inequali

ties> or < in these tests are replaced by ~ or S, respectively, to test for convex

ity and concavity.

Convex regions or sets are used to classify constraints. A convex region

exists if for any two points in the region, Xa 'it Xb, all points x = 9xa + (1-9) Xb,

where 0 S 9 S 1, are on the line connecting Xa and Xb are in the set. Figure 3.1.1

illustrates convex and nonconvex regions.

The convexity of a feasible region and the objective function in

nonlinear optimization has an extremely important implication with regard

to the type of optimal solution to be obtained. For linear programming

problems, the objective function and feasible region both are convex therefore

3- 5



•

••
•

•

•

••

the optimal solution is a global. On the other hand, the convexity of both the

objective function and feasible region in a nonlinear programming problem

cannot be ensured, the optimal solution achieved, therefore, cannot be

guaranteed to be global.

3.2 Unconstrained Nonlinear Programming

This section describes the basic concepts of unconstrained nonlinear

optimization including the necessary and sufficient conditions of a local

optimum. Further, unconstrained optimization techniques for univariate

and multivariate problems are described. Understanding unconstrained

optimization procedures is important because these techniques are the

fundamental building blocks in many of the constrained nonlinear

optimization algorithms.

3.2.1 Basic Concepts

The problem of unconstrained minimization can be stated as

• Minimize f (x) (3.2.1)

•

•

••
•

n
xeE

in which x is a vector of n decision variables x=(x1' x2' ..., ><n)T defined over the

entire Euclidean space En. Since the feasible region is infinitely extended

without bound, the optimization problem does not contain any constraints.

Assume that f(x) is a nonlinear function and twice differentiable; it

could be convex, concave, or a mixture of the two over En. In the one

dimensional case, the objective function f(x) could behave as Figure 3.2.l(a)

consisting of peaks, valleys, and inflection points. The necessary conditions

:?>-6
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••
•

for a solution to equation (3.2.1) at x* are (1) Vf(x*)=O and (2) V2f (x*) = H(x*)

is semi- ositive definite. The sufficient conditions for an unconstrained

minimum are (1) Vf(x*)=O <and (2) V2f (x*)=H(x*) is strictI sitive definite.

r""?
In theory, the solution to equation (4.4.1) can be obtained by solving

the following system of n nonlinear equations with n unknowns,

•
Vf(x*)=O (3.2.2)

•

••
•

•

The approach has been viewed as indirect in the sense that it backs away from

the original problem of minimizing f(x). Furthermore, an iterative

numerical procedure is required to solve the system of nonlinear equations

which tends to be computationally inefficient.

By contrast, the reference is 'ven to those solution rocedures which

directl attack the roblem of mini . . g f(x)" Direct solution methods,

during the course of iteration, generate a sequence of solution points in En

that terminate or converge to a solution to equation (3.2.1). Such methods

can be characterized as ~earch procedur~

In general, all search algorithms for unconstrained minimization

consist of two basic steps. The first step is to determine the~h direction

along which the ob"ective functi decreases. The second step is called

•
a line search (or one dimensional search) to obtained the optimum solution
T

point along the search direction determined by the first step. Mathematically,

minimization for the line search can be stated as

••
•

Min f (xo + f3d)
~

(3.2.3)



•

••
•

•

•

••

in which xO is the current solution point, d is the vector indicating the search

direction, and J3 is a scalar, -00 < J3 < 00 , representing the ste size whose

optimal value is to be determined. There are many search algorithms whose

differences primarily lie in the way the search direction d is determined.

Due to the very nature of search algorithms, it is likely that different

starting solutions might converge to different local minima. Hence, there is

no guarantee of finding the global minimum by any search technique applied

to solve equation (3.2.1) unless the objective function is a convex function

over En.

In implementing search techniques, specification of convergence

criteria or stopping rules is an important element that affects the performance

of the algorithm and the accuracy of the solution. Several commonly used

stopping rules in an optimum seeking algorithm are

(a)

(b)

(c)

(3.2.4a)

(3.2.4b)

(3.2.4c)

• (d)
f(xk) _f(xk+1)

f(xk)
< E •

4'
(3.24d)

•

••
•

in which superscript 'k' is the index for iteration, E represents the tolerance

or accuracy requirement, I x Dis the length of the vector x, and Ix I is the

absolute value. The specification of the tolerance depends on the nature of

the problem and on the accuracy requirement. Too small a value of E

(corresponding to high accuracy requirement) could result in excessive

3-8
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••
•

•

•

•

•

•

iterations, wasting computer time. On the other hand, too large a value of E

could make the algorithm terminate prematurely at a non-optimal solution.

3.2.2 Unconstrained Optimization: One-Dimensional Search

The line search techniques for solving one-dimensional optimization

problems form the backbone of nonlinear programming algorithms. Multi

dimensional problems are ultimately solved by executing a sequence of

successive line searches. One-dimensional search techniques can be classified

as ~urve fitting (approximation) techniques or as interval elimination

techniques. Interval elimination techniques for a one-dimensional search

essentially eliminate or delete a calculated portion of the range of the variable

from consideration in each successive iteration of the search for the optimum

of f (x). After a number of iterations when the remaining interval is

sufficiently small the search procedure terminates. These methods determine

the minimum value of a function over a closed interval [a,b] assuming that a

function is unimodal, Le., it has only one minimum value in the interval

(Figure 3.2.1). Two interval elimination techniques commonly used are the

~olden section method and the Fibonacci search meth~ (Mays and Tung,

1992).

3.2.3 Unconstrained Optimization: Multivariable Methods

Unconstrained optimization problems can be stated in a general form

as

Minimize z = f (x) = f(x
l
, ~,..., "n) (3.2.5)

••
•

For maximization, the problem is to minimize -f (x). The solution of these

3-9



•

•• types of problems can be stated in an algorithm involving the following basic

steps or phases:

•

•

•

Step (0)

Step (1)

Step (2)

Step (3)

Sel . . 'al . . k=O (XO x!l xo1
ect an Imti starting pomt x = I' 2"'" n I.

\ )

. k
Determine a search direction, d .

Find a new point xk+1 = xk + ~k d
k

where ~k is the step

size, a scalar, which minimizes f (xk + ~k d
k

).

Check the convergence criteria such as equations

(3.2.4a-e) for termination, if not satisfied set

••
•

•

•

••
•

k = k+1 and return to step (1).

The various unconstrained multivariate· methods differ in the way the

search directions are determined. The recursive line search for an

unc<;mstrained minimization problem is expressed in Step (2) above as

(3.2.6)

Table 3.2.1 lists the equations for determining the search direction for

four basic groups of methods: descent methods, conjugate direction methods,

quasi-Newton methods and Newton's method. The simplest are the steepest

descent methods while the Newton methods are the most computationally

intensive.

In the steepest descent method the search direction is - V f (x). Vf(x)

points in the direction of the maximum rate of increase in objective function

value, therefore, a negative sign is associated with the gradient vector in



•

•• equation (4.4.6) because the problem is a minimization type. The recursive

line search equation for the steepest descent method is, then, reduced to

•
Xk+1 = Xk _ 13k

Vf(xk)

Using Newton's method, the recursive equation for line search is

(3.2.7)

•

•

••
•

•

•

••
•

Xk+1 = xk _ H-\xk) Vf(xk) (3.2.8)

Although Newton's method converges faster than most other algorithms,

the major disadvantage is that it requires inverting the Hessian matrix in

each iteration which is a computationally cumbersome task.

The conjugate direction methods and quasi-Newton's methods are

intermediate between the steepest descent and Newton's method. The

conjugate direction methods are motivated by the need to accelerate the

typically slow convergence of the steepest descent methods. Conjugate

direction methods, as can be seen in Table 3.2.1, define the search direction by

utilizing the gradient vector of the objective funciton of the current iteration

and the information on the gradient and search direction of the previous

iteration. The motivation of quasi-Newton methods is to avoid inverting the

Hessian matrix as required by Newton's method. These methods use

approximations to the inverse Hessian with a different form of

approximation for the different quasi-Newton methods. Detailed

descriptions and theoretical development can be found in textbooks such as

Luenberger (1984), Fletcher (1980), Dennis and Schnable (1983), and Gill,

Murray and Wright (1981) and Edgar and Himmelblau (1988).

3.3 Constrained Optimization: Optimality Conditions

3.3.1 Lagrange Multiplier

3-- 11



•

•• Consider the general nonlinear programming problem with the

nonlinear objective:

•

•

•

Minimize f(x)

subject to

and

< <-x. _x. _x.
J ) )

i = 1,..., m

j = 1,2,..., n

(3.3.1a)

(3.3.1b)

(3.3.1c)

••
•

•

•

••
•

in which equation (3.3.1c) is a bound constraint for the j-th decision

variable x. with x. and x. being the lower and upper bounds, respectively.
) J )

In a constrained optimization problem, the feasible space is not

infinitely extended, unlike an unconstrained problem. As a result, the

solution that satisfies the optimality condition of the unconstrained

optimization problem does not guarantee to be feasible in constrained

problems. In other words, a local optimum for a constrained problem might

be located on the boundary or a corner of the feasible space at which

thegradient vector is not equal to zero. Therefore, modifications to the

optimality conditions for unconstrained problems must be made.

The most important theoretical results for nonlinear constrained

optimization are the Kuhn-Tucker conditions. These conditions must be

satisfied at any constrained optimum, local or global, of any linear and

nonlinear programming problems. They form the basis for the development

of many computational algorithms.
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•

••
•

•

Without losing generality, consider a nonlinear constrained problem

stated by equation (3.3.1) with no bounding constraints. Note that constraint

equations (3.3.1b) are all equality constraints. Under this condition, the

Lagrange multiplier method converts a constrained nonlinear programming

problem into an unconstrained one by developing an augmented objective

function, called the Lagrangian. For a minimization, the Lagrangian function

L (x, A) is defined as

T
L (x, A) = f (x) + A g (x) (3.3.2)

• in which A is the vector of Lagrange multipliers and g(x) is a vector of

constraint equations. Algebraically, equation (3.3.2) can be written

mization are:

L (x, A) is the objective function, with m+n variables, that is to be minimized.

The necessary and sufficient conditions for x'" to be the solution for mini-

•

m

r{Xl'···' "n, AI"'" Am) = f(xl ,.··, "n) +I Ai gi (Xl"'·' "n)
i=l

(1) [(x"') is convex and g (x"') is convex in the vicinity of x'"

(3.3.3)

•

•

(2) aL (x"') =If.+ f A. ~ =0
ax. ax. 1 ax.

J J i=l J

aL
(3) aA. =gi (x) =0

1

(4) A. is unrestricted-in-sign
1

j = 1,..., n

i =1,..., m

i = 1,..., m

(3.3.4a)

(3.3.4b)

(3.3.4c)

••
•

Solving equations (3.3.4a) and (3.3.4b) simultaneously provides the optimal

solution.



•

•
~

• • Lagrange multipliers have an important interpretation in optimiza-

tion. For a given constraint, these multipliers indicate how much the

optimal objective function value will change for a differential change in the

right-hand side of the constraint. That is,

af l
ab. 1 =A

!jx=xo

•

•

••
•

•

illustrating that the Lagrange multiplier Ai is the rate of change of the optimal

value of the original objective function with respect to a change in the value

of the right-hand side of the i-th constraint. The Ai'S are called dual variables

or shadow prices.

3.3.2 Kuhn-Tucker Conditions

Equations (3.3.4a)-(3.3.4c) form the optimality conditions for an

optimization problem involving only equality constraints. The Lagrange

multipliers associated with the equality constraints are unrestricted-in-sign.

Using the Lagrange multiplier method,' the optimality conditions for the

following generalized nonlinear programming problem can be derived.

Minimize f(x)

subject to

•

••
•

g. (x) = 0
1

and

i = I,..., m

j = I,..., n

'3- 14



(3.3.5)

•

••
•

•

In terms of the Lagrangian method, the above nonlinear minimization

problem can be written as ..

T T _T
Min L = f(x) + A g (x) + l ex -x) + A (x - i)

in which A, 2u and ~ are vectors of Lagrange multipliers corresponding to

constraints g (x) = 0, X - x S; 0, and x - is; 0, respectively. The Kuhn-Tucker

conditions for the optimality of the above problem are

•

••
l. (x. - x.) =~. (x. - x,) =0
)J ) )) )

A unrestricted-in-sign, l ~ 0, ~ ~ 0

i = 1,2,..., m

j = 1,2, ..., n

(3.3.6a)

(3.3.6b)

(3.3.6c)

(3.3.6d)

•

•

•

••
•

3.4 Constrained Nonlinear Optimization: Generalized Reduced Gradient

(CRe;e, Method

3.4.1 Basic Concepts

Similar to the linear programming simplex method, the fundamental

idea of the generalized reduced gradient method is to express m (number of

constraint equations) of the variables, called basic variables, in terms of the

remaining n-m variables, called nonbasic variables. The decision variables

can then be partitioned into the basic variables, xB' and the nonbasic variables,

'3- 15



•

•• (3.4.1)

•

Nonbasic variables not at· their bounds are called superbasic variables,

Murtaugh and Saunders (1978).

The optimization problem can now be restated in terms of the basic

•

•

and nonbasic
Minimize f (xB' xN )

subject to

and

variables
(3.4.2a)

(3.4.2b)

••
•

•

•

••
•

(3.4.2c)

(3.4.2d)

The m basic variables in theory can be expressed in terms of the n-m

nonbasic variables as xB (xN). Assume that constraints g (x) = 0 is

diff~entiable and the m by m basis matrix B can be obtained as

[
ag (X)j

B = ax
B

which is nonsin ular such that there exists a unique solution of xB (xN).

Nonsingular means that the determinant of B :¢' o.

The objective called a reduced objective can be expressed in terms of

the nonbasic variables as

(3.4.3)

The original nonlinear programming problem is transformed into the

following reduced problem

"3- 16



•

•• Minimize F (x
N

)

subject to

(3.4.4a)

•

•

•

••
•

(3.4.4b)

which can be solved by an unconstrained minimization technique with slight

modification to account for the bounds on nonbasic variables. Generalized

reduced gradient algorithms, therefore, solve the original problem (3.3.1) by

solving a sequence of reduced problems (3.4.4), using unconstrained

minimization algorithms.

3.4.2 General Algorithm and Basis Changes

Consider solving the reduced problem (3.4.4) starting from an initial

feasible point xo. To evaluate F (xN) by equation (3.4.3), the values of the basic

variables XB must be known. Except for a very few cases, xB (xN ) cannot be

determined in closed form; however, it can be computed for any xN by an

iterative method which solves a system of m nonlinear equations with the'

same number of unknowns as equations. A procedure for solving the

reduced problem starting from the initial feasible solution xk=O is

•

•

••
•

Step (0)

Step (1)

Step (2)

Step (3)

S . h· . ·al f ·bl I· k=O d k k=Otart WIt Imti eaSl e so utlOn x an set xN =x

Substitute x~ into equation (3.4.2b) and determine the,
corresponding values of xB by an iterative method

for solving m nonlinear equations g (x
B
(x~),~) = o.

Determine the search direction dk for the nonbasic

variables by a line search scheme.

Choose a step size for the line search scheme, 13k such

3-17



•

•• that

k+l ~ Ak kX = +p d
N

(3.4.5)

•

•

•• Step (4)

This is done by solving the one-dimensional search

problem

k k .
with x restricted so that x

N
+ Pd satisfies the bounds

on xN. This one-dimensional search requires repeated

applications of Step (1) to evaluate F for the different

J3 values.

Test the current point xk = (x~, ~) for optimality, if

not optimal, set k = k + 1 and return to Step (1).

•

•

•

••
•

Refer to Figure 3.4.1 the optimization problem can be stated as

subject to

gl (xl' X2) ~ 0

~ (XI 'X2) ~O

The two inequality constraints can be converted to equality constraints using

slack variables x3 and x4
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•

••
• i = 1, ...,4

•

•

••
•

•

•

••
•

The initial point A is on the curve g2 (xl' x2' X3) = 0 where the only variable

that cannot be basic is x4 which is at its lower bound of zero. The reduced

objective is F (x2 1 x4) which is the objective function f(x) evaluated on g2 (xl'

X2' X3) = o.

For purposes of illustrating the basis changes, assume that the

algorithm moves along the curve g2 (xl' X2' X3) = 0 as indicated by the arrow in

Figure 3.4.1 until the curve gl (Xl' X2' X4) = 0 is reached. It should be kept in

mind that an algorithm could move interior from the initial point A,

releasing x4 from its lower bound of zero, but for the sake of illustration of

basis changes, the procedure here will stay on the curves. At the point B

where constraints gl and g2 intersect, the slack variable x3 goes to zero.

Because x3 is originally basic it must leave the basis and be replaced by one of

the nonbasics, x2 or x4. Because x4 is zero, x2 becomes basic and the new

reduced objective is F2 (x3' x4) with x3 and x4 at their lower bounds of zero.

Once again, assuming the algorithm moves along the curve gl (Xl' X2' X4) = 0

towards the x2 axis, F2 is minimized at point C where Xl becomes zero

(nonbasic) and x4 becomes basic. The procedure would then move along the

x2 axis to point D which is obviously the minimum.

3.4.2 The Reduced Gradient
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•

••
I

•

•

Computation of the reduced gradient is required in the generalized

reduced gradient method in order to define the search direction. Consider the

simple problem

Minimize f ( "1' ~)

subject to

•

••

The total derivative of the objective function is

elf (x) = af (x) dx + af (x) {'h..
ax

l
1 ~ ~"2

and the total derivative of the constraint function is

dg (x) = iJ~X) <lx
l
+ iJ~X) <Ix, = 0

(3.4.6)

(3.4.7)

•
Th~ reduced gradients are Vf (x) and Vg (x) defined by the coefficients in the

total derivatives,

Consider the basic (dependent) variable to be Xl and the nonbasic

(independent) variable to be x2. Equation (3.4.7) can be used to solve for dXI

•

•

••

T

[ ag dg ]
Vg(x) = ax

l
' dX

2

(3.4.8)

(3.4.9)
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•

•• dx .:... dg (x)/ dx.2
1 - dg (X)/dx.

1
~

(3.4.10)

•
which is then substituted into equation (4.6.6) in order to eliminate dXl. The

resulting total derivative of the objective function f(x) can be expressed as

The reduced gradient is the expression in brackets {} and can be reduced to•
df(x) = {_ (df(X) )(dg(X »)-1 (dg(X ») + (df(x»)l dx

dX 1 dX 1 dx. 2 dX 2 ~ 2
(3.4.11)

I.
I
I

••

(3.4.12)

which is scalar because there is only one nonbasic variable x2.

The reduced gradient can be written in vector form for the multiple

variable case as

•
in which

(3.4.13)

•
[

dXB1=[ dg (x)r1

[dg (x)1
dxNJ dXB J dxN J

-1 [dg (x)l
=B d~ J (3.4.14)

•

••
•

The Kuhn-Tucker multiplier vector 7t is defined by
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Using these definitions the reduced gradient in equation (4.6.13) can be

expressed as

•

••
•

•

•

T -1 T

[
af(x)l [ag(X)l _[af(x)l -1_ T

OxB J a~ J - .a~ J B - 1t

I dF I [at (X)J T[ag (X)]
V F=I dx 1= ax.._ -1t ax.._

N L NJ N N

3.4.4 Optimality Conditions for GRG Method

Consider the nonlinear programming problem

Minimize f (x)

(3.4.15)

(3.4.16)

••
subject to

g. (x) = 0
1

< <-X. _x. _x.
J J J

i = 1,..., m

j =1,..., n

•

•

In terms of basic and nonbasic variables, the Lagrangian function for the

problem can be stated as

T T _T
L = f (x) + A g (x) + A <x -x) + A (x - x)

•
(3.4.17)

••
•

in which AN and AB are vectors of Lagrange multipliers for nonbasic and basic

variables, respectively.
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•

•• Based on equation (4.5.6), the Kuhn-Tucker conditions for optimality

in terms of the basic and nonbasic variables are

•
(3.4.18a)

(3.4.18b)

• ~B~O ~N~O

(3.4.18c)

(3.4.18d)

•

••
H x

B
is strictly between its bounds then 2l.B =~B =0 by equation

(4.6.18e) so that from equation (4.6.18a),

(3.4.18e)

(3.4.180

(3.4.19)

•

•

In other words, when x
B

< x
B

< xB' the Kuhn-Tucker multiplier vector 1t is

the Lagrange multiplier vector for the equality constraints g(x)=O. Then from

equations (3.4.16) and (3.4.18b)

H xN is strictly between its bounds, i.e., x
N

< x
N

< x
N

' then~ =~ = 0 by

equation (3.4.180 so that

• (3.4.20)

••
•

H~ is at its lower bound, xN = ~, then AN = 0 so

(3.4.21)
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•

••
•

•

If x
N

is at its upper bound, xN =iN' then~ =0 so that

(3.4.22)

The above three equations, equations (4.6.20) - (4.6.22), define the optimality

conditions for the reduced problem (4.6.4). The Kuhn-Tucker conditions for

the original problem may be viewed as the optimality conditions for the

reduced problem.

The essential idea of penalty function methods is to transform

constrained nonlinear programming problems into a sequence of uncon

strained optimization problems. The basic idea of these methods is to add

one or more functions of the constraints to the objective function and to

delete the constraints. Basic reasoning for such approaches is that the

un~~>nstrainedproblems are much easier to solve. Using a penalty function a

constrained nonlinear programming problem is transformed to an

unconstrained problem.

•

••
•

3.5 Constrained Nonlinear Optimization: Penalty Function Methods

•

•

••
•

Minimize f (X)}
subject to g (x) ~ Minimize L [f (x), g (x)

where L [f(x), g(x)] is a penalty function. Various forms of penalty functions

have been proposed which can be found elsewhere (McCormick, 1983; Gill,

Murray and Wright, 1981) The penalty function is minimized by stages for a

series of values of parameters associated with the penalty. In fact, the

Lagrangian function (described in Section 3.3.) is one form of penalty

function. For many of the penalty functions, the Hessian of the penalty
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•

••
•

•

function becomes increasingly ill-conditioned (Le. the function value is

extremely sensitive to a small change in the parameter value) as the solution

approaches the optimum.· This section briefly describes a penalty function

method called the augmented Lagrangian method.

The augmented Lagrangian method adds a "1====-I'='-'=04-...:.f.=un=cti=·o=n

19S5 term to the Lagrangian function (equation 3.3.2), to obtain

m m

LA (x, A, \,) = f(x) + It Ajgj (x) +~It ~2 (x)
i=1 j=l

•
T ][ T=f(x) + A g(x) + 2 g(x) g(x) (3.5.1)

••
•

•

Where(!)is a enalty parameter. Some desirable properties of

equation (3.5.1) are discussed by (Gill, Murray and Wright, 1981).

"A'f ~
For ideal circumstances, x" can be computed by a single unconstrained

minimization of the differentiable function (equation 3.5.1). However, in

general, A" is not available until the solution has been determined. An

augmented Lagrangian method, therefore, must include a procedure for

estimating the Lagrange multipliers. Gill, Murray and Wright (1981) present

the following algorithm:

•

••
•

Step (0)

Step (1)

Step (2)

Select initial estimates of the Lagrange multipliers Ak=o,

the penalty parameter 'If, an initial point xk=o. Set k = k+1

and set the maximum number of iterations as J.

Check to see if xk satisfies optimality conditions or if k > J.

If so, terminate the algorithm.

Minimize the augmented Lagrangian function,
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•

••
•

•

•

Step (3)

Step (4)

Step (5)

Minimize LA (x, A, ",), in equation (3.5.1).

Procedures to consider unboundedn~ustbe consi~,)

ered. The best solution is denoted~ z,----- I! " ~I

Update the multiplier estimate by computing Ak+l.

Increase the penalty parameter '" if the constraint viola

tions at xk+1 have not decreased sufficiently from those at

xk
.

Set k = k+1 and return to Step (1).

••
•

Augmented Lagrangian methods can be applied to inequality

constraints. For the set of violated constraints, g(x) at xk
, the augmented

Lagrangian function has discontinuous derivatives at the solution if any of

the constraints are active (Gill, Murray and Wright, 1981). Buys (1972) and

Roc~afellar (1973a,b, 1974) presented the augmented Lagrangian function for

inequality-constrained problems

•

•

m

LA (x, A, "') = f(x) + L:
i=1

'" 2 A.A.g.(x) + -2 [g.(x)] , if g.(x) s; ",1
1 1 1 1

(3.5.2)

••
•

3.6 The Augmented Lagrangian Method

3.6.1 Introduction
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•

••
•

CD~
Initially, a nonlinear programming problem with equali constraints ~

will be discussed and later, another problem with inequality constraints will

be considered.

The nonlinear programming problem with equality constraints only

can be stated as

•
Minimize f(x)

subject to q(x) = 0, i = 1, 2, ..., m

(3.6.1)

(3.6.2)

•

where x is a vector of n components and usually n ~ m. An optimal solution,

x*, can be obtained by solving the corresponding related set of n+m nonlinear

equations,

where A* is the m-dimensional Lagrange multiplier vector and is part of the

entire solution vector, besides the n-dimensional x* vector. (3.6.3) and (3.6.4)

are the first derivative vectors with respect to Aand x, respectively, evaluated

at x* of the Lagrangian function

••
•

•

VA.LCX*,A*) = ci(x*) = 0

V L(x*,A*) = Vf(x*) - ~ A~VC. (x*) = 0
x ~ 1 1

i

L(x, A) = f (x) - ~ A.. c. (x)
~ 1 1

i

(3.6.3)

(3.6.4)

(3.6.5)

•

••
•

In the classical sense (3.6.3) and (3.6.4) comprise the first-order necessary

conditions for x* to be at least a local minimum of f (x). If the Lagrangian

function (3.6.5) does not contain a saddle point, however, the solution

obtained may not yield a minimum point (Lasdon, 1970).

Rewriting (3.6.1)-(3.6.3) in an exterior penalty type form

2
P(x, 8, 0) =f(x) + ~ ~ a

i
[ cj(x) - 8j], i =1,2, ..., m

1
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•

•• 1 T
= f(x) + 2 [c(x) - a] s[ c(x) - a] (3.6.6)

•

I·
I

•

••

where a is an m-dimensional parameter vector and S is an m x m diagonal

matrix whose elements are the penalty weights cri> o. The solution procedure

to the unconstrained minimization problem (3.6.6) involves the variation of

cri and ai in such a way that x(cr, a) -+ x". When a = 0 the second term in

(3.6.6) is sometimes called the E-enalty term. At each iteration, when x

becomes infeasible this penalty term is added to f (x) and cr is increased for the

next iteration. Convergence is guaranteed by letting cri approach infinity.

When these penalty weights are allowed to grow without bound, an ill

conditioned matrix may arise even before x gets close to x". An attractive

feature of the augmented Lagrangian method is that cri need not approach

infinity and may, in fact, be held constant. Instead, a is varied, such that a -+

a", an optimum parameter vector, while satisfying the condition

a~cr. = A~, i=1,2, ...,m
1 1 1

(3.6.7)

•

•

•

••
•

H Oi is sufficiently large each iteration needs to update only ai. Further

increase in cri is only required when the rate of convergence of x(a, cr) -+ x" is

small. A satisfactory value of cri is usually obtained near the early steps of

calculation and can be held constant throughout the remaining iterations

(Powell, 1978). The augmented Lagrangian function, formed from the

Lagrangian function (3.6.5) augmented by the penalty term defined earlier,

would then be

(3.6.8)

By letting

3- 28



a.
1

•

•• A.
1

9. =
1

i=1,2, ..., m (3.6.9)

•

•

•

and expanding (3.6.6) we get

Pix, 8, 0) = f (x) +t{~Oi[ c~(x) - 2Ci(X~ +~~
2

L 2» 1L A
.=f(x)+lO'.[c.(x)]- .[c.(x)]+- _1

2.11 .11 2. ~
1 1 1 u.

2 1

1 LA.= L (x A a) +_ _1
A " 2 i ai

(3.6.10)

constraints only

Since the second term of the right-hand side of (3.6.10) is not a function of Xi,

we can say that x(8, a) = X(A, a) for any a as long as (3.6.9) holds. For a well-

• • scaled problem, a single scalar value, say r, can replace all ai'S in S such that S

I .~. As such, considerable reduction in the number of unknowns can be ,t

¥""i' realized. ® ~'\:.I
•<I"'vl Now, consider the nonlinear programming problem with i e ualit ~ ,

~

The constraint set (3.6.12) can be modified in the form of (3.6.2) by adding

slack variable Zi

•

•

Minimize f (x)

subject to h.(x) ~ 0, i=1,2, ..., m'
1

h. (x) - z. = 0, z. ~ 0, i=1,2, ..., m'
1 1 1

(3.6.11)

(3.6.12)

(3.6.13)

(3.6.14)••
•

The set (x, z) forms the new feasible space. The new augmented Lagrangian

function would be (3.6.11) plus

Lt.(x, z, Jl, a) = L-~ [h.(x) - z. ] + 2
1~ a. [ h.(x) - z. ]2

.1 .11 1 ~1 1 1
1 1 1
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•

•• where i=l, 2, ... mI. The slack variable zi can be eliminated from the

calculations by performing minimization on the function over z (Powell,

1978). Since only (3.6.14) depends on z, by the first order necessary conditions

•

•I

are

(3.6.14) is transformed into

(3.6.15)

J.1.
if h. (x) ~ crl

I .
I

•

•• or

L t. (x, J.1, cr) =L
iii

1 2 J.1.
-J.1.h.(x) + -2 cr.[h.(x)] , if h.(x) < crl

I I I I I i

2
1 J.1i

-"2cr:-'
I

(3.6.16)

•
r 1 2

~ .t.(x II cr) = .!~ cr. ~ min[ 0, h.(x) - J.1:/cr. ] ~ _1~ II~ /(5.
~ I ''-' 2~ I L I I I J 2~ '-1 I

I I I

(3.6.17)

•

When the equality constraints (3.6.2) and inequality constraints (3.6.12) occur

concurrently in a nonlinear programming problem, the augmented

Lagrangian function becomes

•

••
•

3.6.2 Optimality Results of the Lagrange Multipliers
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(3.6.21)

•

••
•

•

•

••
•

~?Ia- ;~~.~
L () -~ UVc~~J,

Some important duality results will be discussed in this section,

showing the optimum choice of the A and Jl (or 0') parameters which are

determined by the maximization problem in terms of these parameters.

The first order necessary condition for x.. to be a local minimum of LA(X, A, 0')

is that VLA vanishes at x". Deriving VLA from the function in (3.6.8) produces

VLA(x, A, 0') = Vf (x) -~ A.VC.(X) +~ O'.c.(x)Vc.(x) (3.6.19)£.J I I £.J II I
i i

On the other hand, the first order necessary condition for x" to be a local

minimum of the original problem (3.6.1)-(3.6.2) is that it had to satisfy (3.6.3)

and (3.6.4). It follows, then, that VLA(x", A.", 0'..) = O.

The next and final step would be to prove that V2LA (x", A", 0') is

positive definite, i.e., the second order sufficiency condition of the theorem

should hold. By taking the derivative of (3.6.19) with respect to x we obtain

2 2 L 2 TV LA(x, A, 0') = V L(x, A, 0') + 0'.[ c.(x)V c.(x) + VC.(x)Vc.(x) ] (3.6.20)
I I I I I

i

where V2 is the second derivative of (3.6.5). At the optimum point x", the

matrix (3.6.20) becomes

V2LA(x", A", 0') = V2L(x", A", 0') +~ O'.Vc.(x")Vc.(x..)T£.J I I I
i

• Let y be a unit vector orthogonal to Vc (xlt) then the matrix V2LAIt or

2LA(X", A", 0') is positive definite since

V

•

••
•

(3.6.22)

If V2L" is not a positive definite matrix and thus yVc(x") '* 0, then 0' has to be

sufficiently large, say 0' > 0" > 0 such that the second term on the right hand

side of (3.6.21) dominates the negative first term. If this is pursued, V2LA" is

positive and the theorem is proved.

.3- 31



•

•• The augmented Lagrangian function comprising f (x) plus (3.6.16) or

(3.6.17) is discontinuous in its derivatives. A remedy to this problem would

be to partition the function into two parts such that

•
I = {i I h.(x) < Jl:/o. }

1 1 1

1+ = {i I h.(x) < Jl: / 0. }
1 1 1

(3.6.23)

(3.6.24)

•

•

••
•

where I is a general index set, i=l, 2, ..., m l
, and I = I _ U 4. The augmented

Lagrangian function considering inequality constraints only would be

m' {-Il.h .(X) +.! 0.[ h.(x)]2, if i E C
~ 1 1 2 1 1

LA (x, J.l,. 0) = f (x) + £..J
. 1 1 2/ if· I ()1= -- J,1; 0., 1 E + 3.6.252 1 1

If the second order conditions on problem (3.6.11)-(3.6.12) are satisfied and Jl =

Jl*, then there exists a 0' > 0 such that for all 0 ~ 0', x* is a local minimum of

LA(X, Jl, 0). Consider the first order derivatives of (3.6.25) which are

{

VL(x, Jl) +f o.h.(x)Vh.(x) , if i E I
VLA(x, J.l,. 0) = i=l 1 1 1

. Vf (x) , if i E 1+ (3.6.26)

where

•
m'

VL(x, Jl) = Vf (x) -~ Il.Vh.(x), Jl. ~ 0, for i E 1_£..J 1 1 1
i=l

(3.6.27)

•

••
•

The first order necessary conditions for x* minimize LA(x, Jl*, 0) can be

proved to hold in both sides of the partition. For i E 1_ , it follows from

(3.6.16) that Zi* =0 or hi(X*) =0 and thus (3.6.26) gives VLA(X*, Jl*, 0) =VL(x*,

Jl*) = O. For i E I +, the necessary conditions for unconstrained minimization

of f (x) implies that Vf (x*) = 0 and so does LA(X*, Jl*, 0).
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(3.6.28)

•

••
•

•

•

••
•

Using the Kuhn-Tucker conditions and Theorem 1, V2LA(X"", J.1"", 0') is

positive definite in either of the two cases discussed above. Thus the theorem

is proved. (Note that the derivatives of the function are undefined at hi(X) =

J.1i/ O'i.) Further details on dual theorems of the function can be found in

Fletcher (1975) and Rockafellar (1973).

3.6.3 Updating Formula and Convergence

The following discussion is based on the form of the Augmented

Lagrangian function for inequality constraints given in (3.6.25). For the case

with equality constraints, however, it can also be implied from (3.6.25) when i

E I _. The general form for the updating formula for multipliers is

J.1(k+l) = J.1(k) + ~J.1(k)

where the superscripts stand for iteration number. The second term of the

equation is continuously modified such that J.1(k+l) -4 J.1"". The first order

necessary conditions at optimum for the original problem (3.6.11)-(3.6.12)

gives

•

•

VL(x*, J.1"") = Vf (x"") - L Jl'i Vhi(x") = 0
i

J.1~ h.(x") = 0, ~ ~ 0
1 1 1

The first derivatives of (3.6.25) are defined as

{

Vf (x) - L [~ -O'ihi(x) ] Vhi(x) ,
VLA(x, J.1, 0') = i

Vf (x) ,

if i E L

(3.6.29)

(3.6.30)

(3.6.31)

••
•

When i E I + , the complementary slackness conditions, Jli hi(x..) = 0, give Jli"

= O. Since Jl(k+l) -4 J.1", substituting Jli" =0 in (3.6.28) for J.1(k+l) implies

(3.6.32)
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•
-•• When i E 1_ , we can equate (3.6.29) and (3.6.31), cancel similar terms and

obtain Jli lt = Jli - eJ'i hi(X). By using (3.6.28) again, the implication becomes

linear rate of convergence.

Equations (3.6.32) and (3.6.33) are the simplest updating formulas

which do not require any derivatives. Either updating formula represents a

stee est ascent towards the maximum of the dual function of (3.6.26) with a

•

•

dJl~k) = - eJ'.h.(x), for i E I_
1 1 1

(3.6.33)

•
3.8 Solution of Discrete Optimal Control Problem

3.8.1 Discrete Optimal Control Problem

••
Consider the following discrete optimal control problem

min z = min f (x,u) (3.8.1)

I

I.

•

subject to

x = g(x, u, t)
t+l t t

x :S;x :S;X
t t t

t=O, ... ,T-1

t=O, ... ,T

t=O, ... ,T

(3.8.2)

(3.8.3)

(3.8.4)

•

••
•

where Xt is the column vector of state variable at time t; Ut is the column

vector of control variables at time t; x and u are column vectors of upper
t t

bounds; and K and u t are column vectors of lower bounds. f and g are
t

assumed continuously differentiable in (Xt, Ut) for each t. the time, t, can only

take on finite number of discrete values, t = 0, I, ... , T. Equation (3.8.2)
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•

••
•

represent the process or simulator equation and equations (3.8.3) and (3.8.4)

represents the bound constraints on the state and control variables,

respectively.

The struct1!re of the Jacobian of (3.8.2) is shown in Figure (3.8.1).

Nonzero elements are only in the unit submatrices and in the submatrices

Ho, ... , HT-l; Ko,···, KT-l, where

•

•

ag
H -

I - ax
I

ag
K -

I - au
I

3.8.2 Reduced Objective Problem

(3.8.5)

(3.8.6)

••
Considering a given u, the system of equation (3.8.2) may be solved for

a unique x, x(u). This function x(u) can then be used to eliminate u in the

objective (3.8.1)to yield a new function

•
F(u) = f (x(u), u)

By the implicit function theorem (

(3.8.7)

), x(u) is continuously differentiable,

•

•

so that F is a differentiable function of u, referred to as the reduced objective

function.

Solving the process simulation equations (3.8.2) for a particular set of

control variables, u, each time these equations need to be evaluated, the

reduced optimization problem takes the form

••
•

Min f (x(u), u) = Min F(u)

subject

(3.8.8)



• x ~ x (u ) ~x
-t t t t

ll. ~u ~u
t t t

(3.8.9)

(3.8.10)

State (or dependent) variables and the control (or independent)

variables are implicitly related through the simulator. In essence the

simulator equations are used to express the states in terms the controls

yielding a much smaller optimization problem. The reduced gradient ~~

where F(u) = f (x(u), u) is required to solve the reduced problem. In order to

determine the reduced gradient the following procedure can be used.

••
•

Step 1

Step 2

or

Use the appropriate simulation model solve the simulator

(process) equations.

Solve the following set of linear equations

(3.8.11)

af
1tB = ax

• for the row vector Lagrange of multiplier (1t). This equation is derived from

the general reduced gradient equation ( ? ).

•
Step 3 Evaluate the reduced gradient

aF af dg
--- -1t-au - au au (3.8.12)

••
•

dg ag . .
In the above two equations all elements of ax and au are evaluated at

some model solution u for which the ~~ is evaluated. Because the simulator



• equations (3.8.2) have a sequential form, :: is block lower triangular with

square nonsingular blocks. The large linear system (3.8.11) decomposes into T

smaller sequential systems, which are solved backwards in time. The

difference equation for the multipliers are

ag
In these equations the matrices Bt and a~+l are evaluated using the control

t

and state variables obtained in step 1 when solving the simulator equations

and all vectors in (3.8.13 a and b) are row vectors. Then (3.8.13a) is solved for

1tT and (3.8.13b) is solved sequentially for 1tT_I , 1tT_2, .", 1t1. Equations (3.8.13a

and b) are derived from the general reduced gradient equation 1tB = g~. The

components of the g~ are evaluated by

••
•

1t B =~
T T ax

T

1tB = af -1t agt+1
t t ax t+l~

t t

aF af agt------1t--
au - au tau

t t t

t = T-l, T-2, ..., 1

(3.8.13a)

(3.8.13b)

(3.8.14)

• The dynamic structure of the simulator equations could be of the form

t = I, ... , T (3.8.15)

•

I

••
•

where g ( ) is an m-vector of function, assumed differentiable, and sand care

the maximum lags of x and u, respectively. For many application g has the

form g = -Xt + h (xt ' .•. , xt-s' u t' ... , ut-e) = O. The difference equations for the

Lagrange multipliers are
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•

••

• where

aF
1t B = ax

T T T

aF b
1tB =-- I 1tB

t t ax 1 't 't,tt 't=t+

(3.8.16)

t= T-1, T-2, ..., 1 (3.8.17)

•

•

b =min (t+s, T)

a~
B -'t,t - ax

t

ag
tB -

t - ax
t

(3.8.18)

(3.8.19)

(3.8.20)

••
ag .ax IS nonsingular if and only if all matrices B tare nonsingular. The

f aF I d .components 0 au are eva uate usmg

•

•
where

aF af ~ a~
au = au - £..J 1t't au

t t 't=t t

a =min (t-c, T)

(3.8.21)

(3.8.22)

•

••
•

If the simulator equations are not simultaneous, each Bt is triangular so

(3.8.16) and (3.8.17) can be solved quickly.

3.8.3 GRG Algorithm to Solve Optimal Control Problem

Consider an optimal control problem of the form



•
-••

•

T

Min z = Min I. f (x, ..., X , U , ••• , u )
1=1

1 t t-s' t t-c'

subject to

g (X, ..•, X , U , ... , U ) = 0
t t t-s t t-c

t =I, ... , T

t =I, ... , T

(3.8.23)

(3.8.24)

(3.8.25)

•

•

••
•

•

For simplicity, bound constraints on the state variable have been suppressed.

The state and control lags, s' and c l
, for the objective function may differ from

sand c for the simulator equations. The vector of functions g and objective

functions f t may all be nonlinear and are assumed to be continuously

differentiable. The recursive equations (3.8.24) are assumed to have a unique

solution xl' ... , xT for any set of control vectors u l ' ... , uT satisfying (3.8.24)

and for any initial conditions.

Bounds on the state variables may be dealt with by penalty or

Augmented Lagrangian methods, which required no basis changes, and

consequently simplify the algorithm. Penalty or Lagrangian methods may

not be as efficient as methods that deal with state bounds directly.

The algorithm presented by Mantell and Lasdon (1978) is stated as

follows

Step 0: Given are the initial control vector u(i) and all initial values of

• lagged states and control variables, set k = O.

••
•

Step 1: Simulate the system with u =uk to determine all state variables and

the objective value F (uk).

Step 2: Compute VF (uk) from (3.8.17) and (3.8.21).



•

••

•

Step 3: Check for convergence and stop if convergence criteria are satisfied,

otherwise go to step 4.

Step 4: Compute the search direction d k using an unconstrained

minimization algorithm.

Step 6: Set u k+1 =uk + ~kdk

•

•

Step 5: Perform a one dimensional search along dk to find ~k, the step size

that minimizes F (u k + ~ d k) subject to ~ > 0 and

l!. $ uk + J3d
k

$ u. For each value of ~ in the search it is required

to simulate the system by solving the simulator equation (3.8.24),

compute the objective, and possibly compute the reduced gradient.

Step 7: Replace k by k + 1 and return to step 3 (to step 2 if the reduced

• • gradient is not computed in the one dimensional search).

•

•

•

••
•



•

••
•

•

•

••
•

•

•

••
•
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•

FIGURE 3.1.1
Illustration of Convex and Nonconvex Regions.
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•
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FIGURE 3.2.1
Definition of Unimodal Functions.
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•

]2.,1
/ 1,1- \

Table 4::A:;:r Computation of Search Direetions* l J'11u<-t' ~'(r.---;', [1'; c)
Search Direction Definition of Terms

Steepest Descent
k+1 ( k+1!

d =-V'flx )
Conjugate Gradient Methods
(1) Fletcher-Reeves

d
k+1 _ nf( k+l! + dk

- -y lX ) a
l

(2) Polak-Ribiere

(3) I-Step BFGS

•

••
•

•

k+1 k+1 (k+l!
d =G V'flx )

•

••
•

Quasi-Newton Methods '*"*
(1) Davidon-Fletcher-Powell OFF Method ( Variable Metric Method)

T T
k+1 k Sk (Sk) Gk

yk (Gk yk)
G = G + T - -----=T'----:.-

(sk) yk (yk) Gk yk

(2) Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method)
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(3) Broyden Family

G~ = (1 - <1» G
DFP

+ <I> G
BFGS

Newton Method

•

••
•

•

•

••,
"'.~,A"..

*Formulas for other search directions can be found in Luenberger (1984).

*-"l C;"::;:.... 0
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CHAPTER 4

GROUNDWATER MANAGEMENT SYSTEMS

4.1 Problem Identification·

Aquifer simulation models have been used to examine the effects of

various groundwater management strategies. Use has primarily been of the

"case study" or "what if" tyPe. The analyst specifies certain quantities and the

model predicts the technical and perhaps economic consequences of this

choice. The analyst evaluates these consequences and uses his judgement

and intuition to specify the next case.

Optimization methods have been used in groundwater management

for more than a decade with some success. Most uses focused on explicitly

combining simulation and optimization, resulting in so-called simulation

management models. Gorelick [1983] reviewed these models and classified

hydraulic management models into two major approaches: embedding and

use of a unit response matrix or an "algebraic technological function" (ATF).

Em~edding incorporates the equations of the simulation model(represented

as a set of difference equations) directly into the optimization problem to be

solved. This method has limited applications and is mostly used in ground

water hydraulic management, since the optimization problem quickly

becomes too large to solve by available algorithms when a large scale aquifer,

especially unconfined, is considered. Previous work based on this approach

includes Aguado et al. [1974], Aguado and Remson [1980], Willis and

Newman [1977], Aguado et al. [1977], Remson and Gorelick [1980], and Willis

and Uu [1984].

The ATF approach generates a unit response matrix by solving the

simulation model several times, each with unit pumpage at a single

pumping node. Superposition is used to determine the total drawdowns.

·4-/
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This yields a smaller optimization problem, but the method has two major

limitations. It is exact only for a confined aquifer but has good accuracy for an

unconfined aquifer with relatively small drawdowns compared to the aquifer

thickness. A drawdown correction method may be used to improve accuracy

for an unconfined aquifer with larger drawdowns, but acceptable accuracy can

be guaranteed. In addition, the response matrix must be recomputed when

exogenous factors such as aquifer boundary conditions or potential well

locations change. An alternative is to treat these factors as decision variables

and constraints are included in the optimization problem. Work stemming

from this approach includes that by Maddock [1972, 1974], Maddock and

Haimes [1975], Morel-Seytoux [1975], Morel-Seytoux and Daly [1975], Morel

Seytoux et al. [1980], lliangasakare and Morel-Seytoux [1982], Heidari [1982],

and Willis [1984].

Another approach has been to solve an optimal control problem by

interfacing a simulation with an optimizer. The simulator essentially solves

the simulator implicitly for the optimizer. Gorelick el al. [1984] applied this

method to an aquifer reclamation design to overcome the nonlinearities

incurred by the contaminant transport equations. In effect, the dynamic

Jacobian matrix, required by the projected Lagrangian method in solving the

optimization problem, was determined via forward or central finite

differencing, with the contaminant transport simulation used to provide the

function values needed in the differencing. This is closely related to the

approach described here. We use an analytic rather than differencing

approach for computing these same partial derivatives. The possibility of

doing this is mentioned in the above reference. However, the hydraulic

response was handled by the ATF method.
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The work described here attempts to obtain the generality of the

hydraulic simulation-management model in combining simulation and

optimization to solve the optimal control problem. The overall problem is

viewed as one of discrete time optimal control where variables describing the

aquifer system are divided into the system state (head) and control

(pumpage). By expressing head as an implicit function of pumpage, the model

constraints are conceptually eliminated, yielding a smaller reduced problem

involving only the pumpage variables. Head bounds are incorporated into

the objective using an augmented Lagrangian algorithm as described in

Chapter 3. This requires the solution of a set of linear difference equations

backward in time and has major speed and accuracy advantages over finite

differencing.

4.2 Problem Formulation

4.2.1 Aquifer Model

For nonsteady state heterogeneous anisotropic groundwater flow in

saturated media the partial differential equation governing the two

dimensional case is

• i, j = I, 2 (4.2.1)

•

•-
•

where Tij = transmissivity tensor; h = hydraulic head; W = volume flux per

unit area; 5 = storage coefficient; Xi, Xj = Cartesian coordinates; and t = time.

For numerical solution using finite difference methods, the aquifer is divided

into T periods which need not be of equal length. For the finite difference

4-3
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• grid shown in Figure 4.2.1. The discretization used here leads to the

following system of difference equations:

Aijhij - l,t + Bifi,j + l,t + Cijhi-l,j,t + Dijhi+l,j,t

- (Aij + Bij + Cjj + Dij + Fij + Rij)hi,j,t + Fijhi,j,t-l

- ~jt + RjjRDij = 0 for all i,j t = 1, ... , T (4.2.2)

In the above, hijt =head at cell (i, j) at the end of time period t, qijt = pumpage

(if positive) or recharge (if negative), Rij = spring water constant, RDij =
minimum head for spring water to occur, Fij =a coefficient which depends on

storativity or specific yield, and Aii' Bij, Cij, Dij = coefficients which depend on

the transmissivity for cells adjacent to (j,j). Coefficients A, B, C and D can be

expressed in terms of aquifer permeability as follows:

•

•

•

••
•

•

•

••
•

2~y.PX .. 1
1 1,)-

Ai )' = (TH i l'~'-l + TH. '-1~)') 2
, ,) 1,) (~j-1+~)

2~YiPX, .
B .. = (TH ..~. 1 + TH.. ~. ) 1, )

1,) 1,)) + 1.)+ 1 1 (Au Au )2
L.lA. j + 1+ L.lA. j

2~Py..
D .. = (TH .. ~y. 1 + TH .~y) ) 1,)

1,) 1,))+ i + 1,) i (~ ~)2

Yj+1+ Yi

where

PXi,j = aquifer permeability between node (i,j) and (i, j+l);

PYi,j = aquifer permeability between node (i,j) and (i+1, j);

4-1
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(4.2.4)

(4.2.5)

(4.2.6)



(4.2.7)

•

••
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THi,j = aquifer thickness for node (i,j) at time step t, and

~xy ~Yi = the grid size of the cell (i, j).

The expressions (4.2.3) - (4.2.6) are valid for both artesian and water

table conditions, only the thickness terms are defined differently. For a cell

(i,j) with water table conditions, the thickness can be computed from,
THo 0 = ho 0 t - BOT 00

1.] 1, J, 1, J

•
and for artesian conditions

TH 0 0 = TOP 0 0 - BOT 0 0

1, J 1, J 1, J
(4.2.8)

•

••
•

•

•

••
•

where TOPi,j and BOTi,j are the average elevations at the top and bottom of

the aquifer at cell (i, j), respectively. Similarly, the coefficient F is given as

F = 5 i,j~i~y i / ~t (4.2.9)

where Si,j is either the storage coefficient or the specific yield depending upon

the condition of the cell (i, j), and ~t is the time step increment. Under water

table conditions, the thickness terms defined in (4.2.7) will cause the system of

equations to be nonlinear in terms of the hydraulic head.

.' The alternating direction implicit (AD!) method to solve the system of

equations (4.2.2). The method involves iteratively solving the simultaneous

equations by first, for a given time increment, reducing a large set of the

equations down to a number of small sets. This is done by solving the node

equations using Gauss elimination of an individual column of the model

while all terms related to the node in adjacent columns are held constant.

The set of column equations is then implicit in the direction along the

column and explicit in the direction orthogonal to the column alignment.

The solution of the set of column equations is then a straight forward process

of back substitution.

After all column equations have been processed column by column,

attention is focused on solving the node equations again by Gauss

4-6
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elimination of an individual row while all items related to adjacent rows are

held constant. Finally, after all equations have been solved row by row, an

iteration has been completed. The above process is repeated a sufficient

number of times to achieve convergence, and this completes the

computations for the given time step. The solution is said to converge if the

differences between row and column solutions is not greater than the

tolerance limit set forth. The computed heads are then used as the initial

conditions for the next time step. This total process is repeated for successive

time increments with unconditional stability regardless of the size of the time

increment. More details on how to rearrange the variables and equations can

be found in Prickett and Lonnquist (1971).

The coefficients Aij, Bij, Cij, and Dij are linear functions of the thickness

of cell (i, j) and the thickness of one of the adjacent cells. For artesian

conditions, this thickness is a known constant, so if cell (i, j) and its neighbors

are artesian, the (i, j) equation of (4.2.2) is linear for all t. For water table

conditions, the thickness of cell (i, j) is hijt - BOTij, where BOTij is the average

elevation of the bottom of the aquifer at cell (i, j). Then (4.2.2) involves

products of heads and is nonlinear.

4.2.2 Constraints

Demand Schedule. It is assumed that the flow rates over specified time

periods from all wells must either equal specified values or lie within a

specified range. H c.o is the set of all cells with pumpage, the former restriction

is expressed as

1 qijt =d t t=1, ... , T (4.2.10)
, q.j) em

.. '-"'''' ......

while the latter one is

4-7



(4.2.10)

(4.2.11)

t =1, ... , T

(i, j) E co

d l s: L qijl s: d l
(i, j) E CD

where d I represents the lower bound on demand for time period t and d t is

the upper bound.

Flow Bounds. The flow bound constraints for recharge and pumpage

have--the form
.s ijt s: q ijt s: q..

l}t

••
•
I

•
where the barred quantities are specified limits on the purnpage or recharge. If

9. is zero, this permits no recharge, while a positive lower limit forces
ijl

•
pumpage to at least to this level.The expression qijt represents pumpage

capacity if positive, while q .. = 0 and .9. .. < 0 provide for a limited recharge
l}t ~l

capability.

Head Bounds: The head bounds are expressed as•• h s:h .. s:h ..
-ijl lJI lJI

(i, j, t) E 5 (4.2.13)

•

•

•

••

where 5 is a subset of cells and time periods where the head is to be

controlled. Examples include reducing heads below specified levels in

dewatering problems, for maintaining heads above certain levels at springs in

acquifer management problems, or insuring that computed heads do not

exceed the ground surface for water table conditions.

Groundwater Flow Equations. The difference equations (4.2.2) relating

the heads and the well flows in the aquifer are also constraints of the

optimization. In the solution approach described in the next section, these

equations are used to solve for the heads given the well flows, eliminating

the heads and reducing the problem to one involving only the well flows as

decision variables. Constraints of this reduction problem will be the demands

(4.2.10) or (4.2.11), flow bounds (4.2.12) and head bounds (4.2.13).

• 4-8
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4.2.3 Objective Function

Any continuous ftinction of hand q can be used as an objective

function. However for demonstration purposes, two objective functions are

presented here. One is to maximize the sum of the heads at all pumping

nodes over all time periods, i.e.,

In conjunction with the demand constraints (3) or (4) this objective meets

demands while maintaining maximum acquifer potential. The second, used

in dewatering problems, is to minimize the pumpage,

•

•

.-

T

Maximize sumh = L L h ljt
(l.p e co t= 1

T

Minimize sumq = L Lq ljt
(l,pe co t'" 1

4.3 Problem Solution

4.3.1 Overview

(4.2.14)

(4.2.15)

•

•

•

•-
•

The solution methods described here were designed to work with

existing aquifer simulation programs. This is a desirable feature in making

maximal use of existing technology, and any improvements or changes in the

simulation model are automatically incorporated into the optimization

scheme.

Aquifer simulators solve for heads and perhaps pollutant

concentrations given certain controllable variables. In the simulator used

here, the head is computed given the well flows. This allows the constraint

and objective function of any aquifer model problems to be viewed as

functions of only these controllable variables. Since there are relatively few

controllable variables, the resulting problem is easier to solve. The major

4-9
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remaining difficulty is to compute first partial derivatives of the objective and

constant functions with respect to the controllable variables. These

derivatives can be computed in significantly less time than is required to

perform a simulation. Once they are determined, several efficient nonlinear

optimization routines are available to solve the problems.. These ideas are

general and can be applied to any aquifer, modelling both water quantity and

quality.

4.3.2 The Reduced Problem

The system of nonlinear difference equations (2) can be solved for the heads

h ijt given well flows 'lijt (and initial and boundary conditions). Let q be the

vector of all well flows in all time periods, and define hijt(q) as the heads

which satisfy these difference equations when the well flows have the values

given by q. For purposes of illustration, let the objective function be the sum

of the heads at the pumping nodes, hsum, given by (4.2.14). Since each head

hijt ,is a function of q, hsum is a function of q also, expressed as hsum(q) :

T

hsum(q)= L Lhijl(q) (4.3.1)
(i,j) e CD t= 1

Similarly, the head bounds (4.2.13) are functions of q also, rewritten as

.b ijt ~ h ijt (q) ~h ijt (i, j, t) E S (4.3.2)

Again, for purposes of illustration, let the demand constraints be equalities as

in (4.2.3). These involve only the well flows 'lijt and are rewritten here along

with the head bounds:

••
•

L qijt =d t
(i,pe CD

(i, j) E co

</--10

t = 1, ...., T

t = 1, ...., T

(4.3.3)

(4.3.4)
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The problem of maximizing hsum, (4.3.1), subject to the head bounds (4.3.2),

demand constraints (4.3.3), and flow bounds (4.3.4) is called the reduced

problem. It involves oniy the well flows, and is much smaller than the

original problem. Many head variables have been eliminated, as have the

aquifer model equations (4.2.2). However, the remaining heads hijt(q) for { (i,

j) e co} U { (i, j, t) e S} in (4.3.1) and (4.3.2) are implicit, possibly nonlinear

functions of the well flows, q. The simulation model is used to solve for the

implicit· function value.. Optimization methods require values of the

objective and constraint functions and their derivatives with respect to each

well flow variable. We focus now on how these derivatives can be computed

efficient1y.

4.3.3 Computing the Reduced Gradient

Consider the computation of the gradient of the head sum, Vhsum(q),

which is called a reduced gradient. The function hsum is an implicit function

of q through the groundwater simulation equations (4.2.2). However, the

time-staged structure of these equations leads to an efficient procedure for

computing Vhsum. Procedures of this type have been used to compute the

reduced gradients of objective functions defined in econometric models,

which are also systems of implicit nonlinear difference equations. Details are

given by Mantell and Lasdon [1978] and Norman et al. [1982]. To apply these

results to the problem at hand, some additional notation is needed.

Let ht be the vector of all heads at time t, with components hijt, and

write the aquifer model difference equations (2) in vector form as

gt(ht,ht_1,qt)=O t=l, ...,T (4.3.5)



(4.3.6)

(4.3.7)

(4.3.8)

(4.3.9)

•

••
•

•

•

••
•

•

r

Also defined are the following matrices of partial derivatives of the model

equations with respect to current and lagged heads:

B t = dg t / dh t t = 1, , T

C t+ 1 t=dgt + 1 /dh t t=l, ,T+l,

Finally, let Xt be a row vector of Lagrange multipliers for the model equations

(4.3.5). Each Xt has as many components as there are grid blocks in the aquifer

discretization. Then the procedure for computing Vhsum for a given vector

of well flows q+ is

Step 1

Solve the simulator equation (4.3.5) forward in time with 'It = q;,

yielding heads h; for t = 1, ..., T.

Step 2

Solve the following system of linear difference equations backwards in

time for the Lagrange multiplier vectors x t :

xTB T= d(hsum) / dh T

xTB T = d(hsum) / dh"T -x t+ IC t+ ITt = T-l, T-2, ..., 1
. . '-"

In these equations, the matrices Bt and Ct+1, t must be evaluated using the

well flows and heads obtained in step 1, and all vectors in (4.3.8) and (4.3.9) are

row vectors. Then (4.3.8) is solved for xT and (4.3.9) is solved sequentially for

•

••
•

XT_I,XT_2r-, Xl . Equations (4.3.8) and (4.3.9) are derived from the general

reduced gradient equation xB = df / dy in which x is a (row) vector of

Lagrange multipliers, B is the basis matrix, f is the objective function, and y is

the vector of basic variables (see Ladson et al. [1978] or Lueberger for a

derivation). If all variables ht are basic and all qt nonbasic, the time staged

structure of (4.3.5) implies a sequential structure for these Lagrange multiplier

equations as well.



•

•• Step 3

Evaluate the components of Vhsum by

d(hsum) / dq ijt = d(hsum) / dq ijt - 1t tdgt / dq ijt (4.3.10)

•

•

•

••
•

•

•

••
•

The most time consuming part of these computations (apart from the

groundwater simulation) is computing the partial derivative matrices Bt and

Ct+l,t and solving the linear equations (4.3.8) and (4.3.9). For the difference

equations (4.2.2), the structure of the matrices Bt and Ct+l,t is shown in Figure

4.3.1. Bt is a pentadiagonal matrix, while Ct+l,t is diagonal, so the right-hand
q

side of (4.3.1S) is easy to compute. Ct+l,t is constant, and Bt is constant if the

entire aquifer is artisian. If some portion has water table conditions, some

elements of Bt are linear functions of head. Hence, for the artesian aquifer,

the reduced problem is linear, so the reduced gradient of any problem

function (either hsum or one of the heads hijt(q» is constant and need be

computed only once. Otherwise, the above computations must be performed

each time the well flows are changed.

In addition, since each well flow ~jt appears in only one simulator

equation (the one for block (i, j) in period t), dg t / dq ijt is the negative of a

unit vector and d(hsum) / dq ijt is zero, so (4.3.10) becomes

d(hsum) / dq ijt = 1t ijt (4:3.11)

Summarizing, while (for water table conditions) the aquifer simulator

solves a system of nonlinear difference equations forward in time, yielding

the heads, the reduced gradient computation solves the linear system of

difference equations (4.3.8) and (4.3.9) backward in time, yielding the Lagrange

multipliers 1tt. Both systems contain the same number of equations and

involve matrices of the same form.
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•

m columns

rows

(i,it J)

(l-t,O

m columns

x X X
X X X X

X X X
X X X X

t«8a« Be Be BrJ f08b//.~///fi
X X X X

X X X X
X X X X X

X X X X
X

.
X X

X X X X
X X X

~

.j

i
( itt,j)

Bt
43.1

Fig. f. Matrix of the constraint coefficients for the n by In finite difference cells with three lime sleps.

tot itep



•

••
•

•

•

••
•

•

•

••
•

The Lagrange multipliers 1tt are more than just an artifice which is

useful in computing the reduced gradient. When evaluated at an optimal

solution, they supply valuable sensitivity information. For the problem of

maximizing hsum considered here, the optimal value of 1tjjt is equal to the

change in the optimal hsum value caused by an additional thousand gallons

of water flowing out of cell (i, j) in period t. This applies whether or not there

is a well in cell (i, j). Hence, these multipliers could serve to show where new

wells should be located, either for pumping or recharge.

4.3.4 Satisfying The Head Bounds Using An Augmented Lagrangian Function

If a portion of the aquifer has water table conditions, the head bounds

(4.3.2) is nonlinear. These constraints involve the implicit functions hijt(q).

Computing the reduced gradient of each of these functions requires

performing steps 2 and 3, previously discussed. Hence, to compute reduced

gradients of all head bound constraints, Nb '" T systems of linear equations,

arising from (4.3.8) and (4.3.9), must be solved, where Nb is the number of

head bound constraints. Instead, an approach which computes only one

reduced gradient, requiring the solution of only T linear systems, was chosen.

This approach combines the head bounds and the objective into a penalty-like

function called an augmented Lagrangian. The procedure is well established

in nonlinear programming and is described by Rockfellar [1973], and Fletcher

[1975].

Let

c i~ (q) = min {h ijt (q) - h ijt ,h ijt - h ijt(q)} (4.3.12)

Then the head bounds are equivalent to the constraint that Cijt(q) be

nonnegative. The appropriate augmented Lagrangian function is

4-/ s



(4.3.13)

(4.3.14)

(4.3.15)

•

••
•

•

••
•

•

•

••
•

L(q, Jl, a) =hsum (q) + t a I, [min (0, C ijt (q) - Jl ijt / a)i
(ijt) E 5

~ I, (Jl ijt) 2 / a
(ijt) E S

The parameters Jlijt are Lagrange multipliers for the head bounds, while a is a

positive penalty weight. Consider the Lagrangian problem

Maximize L(q, Jl, a)

subject to constraints (4.3.3) and (4.3.4)

where the maximization is over q and J.!, cr are fixed. If a cr is larger than some

threshold value a and Jl is set equal to the optimal multipliers for the head

bounds, Jl", then any optimal solution for this Lagrangian problem solves the

reduced problem (4.3.1) - (4.3.4). This suggests an algorithm (Figure 4.3.1) in

which the Lagrangian problem is solved, the parameters Jl and a are adjusted

convergence is checked, and the steps are repeated. The multiplier update

rule used is

Jl rjt = Jl ijt - ac ijt if c ijt ~ Jl ijt / a

Jl:it = 0 c·it > Jl.ot / a
Jr Jr JI

Convergence is tested by checking if the maximum violation of the

head bounds is less than a user-supplied tolerance. In general, these

violations will be the largest at the start and will diminish as the algorithm

proceeds.

If the maximum bound violation has increased over its value at the

previous iteration, a is replaced by lOa and Jl are not updated. If the current

largest bound violation is larger than 1/4 of its previous value, a is replaced

by lOa and the J.! are updated. Otherwise, cr is left at its current value when

the updating rule (4.3.15) is applied. The algorithm for the methodology is

outlined in Figure 4.3.2.

4-/6
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4.3.5 Solution Using the Code GRG2

The Lagrangian problem (4.3.14) has a nonlinear objective L and linear

demand and flow bound constraints. The reduced gradient of L is computed

using the previously discussed procedure. To solve the Lagrangian problem

(4.3.14), a program called GRG2, described by Ladson et al. [1978], can be used.

The algorithm used in this code is of the reduced gradient type, and such

methods are particularly effective for linearly constrained problems. GRG2

uses the T demand constraints to eliminate T dependent well flows in terms

of the remaining independent ones. These independent flows are varied by

the most efficient algorithm available, the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) quasi-Newton method [Fletcher, 1981]. This algorithm uses the

gradient of the augmented Lagrangian function to estimate the matrix of

second partial derivatives of this function and uses this matrix to compute an

efficient search direction. A one-dimensional search procedure using

quadratic interpolation is used to determine the distance to move along this

dir~ction. The procedure is repeated until one of several stopping criteria,

described by Ladson et al. [1978] is met. Of course, if there are logical optima

distinct from the global optimum, GRG2 cannot guarantee convergence to the

global optimum.

The optimization-groundwater simulation system is referred to as

GWMAN. It contains GRG2, the generalized reduced gradient model by

Ladson et al' [1978], and GWSIM, a groundwater simulation model developed

by the Texas Water Development Board [1974]. GWSIM is a finite difference

simulation model which uses the alternating direction implicit method to

solve the finite difference equations.
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4.4 Application

Wanakule et al. (1985, 1986) developed a model (GWMAN) for

determining optimal pumping and recharge for large scale artesian and/or

non-artesian aquifers. The model methodology was closely related to the

approach used by Gorelick et al. (1984). The overall problem was viewed as

one of discrete time optimal control, where variables describing the aquifer

system were divided into system state (head) and control (pumpage). By

expressing head as an implicit function of pumpage, the model constraints

were conceptually eliminated, yielding a smaller reduced problem involving

only the pumpage variables. Head bounds were incorporated into the

objective using an augmented Lagrangian algorithm. The major contribution

of their work was an analytic scheme to compute the reduced gradient needed

for optimization. This requires the solution of a set of linear difference

equations backwards in time, and has major speed and accuracy advantages

over finite differencing.

The following paragraphs describe four groundwater management

/(,1./0
Problem 1 has a grid system configured as shown in Fig. 4!? where the

grid size is 0.2 mi each side. The bottom elevation is at 150 ft while the

thickness in the water table and artesian portions are 100 ft and 50 ft,

respectively. Other physical properties are Kx = 600 gallday/ ft2, Ky = 300

gal/day/ft2, Sy =0.1, and S =0.001. The problem requires maximizing the sum

of the heads at the pumping nodes over a period of 5 years, a surrogate

objective function for minimizing pumping cost, subject to 2,000 acre-ft/yr

demand constraints, lower head bounds at 200 ft and lower flow bound of 200

acre-ft/yr. The problem has 5 one year time intervals with four pumping

nodes for each interval.
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Problem 2 is the steady state dewatering example taken from Aguado et
. q,'f.11::>

al. (1977). The grid system (Fig. ..liS) consists of 121 rectangular cells of 40 m by

10 m in size. The problem is to determine minimum total pumpage that will

maintain the water level in a rectangular evacuation area located in the

center of the homogeneous isotropic unconfined aquifer at 21 m. The bottom

of the aquifer elevation is at 0 m and surrounding constant head elevation is

at 36 m. The value of hydraulic conductivity is 10.81 m/d.

Problem 3 is a hypothetical example of a hydrocarbon recovery site

where the strategy is to create a containment depression near the center of the

hydr<;>carbon plume. The problem is to determine the optimal water

purnpage so that the hydrocarbon plume which is floating on the water layer

will be confined to the containment area. The finite difference scheme, setup
il,'1.Ie"

as shown in Fig. 41", has a total of 1089 active cells whose dimensions are 180 ft

by 120 ft. The aquifer is isotropic nonhomogeneous with an average

hydraulic conductivity of about 100 gal/day/ft2.

Problem 4 is a field application to the Barton Springs - Edwards aquifer

in Austin, Texas. It is a limestone aquifer where its main recharge openings

were created by steep-angle normal faulting across the stream beds. The

problem is set up to determine the optimal yields under long-term average

recharge conditions subject to maintaining the spring flows at 25 cis (0.708 cu

m/sec). The finite difference grid system contains 330 active cells whose
2 2 ~,/,II

dimensions are varied from 0.379 by 0.283 mi to 0.95 by 1.51 mi (Fig. ~).

The total aquifer area includes approximately 150 mi2. The hydraulic

conductivity values vary greatly from 0.1-2.0 ft/day in the outcrop area to 50

1,150 ft/day in the eastern side of the aquifer or the confined zone where the

main underground flow channels are located. The groundwater flow

4-20
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generally is to the east in the outcrop area and then bends to the north toward

the Barton Springs.
a- et.-

Table 4.4.1 compares the result)between ~VAX and/1..tfte Mac IT. The

execution time on the Mac IT is about 7 time slower while the objective values

at optimum obtained from VAX, in almost all cases, are better than those

from the Mac IT. The improvement of objective values on the Mac IT can be

achieved by tightening the convergence limit on the optimizer and/or

adjusting the magnitude of penalty weights and the initial estimates of

Lagrangian multipliers. This, off course, will increase the number of

simulation calls and execution time.

The results clearly indicate the potential for implementing GWMAN

on microcomputers. Even though it is slow in execution, the advantages in

accessibility and low cost computing time can compensate for slowness in

most medium size problems.
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TABLE!. ~Comparison of Four Problem Results between the VAX and Mac II

Computers.

• Problem 1 Problem 2 Problem 3 Problem 4
VAX ~II VAX ~II VAX f,i.a:::11 VAX Iv'.ac II

No. of simulation calls 23 41 207 174 243 140 60 44
Exec. time (minutes) 2.13 18.72 3.45 28.52 224.60. ;217.28 2.48 17.08
Objective values 4,490 4,490 105,769 105,765 171. 99 172.57 35.826 42.940•
Pumpage values aere-ft/yr m3 /day ell ft/day aere-ft/y=
Pumping node No. 1 1,400 1,400 13,947.0 13,950.0 0.000 0.000 1.673 1.390

2 200 200 13,658.0 13,655.0 0.000 0.000 1.677 2.688

3 200 200 8,246.7 8,235.2 0.000 0.000 1.720 2.957

• 4 200 200 8,327.9 8,335.3 0.000 0.000 2.134 2.607

5 1,400 1,400 8,711.3 8,712.1 0.000 0.000 1. 759 2.650
6 200 200 8,698.3 8,701.5 0.000 0.000 1.703 2.468
7 200 200 8,286.2 8,287.0 10.029 0.000 1.746 2.368
8 200 200 8,284.7 8,284.8 16.141 15.781 1.791 1.933
9 1,400 1,400 13,805.0 13,802.0 16.141 16.141 1.723 2.454

10 200 200 13,804.0 13,802.0 2.523 4.675 1. 726 2.316
11 200 200 0.000 5.898 2.560 3.104
12 200 200 16.141 16.141 1.788 2.176
13 1,400 1,400 16.141 16.141 2.067 2.195
14 200 200 16.141 16.141 3.396 3.384·
15 200 200 1.970 12.576 3.396 3.266
16 200 200 16.141 16.141 2.047 2.177·
17 1,400 1,400 16.141 16.141 2.920 2.809·

18 200 200 16.141 16.141
19 200 200 16.141 16.141
20 200 200 0.000 0.000
21 0.000 0.000
22 12.203 3.381
23 0.000 1.131
24 0.000 0.000

•
4-2 $
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APPENDIX 4. A

COMPUTATION OF BASIS MATRIX ELEMENTS

This Appendix presents the equations for computing elements of basis

matrix and a portion of the Jacobian matrix. Elements of the matrix are the

partial derivatives of the groundwater flow system of equations (4.2.2) with

respect to the state variable h. Each element is evaluated at the current point

where hand q are known. The equations are divided into five groups

depending upon the aquifer conditions of a cell under consideration.

Investigation of equation (4.2.2) reveals that each row of the matrix should

contain utmost six elements. Represent cells (i, j-l), (i, j+l), (i-I, j), (i+l, j), (i, j)

at time step t by small letters a, b, c, d, e, respectively, and (i, j) at time (t+1) by

f. The configuration of the finite difference scheme for the system of

equations (4.2.2) can be viewed as shown in Figure 4.A.1. The figure also

shows the positions of the elements in the structured matrix.

CASE I

/ When all six nodes are under water table conditions, all terms in

equations (4.2.2) are nonlinear. The elements of the matrix in a row can be

computed from the following expressions;
2AyePX a

Ba = [(he - BOT e)Ax a + (2h a - BOT a)Ax e - heAxel 2 (4.A.l)
(Ax a + Axe)
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2&cePY e
Be(d) = [hdAy d - (2h e - BOT e)Ay d - (h b - BOT b)Ay e] 2 (4.A.8)

(Ay d + AYe)

Be = Be(a) + Be(b) + Be(c) + Be(d) - B f - Re (4.A.9)

(4.A.I0)

CASEll
'1

When the center node e is under water table condition. but some of the
&'

neighbo~ringnodes are artesian, the equations 4.2.2 are partially nonlinear.

The equations are the same as in CASE I, except that the elements

corresponding to the artesian nodes are replaced by the following expressions;

•

•

••
•

2&cePY c
Be = [(he - BOT e)Ay c + (TOP c - BOT c)AYe] 2

(Ay c + AYe)

(4.A.ll)

(4.A.12)

(4.A.13)

(4.A.14)
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2Ax)'Y e
Be(d) = [h dAy d - (2h e - BOT e)Ay d - (TOP b - BOT b)Ay e] 2 (4.A.18)

(Ay d + AYe)

CASElli

When all six nodes are artesian, equations 4.2.2 are linear and their

•• elements

follows

in a row can be computed as

•

•

•

••
•

2AyePX a
Ba ~ [(TOP e - BOT e)Axa + (TOP a - BOT a)Ax e] 2 = - B e(a)(4.A.19)

i (Ax a + Axe)

2AxePY c
Be = [(TOP e - BOT e)Ay c - (TOP c - BOT c)AYe] 2 = - B e(C) (4.A.2l)

(AYe + AYe)

2AxePYe
B d =[(TOP e - BOT e)Ay d - (TOP d - BOT d)AYe] 2 =- B e(d)(4.A.22)

(Ay d +AYe)

Be = Be(a) + Be(b) + B e(c) + Be(d) - B f - R e (4.A.23)

B f = 5 eAx eAy e / At (4.A.24)

4-2 7
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CASE IV

When the center node e is artesian but some neighboring nodes are

under water table conditions, the nonlinear terms appear corresponding to

the water table nodes. The computation is the same as CASE III except for the

elements at the water table nodes are substituted by the following;

2~ePYc
Be = [(TOP e - BOT e).1y c + (2h c - BOT c).1y e - h e.1y e] 2 (4.A.27)

(.1y c +.1y e)

2~ePYe
B d = [(TOP e - BOT e).1y d + (2h d - BOT d).1y e - h e.1y e] 2 (4.A.28)

(.1y d +.1y e)

•
(4.A.29)

•

•

••
•

. 2~ePY c
B e(C) = - [(TOP e - BOT e).1y e + (he - BOT e).1Ye] 2 (4.A.31)

(.1y c + .1Ye)

2~ePYe
B e(d) = - [(TOP e - BOT e).1y d + (h d - BOT d).1y e] 2 (4.A.32)

(.1y d +.1y e)

CASE V

4-2 8



(4.A.33)

•

•• When the middle node e is a constant head cell, the matrix elements in

the corresponding row are set to constant as follows;

Ba = Bb =Be = Bd =B f =0; Be =1

•
This is a consequence of taking derivative of the equation

he - H = 0 (4.A.34)

•

•

••
•

•

•

••
•

in place of the groundwater flow equations (4.2.1), where H is the constant

head elevation. It follows that the elements Ba' Bb' Bc' and B d are also

zeroes in all four cases above if they represent a constant head node.
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CHAPTER 5

REAL-TIME OPERATION OF RIVER-RESERVOIR SYSTEMS

5.1 Problem Identification

Real-time operation of multireservoir systems involves various

hydrologic, hydraulic, operational, technical, and institutional considerations.

For efficient operation, a monitoring system is essential that provides the

reservoir operator with the flows and water levels at various points in the

river system including upstream extremities, tributaries and major creeks as

well as reservoir levels, and precipitation data for the watersheds whose

outputs (runoff from rainfall) are not gauged. A flow routing procedure is

needed to predict the impacts of observed and/or predicted inflow

hydrographs on the downstream parts of the river system. A reservoir

operation policy or a methodology is another component which reflects the

flood control objectives of the system, the operational and institutional

constraints on flood operations, and other system-related considerations. A

integral part of these components is the reservoir operation model that

predicts the results of a given operation policy for forecasted flood

hydrographs.

Flood forecasting in general, and real-time flood forecasting in

particular, have always been an important problem in operational hydrology,

especially when the operation of storage reservoirs is involved. The

forecasting problem, as in most hydrological problems, can be viewed as a

system with inputs and outputs. The system output is related to its causative

input through a process, either linear or nonlinear. In the reservoir

management problem, the system is the river system that includes the main

5-/
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river and its tributaries, catchments, and natural and manmade structureson

the path of the flood waters.The system inputs are inflow hydrographs at the

upstream ends of the river system, and runoff from the rainfall (and

snowmelt, where applicable) In the intervening catchments. The system

outputs are flow rates and/or water levels at control points of the river

system. The operations involved are the operations of the reservoir(s) in

order to control flood waters. The term 'forecasting' refers to the prediction of

the discharges and water surface elevations at various points of a river system

as a result of the observed portion of flood hydrograph.

Multireservoir operation can be characterized by the integrated

operation of multiple facilities on river systems for multiple objectives. Flood

control is one of the major purposes of many reservoirs in the U.s. Many

reservoirs were built several years ago and operation policies were

established. However, many of these reservoirs cannot be operated in the

manner that they were initially intended to be operated. One of the major

reaspnsis the uncontrolled urbanization into the floodplains of the rivers and

reservoirs. Other reasons are due to inadequate spillway for passing floods,

legal constraints, and reduced downstream conveyance capacities.

Many of the reservoir systems are characterized by conditions that

result in significant backwater conditions due to gate operation, tributary

flows, hurricane surge flows, and tidal conditions, flow constrictions in the

rivers. These conditions cannot be described by the use of hydrologic routing

methods, and as a result must be described by more accurate hydraulic routing

models such as DWOPER, which is based upon a finite difference solution of

the Saint Venant equations. Also, flows through reservoirs having

considerable length are not properly predicted by the simple hydrologic
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methods, particularly when the inflow hydrograph is a flash flood, that is, has

a short time base.

There have been many reservoir operation models reported in the

literature but only a few have been directed at reservoir operations under

flooding conditions. Jamieson and Wilkinson (1972) developed a DP model

for flood control with forecasted inflows being the inputs to the model.

Windsor (1973) employed a recursive linear programming procedure for the

operation of flood control systems, using the Muskingum method for

channel routing and the mass balance equation for reservoir computations.

The U.S. Army Corps of Engineers (1973, 1979) developed HEC-S and

HEC-SC for reservoir operation for flood control, where releases are selected

by applying a fixed set of heuristic rules and priorities that are patterned after

typical operation studies. These models are based upon hydrologic routing

techniques and provide no optimal stragety for operation. One application of

these models was to the Kanawha River Basin (U.S. Army Corps of

Engineers, 1983) which contributes which contributes flow to the Ohio River

at Pt. Pleasant, West Virginia. FigureS.I.1 illustrates observed and forecasted

hydrographs at Kanawha Falls for the March 1967 event. The vertical dashed

line represents the time of the forecast.

The Tennessee Valley Authority (1974) devoloped an incremental

dynamic programming and successive approximations technique for real

time operations with flood control and hydropower generation being the

objectives. Can and Houck (1984) developed a goal programming model for

the hourly operations of a multireservoir system and applied it to the Green

River basin in Indiana. The model objective is defined by a hierarchy of goals,

with the best policy being a predetermined rule curve.
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Wasimi and Kitanidis (1983) developed an optimization model for

the daily operations of a multireservoir system during floods which combines

linear quadratic gaussian optimization and a state-space mathematical model

for flow forecasting. Yazicigil (1980) developed an LP optimization model for

the daily real-time operations of the Green River basin in Indiana, a system of

four multipurpose reservoirs. The model inputs are deterministic. The

objective of operation is to follow a set of target states, deviations from which

are penalized. The channel routing is performed using a linear routing

procedure similar to the Muskingum method, called multi-input linear

routing. The reservoir calculations are based on mass-balance equations

which take into account precipitation input.

The flood forecasting model for the Lower Colorado River-Highland

Lakes system in Texas developed by Unver et al. (1987) was developed for a

real-time framework to make decisions on reservoir operations during

flooding. This model is an integrated computer program with components

for flood routing, rainfall-runoff modeling, and graphical display, and is

controlled by interactive software. Input to the model includes automated

real-time precipitation and stream flow data from various locations in the

watershed.

The real-time reservoir operation problem involves the operation of

a reservoir system by making decisions on reservoir releases as information

. becomes available, with relatively short time intervals which may vary

between several time intervals and several hours. A new methodology is

presented for operating the reservoir system under flooding conditions that

incorporates: (a) a simulation model that adequately simulates the hydraulics

of the system for a given flood hydrograph and a set of operating decisions,

and (b) a systematic way that will improve the trial decisions made previously

5-5
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and generate a set of operating decisions that would cause the least damage to

the protected areas.

5.2 Problem Formulation

The optimization problem for the operation of multireservoir

systems under flooding conditions can be stated as

(1) Objective:

Minimize z = f(h, Q ).

(2) Constraints:

(a) Hydraulic constraints defined by the Saint-Venant

equations for one-dimensional gradually varied unsteady flow

and other relationships such as upstream, downstream, and

internal boundary conditions and initial conditions that

describe the flow in the different components of the river

reservoir system,

(b) Bounds on discharges defined by minimum and

maximum allowable reservoir releases and flow rates at

specific locations,

•

•

G(h, Q, r) =0 . (5.2.2)

(5.2.3)

•

(c) Bounds on elevations defined by minimum and

maximum allowable water surface elevations at specified

locations (including reservoir levels).

h~h~h (5.2.4)

•

(d) Physical and operational bounds on gate operations,

o~.r. ~ r ~ r ~ 1 (5.2.5)
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(e) Other constraints such as operating rules, target storages,

storage capacities, etc.

WeI) ~O. (5.2.6)

•

•

•

••

The objective z is defined by minimizing the total flood damage or deviations

from the target levels or water surface elevations in flood areas or spills from

reservoirs or maximizing storage in reservoirs. The variables h and Q are,

respectively, the water surface elevations and the discharge at the

computational points and I is the gate setting, all given in matrix form to

consider the time and space dimensions of the problem. Bars above and

balow a variable denote the upper and lower bounds for that variable,

respectively.

5.2.1 Simulator Equations

The governing equations for one-dimensional unsteady flow are the

Saint-Venant equations defined in conservation form are as follows:

Continuity:

• (5.2.7)

•

•

••
•

Momentum:

(5.2.8)

where

x = longitudinal distance along the channel or river

t = time

A = cross-sectional area of flow

Ao= cross-sectional area of off-channel dead storage (contributes to

continuity, but not momentum)

q = lateral inflow per unit length along the channel
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•
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h = water surface elevation

vx= velocity of lateral flow in the direction of clannel flow

Sf= friction slope .

Se= eddy loss slope

B = width of the channel at the water surface

Wf=wind shear force

~ = momentum correction factor

g = acceleration due to gravity

Weighted four-point finite difference approximations are used for

dynamic routing with the Saint-Venant equations. The spatial derivatives

aQ / ax and ah / ax are estimated between adjacent time lines,

•• i +1 i+ 1 i_hi.
':\h h. l- h . h. 1
~=6 1+ 1 +(1-6) 1+ 1
oX ~i ~i

and the time derivatives are estimated using

(5.2.9)

(5.2.10)

(5.2.11)

(5.2.12)

(5.2.13)

•

The nonderivative terms, such as q and A are estimated between adjacent

time lines using
i.+ 1 + i+l i.+ i

q=6 ql qi+l+(1_6)ql qi+l
2 2

_i+ 1 -i
=6q +(1- 6)q

i i

~-8
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A. +A. 1 A.+A. 1

A - 6 1 1+ + (1- 6) 1 1+
- 2 2

_j+ 1 ~j

=6A. +(1-6)A.
1 1

(5.2.14)

(5.2.15)

•

•

•

••
•

where q and A . indicate the lateral flow and cross-sectional area averaged
i 1

over the reach Axi .

The finite-difference form of the continuity equation is produced by

substituting Eqs. (5.2.9), (5.2.11), and (5.2.13) into (5.2.7) and rearranging to

obtain

~
j + 1 j + 1 _j +1) ( j j _j )Q. 1 - Q . -q Ax. + (1 - 6) Q. 1 - Q . -q Ax.
1+ 1 i 1 1+ 1 i 1

Ax i [ j+1 j+1 j j J
+ 2 At (A + A 0)· + (A + A 0)' 1 - (A + A 0) . - (A + A 0) . = 0

L.l • 1 1+ 1 1+
J

Similarly, the momentum equation in finite difference form is

Ax i ( j+1 j+1 j j)
2At. Q i + Q i + 1 - Q i - Q i + 1

J

{

j+1 j+1
2 2. j+1 j+1J3Q J3Q -J+ j+1 j+1 - -

+8 (T} -(TJ +gA; {h;+l- h ; +(5.). &<;+(5.). &<;J
1+1 1 l 1 1

. 1 j+ 1 }

-(J3qv x/+ Ax.+(W B) Ax.
i 1 f. 1

1

•

•

••
•

where the average values (marked with -) over a reach are defined as

_ A. + A
J3=Pl Pi+l

i 2

- A. +A. 1
A = 1 1+

i 2

(5.2.16)

(5.2.17)

(5.2.18)
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Also,

- B.+B· lB = 1 1+

i 2

- Q·+Q·lQ = 1 1+

j 2

_ A.
R=_1

i B
i

(5.2.19)

(5.2.20)

(5.2.21)

(5.2.22)

•

•

••
•

for use in Manning's equation. Manning's equation may be solved for Sf and

written in the form shown below, where the term IQ IQ has magnitude Q2

and sign positive or negative depending on whether the flow is downstream

or upstream, respectively:

- _ n~QjlQj
(5 f)j - -2-4/3

2. 20BA iRj

The minor head losses arising from contraction and expansion of the

channel are proportional to the difference between the squares of the

downstream and upstream velocities, with a contraction/expansion loss

coefficient Ke:

•
(S ). = (Ke) j ~(Q)2 - (Q )J

e 1 2g~. A A
1 j+ 1

The velocity of the wind relative to the water surface, Vf' is defined by

(5.2.23)

(5.2.24)

•
- (Q.)-
ev r)j = A: - (V w)jCOS ro .

where ro is the angle between the wind and the water directions. The wind

••
•

shear factor is then given by

(W f)j = (C w) jleV r)jl (V )j

where Cw is the friction drag coeffecient.

s-/o

(5.2.25)
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The terms having superscript j in Eqs. (5.2.15) and (5.2.16) are known

either from initial conditions, or from a solution of the Saint-Venant

equations for a previous time line. The terms g, ~i' ~ iJ K e , C w' and Vware

known and must be specified independently of the solution. The unknown
;+ 1 ;+1 ;+ 1 i+1 ;+1 j+1 ;+1 j+1

terms are Q i ,Qi+1' hi ,h i+1,A i , A i+1, Bi ,and Bi+1. However all the

terms can be expressed as functions of the unknowns,
;+1 j+1 j+1 ;+1

Q i ,Qi+1' hi ,and h i+1,so there are actually four unknowns. The

unknowns are raised to powers other than unity, so (5.2.15) and (5.2.16) are

nonlinear equations.

The continuity and momentum equations are considered at each of
5.2.. ,

the N-1 rectangular grids shown in figure 7.', between the upstream boundary

at i = 1 and the downstream boundary at i = N. This yields 2N - 2 equations.

There are two unknowns at each of the N grid points (Q and h), so there are

2N unknowns in all. The two additional equations required to complete the

solution are supplied by the upstream and downstream boundary conditions.

The. upstream boundary condition is usually specified as a known inflow

hydrograph, while the downstream boundary condition can be specified as a

known stage hydrograph, a known discharge hydrograph, or a known

relationship between stage and discharge, such as a rating curve.

5.2.2 Constraints

The constraints of the model can be divided into two groups: the

hydraulic constraints and the operational constraints. The hydraulic

constraints are equality constraints consisting of the equations that describe

the flow in the system. These are (a) the Saint-Venant equations for all the

computational reaches except internal boundary reaches, (b) relationship to

5-11
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describe the upstream and downstream boundary conditions in addition to

the Saint-Venant equations for the extremities, and (c) internal boundary

conditions including the continuity equation and a flow relationship.

Internal boundary conditions describe cannot be described by the

Saint-Venant equations such as critical flow resulting from flow over a

spillway or waterfall. The operational constraints are basically greater-than or

less-than type constraints that define variable bounds, operational targets,

structural limitations, capacities etc. Options for the operator to set or limit

the values of certain variables are also classified under this category. The

solution methodology used in this study seperately solves the hydraulic and

operational constraints. The hydraulic constraints are solved implicitly by the

simulation model, DWOPER, whereas the operational constraints are solved

by the optimization model, GRG2. The DWOPER model performs the

unsterady flow computations.

Bound constraints are used to impose operational or optimization

related requirements. Nonnegativity constraints on discharges are not used

because discharges are allowed to take on negative values in order to be able

to realistically represent the reverse flow phenomena (backwater effects) due

to a rising lake or due to large tributary inflows into a lake.Nonnegativity of

water surface elevations is always satisfied since the system hydraulics are

solved implicitly by the simulation model, DWOPER. The lower limits on

elevations and discharges can be used to impose water quality considerations,

minimum required reservoir releases, and other policy requirements. The

upper bounds on elevations and discharges can be used to set the maximum

allowable levels ( values beyond are either catastrophic or physically.

impossible) such as the overtopping elevations for major structures, spillway

capacities, etc. When the objective function, Equation (5.2.23) or (5.2.24) is

~-/3



(5.2.26)
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used, the damaging elevations and/or discharges must be given to the model

through the constraints, as neither objective function has any terms to

control them.

The third model variable, gate openings, are allowed to vary between

zero and one, which corresponds to zero and one hundred percent opening of

the total available gate area, respectively. The upper and lower bounds on the

model variables are expressed mathematically as

j i-i
Q ~ Q . ~ Q, 'f;/ i, j,
-i 1 i

where variables with a bar above them denote upper limits; those with a bar

below them denote lower limits; i and j are respectively the time and location

index; and lr is the set containing the reservoir locations. Q, h, and r denote

the discharge, water surface elevation, and gate opening, respectively.

The bounds on gate settings are intended primarily to reflect the

physical limitations on gate operations as well as to enable the operator to

prescribe any portion(s) of the operation for any reservoir(s). Operational

constraints other than bounds can be imposed for various purposes.The

maximum allowable rates of change of gate openings, for instance, for a given

reservoi~, can be specified through this formulation, as a time-dependent

constraint. This particular formulation may be very useful, especially for cases

where sharp changes in gate operations, Le. sudden openings and closures,

are not desirable or physically impossible. It is handled by setting an upper

bound to the change in the percentage of gate opening from one time step to

the next. This constraint can also be used to model another important aspect

•

••
•

•

•

•

(5.2.27)

(5.2.28)



to gate operationsd for very short time intervals, i.e.the gradual settings that

have to be followed when opening or closing a gate. For this case, the gate

cannot be opened (or closed) by more than a certain percentage during a given

time interval. This can be expressed in mathematical terms as follows:

•

••
• ~ < j+1 j < . I

- ci - r i - r i - r oi' 1 e r (5.2.29)

•

•

••
•

•

where rc and ro are the maximum allowable (or possible) percentages by

which to open and close the gate. This constraint can be used to model

manually operated gates, for example, for all or a portion of the time

intervals. The same constraint can be used, for example, to incorporate an

operational rule that ties the operations of a reservoir to those of the

upstream reservoir such as a multi-site constraint.

5.2.3 Objective Functions

The model can be based upon any of a number of objective functions

reflecting various approaches to real-time reservoir operation for flood

control. The first objective function is based on minimizing total flood

damages which are defined as a function of water surface elevations in flood

prone areas.A damage-elevation relationship is provided to the modelfor

each location where flood damage potential exists. The overall damage to be

minimized is the summation of the total damages at each location. The

mathematical expression for this objective function is:

• min z=LLcih
j

i , ielc,je T,
i j

(5.2.30)

••
•

where z is the objective function value; i is the location index; Ie is the set that

contains flood control locations; j is the time index; T is the time horizon; cis

the unit flood damage defined as a function of the water surface elevation;

S-/S
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hi.. The unit flood damage, c, is expressed in terms of the water surrface
1

elevation at flood control locations. It must be noted that, unlike the more

common approach to damage functions (e.g. Windsor, 1973), the damage is

not a function of the maximum water surface elevation for any given

location, but rather a function of all elevations that are individually

damaging. This approach was chosen to keep all water surface elevations in

the nondamaging range individually and when this is not possible to

minimize the number of times a damaging elevation occurs. The total

damage cost, however, may not have a real meaning in dollar value due to

the nature of this formulation.

The second objective function is basically the same as the first one

except that flood damages are expressed in terms of discharges instead of

•• water surface elevations, given as:

min z = I,Lc' iQii' i E lp' JET,
i i

(5.2.31)

•

•

•

••
•

where c' is the unit flood damage as a function of discharge, Qj. The unit flood

damages, c', are expressed in terms of the discharge at the flood control

locations. This objective function is provided for cases where it is more

convenient to express damages in terms of flow rates for certain locations, or

the available data is in this form. It must be noted that this objective function

would normally be used for natural channels as the damages in lakes are

almost always a function of flood stages.

The third objective function is a combination of the first two for

cases where both discharges and water surface elevations are used to define

the flood damages given as



•

.-• min z = I Icih
j

i + I Ie'iQii,j E T,
ieI c j ieI p i

(5.2.32)

•

•

where Ie is the set that contains locations where damage is a function of water

surface elevation and Ie is the set that contains locations where damage is a

function of discharge. The myopic nature of short-term operation is usually

handled by constraints that represents the end-of-the-period, or medium

term targets or goals. For example, the possiblity of ending up with an empty

reservoir is usually prevented by defining a lower limit for the water surface

elevation of the headwater location for time step T. An alternative to this is

given by the fourth objective function. The objective of operation is defined

as the maximization of the total reservoir storages while keeping the water

stages and/or flow rates within nondamaging ranges through the constraint

set. The fourth objective function is

•

•• max z = IIQii' JET,
i i

(5.2.33)

•

•

•

••
•

where all terms are as defined earlier.

Zoning is another very common approach used in modeling the

real-time operation objectives (e.g. Yazicigil, 1982; Can and Houck,

1984;Wasimi and Kitanidis, 1983). In order to use this approach, operation

targets (or ideal levels) are defined prior to operation and deviations from

these are penalized through a penalty function. Zones are identified for

different levels deviations and a unit penalty (or a penalty coefficient) is

assigned to each, almost always in such a way that the resulting function is

convex. Although the solution methodology presented in the next section

has provisions for violated bounds on discharges and water surface

elevations, a penalty-type objective function is presented here as the sixthe

5-/7
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•• objective function, for cases where data are already available or the reservoir

operator opts to use a penalty function. The mathematical expression for the

sixth objective is:

• min z = LLcih~ +III iQji ' i E ls,j E T,
i j i j

(5.2.34)

•

•

••
•

•

•

••
•

where Is is the set that contains locations for which a target is specified and c

and c' are the unit penalties associated with water surface elevation, h, and

discharge, Q. It must be noted that water surface elevations in this

formulation replace the deviations used in most penalty functions. However,

this is justified by the fact that the inclution of the target into the objective

function contributes a constant to the objective value, which does not affect

the optimization, within the given range of unit penalties. Different unit

penalties for different locations are used to reflect the relative importance of

each location.

5.3 Problem Solution

5.3.1 Overview

The optimization problem stated above is a large mathematical

programming problem for most real-world situations. In modeling a river

system, computational points are used to discretize the river channels and

reservoirs. Each computational point, for each time-step of the operation,

contributes two flow variables (water surface elevation and discharge) and

two hydraulic constraints (the Saint-Venant equationsa or other flow

relations) to the problem. In addition, each reservoir contributes another

variable(the setting of the equivalent gate) per time step. The external

boundaries each contribute an additional hydraulic relationship. Thus a

5"-/8
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typical 24 h operation horizon with 1 h time steps for a river system with five

reservoirs and 150 computational pointswould give rise to a problem with

more than 7200 flow equations (two times the product of the number of time

steps and computational nodes) and over 7200 flow variables. This is beyond

the capacity of existing nonlinear programming codes. A logical approach in

solving a problem this large would be to reduce its size. Traditionally, the

problem size has been reduced by replacing the unsteady flow equations by

more simplistic relationships. In this work, a different approach is taken to

alleviate the dimensionality problem. The optimum control model presented

here leads to an efficient algorithm to solve the optimization problem

without sacrificing the hydraulic model accuracy.

The basic idea is to solve the hydraulic constraints (Saint-Venant

equations) using an unsteady flow routing model such as the U.S. National

Weather Service Dynamic Wave Operational (DWOPER) model. For each

iteration of the optimization model" the simulator (DWOPER) solves for the

water surface elevations, h, and the flow rates, Q, given the gate operations

which are the control variables. This allows the constraints and the objective

function of the reservoir optimization problem to be viewed as a function of

only the controllable variables. Since there are relatively few controllable

variables, the resulting reduced problem is easier to solve. The major

remaining difficulty is to compute the first partial derivatives of the objective

and constraint functions with respect to the controllable variables. Once the

derivatives are determined, several efficient nonlinear optimization routines

could be used to solve the reduced optimization problem.

5.3.2 The Reduced Problem



•

e·•

•

•

•

·e

•

•

•

•e
•

The operations problem (Equations (5.2.1) - (5.2.6», referred to as the

general operations model (GOM) has certain characterstics that can be used in

reducing it to a smaller problem. The GOM has the general structureof a

discrete time control with three basic groups of constraints: those concerning

the state of the system (hydraulic constraints) and those describing the system

controls (bound and operational constraints). The GOM yields to an efficient

solution algorithm when the state variables (discharges and water surface

elevations) and the control variables (gate settings) are treated seperately, in a

coordinated manner. The hydraulic constraints (Equation (5.2.2» can be

solved sequentially forward in time for water surface elevations, h and the

flow rates, Q by using the DWOPER simulation model, once the gate settings,

I are specified. The general optimal control apfroach to the real-time

. . bl· h . F' s:z Thr,I h h· . ulreservOIr operation pro em IS s own In Igure ~. oug t IS slm ator-

optimizer formulation, the problem is solved efficiently by incorporating the

simulation model into a procedure when a set of gate operations, I, (control

vect,or) is chosen, the simulation model is run subject to the selected control

vector, to solve the hydraulic constraint set, g, for the elevations and

discharges (state vector). Then the objective function is evaluated, the bound

constraints are checked for any violations and the procedure is repeated with

an updated set of gate operations until a convergance criterion is satisfied and

no bound constraints are violated.

It must be noted that the optimization is performed only on the gate

settings in this procedure. The new optimization problem, called the reduced

operations model (ROM) has Nr'7 variables compared to the (2N'7 + N r-T)

variables of the GOM, where N, T, and N r are the total number of

computational points, time steps, and reservoirs, respectively. The number

of constraint equations has also been reduced by the same amount, (2N'7),
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with the elimination of the hydraulic constraints, g. The transformation of
~.3, Z.

the operations problem is shown in Figure 1', along with the problem size at

each step of the transformation for an example system. The problem size for

an example with 100 computational points, 5 reservoirs, and 48 time steps is

drastically reduced, from over 9000 variables and constraints to 120 variables

and 120 bound constraints because of the simulator-optimizer formulation.

The hydraulic constraint set, g, has a special staircase banded

structure that can be exploited to construct an efficient overall algorithm. The

model presented herein combines the simulation model, DWOPER, and the

optimization model, GRG2, within the framework of an optimum control

formulation. The transformation of the original problem into the reduced

one is similar to the generalized reduced gradient approach, which is also

used to solve the reduced (transformed) problem.

The original problem, GOM, can be converted into a reduced

problem as suggested by the implicit function theorem (Luenberger, 1973).

The implicit function theorem states that if some of the problem variables

can be solved in terms of the remaining variables, then a reduced problem

can be devised which can be mainipulated more easily. The approach is
5'",2,/- 5;2,' .

applied to the problem given by Equations Ol (I) in such a way that the
S;2.Z-

hydraulic constraints (Equation (i» are handled separately by the simulator

and the other constriants by the optimizer. The simulation model computes

the values of the state variables, h and Q for given values of the control

variables r and the optimization model seeks the optimal values of r that will

minimize the objective function. The implicit function theorem states that

her) and Q(r) exist if and only if the basic matrix (the Jacobian of the system of
s..~z..

equations given by (Equation (l» is nonsingular. This condition is always

S-22..
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satisfied when a solution is possible, as the simulator (DWOPER), uses the

same matrix for the finite-difference unsteady flow computations.

Expressing the water surface elevation and discharge as a function of

the control variable, r,

then, the objective function, now called the reduced objective function is

expressed as

•

••
•

•

and

h = her)

Q=Q(r),

(5.3.1)

(5.3.2)

The objective function can be evaluated once the state variables, hand Q , are

computed for the given set of control variables, r.

The reduced problem, which is called the reduced operations model
5,'3,"1

(ROM), is now expressed by the reduced objective function, Equation (~),
.~.z. ') -s. 2.-&

subject to Equation (~). The ROM is much smaller in size than the GaM

with the simulator determining the implicit functions her) and Q(r), by

performing the unsteady flow computations thus eliminating the constraint

matrix g that describes the hydraulics.

In solving the ROM by a nonlinear programming algorithm, the

Jacobian of the matrix g(h, Q, r) will be required as well as the gradients of the

functions F(r), her), and Q(r), which are also called the reduced gradients. The

Jacobian matrix is defined as

where y denotes the state variable (h, Q) and B is the basic matrix. The basis

matrix of the optimal control problem is the same as the Jacobian matrix used

•

••
•

•

•

••

Minimize z = F(r) = f [ h(d, Q(r) ].

J (h, Q, r) = [ og loh, og/oQ, ag/ar ] = [B, C]

or

J(y, r) = [ ag loy, og/ar ] = [B, C] ,

(5.3.3)

(5.3.4)

(5.3.5)

• 5-2~
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••
•

•

•

••
•

in the Newton-Raphson solution procedure in the simulation model

(DWOPER). Thus, the two elements of the Jacobian matrix J are available

(with the basis B explicitly computed, and terms in C already available) after a

simulation run. The basis matrix is a banded sparse matrix with at most four

nonzero elements in each row around the matrix's main diagonal.

The reduced gradients can be calculated by applying the two-step

scheme used by Lasdon and Mantell (1978) and also by Wanakule et al. (1986).

Letting Bt = ogt/oy t denote the basis matrix for time step t, the following

scheme is adapted for the ROM:

(i) Solve the system of finite difference equations for the last time step T

to find the values of the Lagrange multipliers 1tT

(5.3.6)

then solve for the 1tT backward in time

1ttB t = of / Oyt -1t t+ 1(ogt +1/ oy t)' for t = T -1, T - 2,. ..,2,1 (5.3.7)

(ii) Calculate the value of the reduced gradient

(5.3.8)

The Lagrange multipliers, 1tt can be used in a sensitivity analysis as they show

the effect of a small change in the corresponding term in the objective value.

5.3.3 Solution of Reduced Problem

The reduced problem, ROM, can be solved by a nonlinear

programming algorithm. As the reduced problem still contains bound-type

constraints on the state variables hand Q , the algorithm adopted should

have provisions to assure the feasibility of the simulation model solutions

for the state variables. An augmented Lagrangian (AL) algorithm that

incorporates the bounds on the state variablesinto the objective function is

used for this purpose. An application of this type can be found in Hsin (1981)

5-lS
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•

where the bounds on the state variables are violated until the solution

converges. The reduced problem with AL terms is

2
min L (r, J.L, a) = F(r) + O.5Lao min[ 0, (bo - J.L.Ia) ] + 0.5LJ.L~ / ao (5.3.9)

A ·1 III ·111 1

where i denotes the constraint set which is formed of the bounds on the state

variables, i.e. the water surface elevations and discharges, and aj and J.Li are,

respectively, the penalty weight and the Lagrange multiplier associated with

the ith bound. The term bi is the violation term defined as

b.=min[(yo-v ),cy -yo)]
1 1.L.. 1

1 1
(5.3.10)

•

••
The constraints of the new problem are the bounds on the control variables

and the operating constraints.

A reduced gradient approach is adopted to solve the reduced

problem with AL terms. This new problem, which will be referred to as the

reduced operations model with augmented Lagrangian (ROMAL) can be

expressed as

•
/ Minimize LA(r, a, J.L) (5.3.11)

(5.3.12)

•

•

••
•

subject to Equations (5.2.5) and (5.2.6).

The solutions to this is a two-step procedure with an inner and an

outer problem that must be solved. The objective function of this inner-outer

problem combination is

min [min LA(r , a, J.L) ]
(1, J.L rES

where r is selected from 5, the set of feesible gate settings defined by Equation

(5.2.5). The inner problem involves the optimization of the augmented

Lagrangian objective by using GRG2 to determine optimal values of r while

keeping J.L and a fixed. Then outer problem is iterated by updating the values

of J.L and a for the next solution run of the inner problem. The overall



•

•• optimization is attained when J.l and a need no further updating, within a

given tolerance level. The updating formula used for J.l is

where k is the number of the current iteration. The value of a is normally

adjusted once during early iterations and then kept constant (Powell, 1978).

In applying the generalized reduced gradient approach to the

ROMAL formulation the gradient of the new objective function is evaluated

•
k+l_{ (k) b if < /II. - J.l. -a.., c. J.l. a.,

"1 1 1 1 1 1 1

0, otherwise ,
(5.3.13)

as

(5.3.14)

••
•

•

•

••
•

The solution of the inner problem, Le. finding the optimal r for fixed J.l and a

is accomplished by GRG2 (Lasdon and Waren, 1983), which is based on

generalized reduced gradient technique. The basic steps of the optimal control

algorithm are shown in Figure ?
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••
•

•

•

••
•

Solve reservoir simulation model with
r-__-..,~assigned control vector (gate settings)

to obtain state vector (water surface
elevations and discharges)

Reduce general operations model (GaM) to:
1. ROM using implicit function theorem, and then
2. RaMAL introducing Al terms to eliminate

bound constraints on state variables

Apply GRG2 to solve RaMAL for the optimal
control variables (gate operations)
with trial values of Al parameters

.s: 1, 3
Figure,2'. Basic Steps of Optimal Control Algorithm
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Fig. 4b. Highland Lakes system in Texas: Lake Travis (Texas Water Development Board, 1971).
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APPENDIX SA

Solution of Simulation Model

The system of nonlinear equations can be expressed in functional

form in terms of the unknowns h and Q at time level j+1, as follows:

UB( ~, Q 1) =0 upstream boundary conditions

C 1(h l' Q l' ~,Q 2) = 0 continuity for grid I

M 1(h 1,Q l' ~,Q2)= 0 momentum for grid I

•
C i(hi,Q i' h i+1,Qi+1) =0

M i(hi,Qi' h i+1,Qi +1) =0

continuity for grid i

momentum for grid i

(S.A.l)

•• CN_1(~ -1,QN-1' hN,QN) = 0

MN-1(~-1,QN-1' hN'QN) = 0

continuity for grid N-l

momentum for grid N-l

downstream boundary condition

•

•

•

This system of 2N nonlinear equations in 2N unknowns is sol"(ed
(.tat.. 171' fA,U.. s. A./)

for each time step by the Newton-Raphson method
A

The computational

procedure for each time j+1 starts by assigning trial values to the 2N

unknowns at that time. These trial values of Q and h can be the values

known at time j from the initial condition (if j=l) or from calculations during
s,/lrJ

the previous time step. Using the trial values in the system HI. EI) results in

2N residuals. For the kth iteration these residuals can be expressed as

••
resid ual for upstream

boundary condition

residual for continuity at grid I

• 5-'32.
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. <' k < <

Start with values of:r =(QI ' h" ... ,QN' hN )
from initial conditions, previous time step,

or from an extrapolation procedure.

I

Sorve for the partial derivative terms to define
the Jacobian coefficient matrix

using the values for :r k

Compute the residuals RUB', RC~,
< < <RM 1, ••• ,RCN_1,RM,V-I, and

<RDB from (10.4.2).

Solve system of equations for
dh; and dQi using Gaussian elimination.

1'+1 1-+1
Determine values of hi and Q; using Eqs. (10.4.7) and

k+ I hi hi <+1 hi
(10.4.8); X =(QI ,hi ,···,QN' hN ).

•
Convergence:
Ix <+1_ :r<1 < E?

Yes

0-

No
>--------1: k =k + I I

•

•e.
•

Ready [0 start next time step.

S: r~ . \
FIGURE~

Procedure for solving a system of difference equations at one time step using the Newlon-Raphson

method. CC~tA/1 V:(.;~1;Lrrl~* jlf;~r:) 9. S-S)
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•• residual for momentum at

grid I

• residual for continuity at grid i
(5.A.2)

•

•

••

residual for momentum at

grid i

N-l

M (hie QIe hie QIe) - RM Ie residual for momentum at
N-l N-l' N-l' N' N - N-l

grid N-l

residual for downstream

boundary condition

The solution is approached by finding values of the unknowns Q and h so

that the residuals are forced to zero or very close to zero.

The Newton-Raphson method is an iterative technique for solving a

•

• system of nonlinear algebraic equations. It USES the SWilL id •
n-

eqtlation, exeept that h€Ie the soltltioft is for a "eclef 8£ 7,;tariaeles fatftel

'tft8ftffJl a siftglt $.ri t$l~nSider the system of equations (5.A.2) denoted in

vector form as

•

-.
•

f(x) = 0 (5.A.3)
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•

•

•
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•

•

•

••
•

where x = (QI, hI' Qz, hz, ... ,~, hN) is the vector of unknown quantities

and for iteration k, xk = (Q~, h~, Q~, ~,. .., Q~,h~). The nonlinear system can

be linearized to

f(xk+1) ... f(x k) + J(Xk)(Xk+1- x k) (5.A.4)

where J(xk
) is the Jacobian, which is a coefficient matrix made up of the first

partial derivatives of f(x) evaluated at xk
. The right-hand side of Eq. (5.A.4) is

the linear vector function of x k. Basically, an iterative procedure is used to

determine xk+1 that forces the residual error f(ik+ 1) in Eq. (5.A.4) to zero.

This can be accomplished by setting f(ik+ 1) =0 rearranging (5.A.4) to read

J(xk) (xk+1 - xk) = - f(x k) (5.A.5)

This system is solved for (xk+ 1 - xk) = L\)(k, and the improved estimate of

the solution, xk+l , is determined knowing ruck. The process is repeated until

(xk + 1 - xk) is smaller than some specified tolerance.

The system of linear equations represented by (5.A.5) involves J(xk),

the Jacobian of the set of equations (5.A.l) with respect to h and Q , and -f(0),

the yector of the negatives of the residuals in (5.A.2). The resulting system of

equations is

~~ dhl + ~B dQ l =-RUBk
1 ~l

del aCl aCl del k

ah
l

dh 1 + aQ 1 dQ 1 + ah 2 d h 2 + dQ 2 dQ 2 = - RC 1

(5.A.6)
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dDB dh dDB dQ -_RDB k
ah N + :¥"\ N-

N V\.l N
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APPENDIXSB

Computation of Basis Matrix Elements

For any given time'step and a given set of reservoir gate settings, the

system of equations has a banded structure, as shown in Figure S.B.l, with at

most four elements around the main diagonal. This structure is exploited in

the simulation model by an efficient solution algorithm. The system of
<5,11, I

equations <,,) constitutes the g matrix of the optimization model when written

for all time steps. Each equation in the matrix has at most four nonzero terms

that belong to the current time step, and another four nonzero terms that

belong to the previous time step. The g matrix thus has a special banded

staircase structure as shown in Figure S.B.2, that can be exploited. The partial

derivatives of the g matrix with respect to the problem variables have to be

computed to be used in the optimization model. The mathematical

expressions for the partial derivatives are given in the next two sections.

Section S.B.l gives the partial derivatives with respect to the variables at the

current time step (Le. time step j+1), and section S.B.2 gives the expressions

with respect to the previous time step.

S.B.l Partial Derivatives for Current Time Step

The partial derivatives for the Saint-Venant equations, external

boundary conditions, and internal boundary relationships with respect to the

problem variables water surface elevations h, discharges Q , and gate setting r

at the current time step are given below under seperate headings. In the

following, the subscripts denote the time step, and the subscripts denote the

location of the variables.

S.B.11 Partial Derivatives for Saint-Venant Equations [Fread, 1978]
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•• (5.B.1)

•
dC.

1

dQ. =- 8
1

(5.B.2)

(5.B.3)

(5.B.6)

(5.B.4)

(5.B.5)

dC,
1

aQ. =8
1 + 1

~
j+1 __

aM j l3Q 2B _ j + 1 G6 f a5 e

dh i = ( A 2 ) i + gA i ( - 1+ dh; &c i + dh i &c i)
'+1 - j+1 J

gB~ (j + 1 j + 1 - j+ 1 _ j + 1 ) W fB
+ 2 h. 1 - hi' +5 &C, +5 e &C, + -2- &c.1+ fl. 1 1

i 1 j

•

•

••
•

•

{

. j+1 _ _

aM l3Q2B _j+1 a5 f G6 e
ah. = - ( 2) + gA i (1 + ah. ~ i + ah. ~ i)

1+1 A 1+1 1+1
i+ 1

j+l _ j+1 ]
gB i + 1 j+1 j+1 _j+1 _j+1 W fB

+ 2 (h, 1 - h. +5 &C. +5 e &c .) + -2- ~ .1+ 1 f. 1 i 1 . 1
1 1

(5.B.7)

• {

j+1 ( ~ -)]aM &c i l3Q - j + 1 U~ f as e
dQ. =(2L\t.)+ 2(A) + gA i dQ. &c j + dQ.~i

1+1 J i+1 1+1 1
(5.B.8)

in which

••
G6 -/

f - (dn dh. 5B . dB . / dh . )2S 1 1 1 1
ah

1
, = f. n. - 6A + 3B

1 1

(5.B.9)
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~ f = 2S (dnl dh i + 1 _ SB i+ 1 + dB i + 1 I dh i+ 1)
dh i + 1 f i n i 6A 3B

as f _ - (dnl dQ i _1)
dQ. - 25 f

i
n. + 2Q

1 1

as f - (dill dQ i + 1 1 )
=25 +-

dQ i + 1 fini 2Q

(

- 2 Jci3 25 B.V.

ah: = A.(V.;· ~ ~2)
1 1 + 1 1

CS e _ ( 2S e i
V

i + 1 J
dQ. - (2 2)

1 + 1 V i + 1 - Vi A i + 1

dB . I dh. = ~B . I ~ .
1 1 1 1

V.=Q.IA.
1 1 1

V. 1=Q· 1/ A. 11+ 1+ 1+

- "
dill dh. = 4 dh

1 ~ dh i

f\

- ~n dQ
dn/dQ. =~dQ

1 ~Q i

1\ hm+h 1
h= m+

2

£"'-41

(S.B.I0)

(S.B.ll)

(S.B.12)

(S.B.13)

(S.B.14)

(S.B.IS)

(S.B.16)

(S.B.17)

(S.B.IS)

(S.B.19)

(S.B.20)

(S.B.2I)

(S.B.22)



•

•• 1\ Q m +Q m + 1 (S.B.23)Q= 2•
and

dh / dh. = 0 if i" m }
(S.B.24)

dh / dh ~ = 1 /2 if i = m• 1

dQ / dQ i = 0 if i " m }
(S.B.2S)

dQ / dQ i = 1 / 2 if i = m•
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Chapter 6

WATER DISTRIBUTION SYSTEM OPERATION

6.1 Problem Identification

A methodology based upon solving a large scale nonlinear

programming (NLP) problem is presented for the optimal operation of

pumping stations in water distribution systems. Optimal operation refers to

the scheduling of pump operation that results in the minimum operating

cost for a given set of operating conditions. The methodology is based upon

an optimal control framework which interfaces a nonlinear optimization

model with a hydraulic simulation model. The objective function is to

minimize pumping cost over a planning horizon and the constraint set

includes system constraints, which account for the hydraulics involved in a

water distribution system, bound constraints on decision variables, and other

constraints that may reflect operator preferences or system limitations.

There are a myriad of reasons why pumping stations operate

inefficiently: including (Amabee, 1992) 1) pumps which were incorrectly

selected; 2) pumps which have worn out; 3) limited capacity in the

transmission/distribution system; 4) limited storage capacity; 5) inefficient

operation of pressure (hydropneumatic) tanks; 6) inadequate or inaccurate

telemetry equipment; 7) inability to automatically or remotely control pumps

and valves; 8) penalty due to time-of-day or seasonal energy pricing; 9) lack

of understanding of demand or capacity power charges; 10) operator error;

and 11) suboptimal control strategies. The optimal control problem

for a water distribution system is complicated by the fact that the

mathematical problem can be very large in the number of constraints, many
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of which are nonlinear, and the large number of decision variables that are

non-linear. This is complicated even further by the fact that the controls

(pumps on and off) are discrete. Several approaches using dynamic

programming (DP) have been proposed (Solanas and Verges, 1974; Solanas

and Montolio, 1987; Cohen, 1982; Joalland and Cohen, 1980; Carpentier and

Cohen, 1985; Coulbeck and Orr, 1985; Sabet and Helweg, 1985; Zessler and

Shamir, 1985; and Ormsbee, et aI., 1987). All of these DP approaches suffer

from the curse of dimensionality limiting the size of problems (number of

pumps, storage facilities, and size of network) that can be considered; and as a

result the DP approaches are only applicable to very small systems. Other

previous techniques (FaIlside and Perry, 1975 and Coulbeck and Sterling, 1978)

that were not based upon dynamic programming were also not very

successful. Chase and Ormsbee (1989) proposed a nonlinear programming

approach based upon using a nonlinear programming optimizer and a

hydraulic simulator to solve the hydraulic constraints of the optimizer.

Brion ( ) and Brion and Mays (1991) presented a methodology to solve the

problem on a discrete time optimal control problem. This methodology is

presented in this chapter.

~-2
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6.2 Problem Formulation

Consider a water distribution system composed of J nodes, M pipes, P

pumps, K primary loops, F fixed grade nodes, and S storage tanks. The

mathematical statement of the optimal pump operation problem considering

T time periods is to minimize the energy cost, Zp' given as

•
T P 0.746 -rQ t H t

Min Zp = Minimize I I EF~ vCt 550
P

p Dpt
t p pt

(6.2.1)

•

••

where EFFpt is the efficiency of pump p in time period t; VCt is the unit

pumping cost ($/KWH) during time period t; 'Y is the specific weight of water

Ob/ft3); and Dpt is the length of time pump p operates during time period t

(hr).

The constraints that have to be satisfied at all time periods include the

conservation of mass at nodes,

• I (qi,j)t = Qjt
i

j =1,..., J and t =1,...,T (6.2.2)

•

•

where (qi,jh is the flowrate in the pipe connecting nodes i and j during time

step t; and Qjt is the external demand at node j during time period t. This

constraint, which is linear in (qi,j)t, assumes that the fluid is incompressible

and is written for each node j in the network.

The conservation of energy for primary loops is

••
•

I hkt - I Hpt = 0
i,jek pek

b-3

k = 1,.., K and t = l r ..,T (6.2.3)
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where hkt is the head loss in the pipe connecting nodes i and j contained in

primary loop k at time t; and Hpt is the pumping head delivered by pump p

in primary loop k at time t.

The conservation of energy for paths between two points of known

total grade (fixed grade nodes) is

• L h ft - L Hpt = ~Ef
i,jE f pEE f = 1,.., F-1 and t = 1,...,t (6.2.4)

•

••
•

•

•

••
•

where hft is the head loss in the pipe connecting nodes i and j contained in

path f at time t; Hpt is the pumping head delivered by pump p in path f at

time t; and ~Ef is the difference in total grade, expressed as elevation plus gage

pressure, between two fixed grade nodes (FGN's) located at both ends of path

f. This constraint, which is nonlinear in pipe flowrate, is written for F-l paths

where F is the number of fixed grade nodes in the network for all time

periods. Constraint equation (4) is a special case of constraint equation (3). In

fact, energy conservation by (3) and (4) apply to primary loops and pseudo

loops (Le., independent path equations), respectively. The total number of

the above hydraulic constraints, all equality constraints in this case, is J + K +

F - 1. The total number of unknowns, the M pipe flows, is the same as the

number of equations.

The pump operation problem is, inherently, an extended period

simulation problem. For this type of analysis, water levels, Est, in storage

.tanks for the current time period are functions of water levels from the

previous time period, which can be expressed as



•

•• Es t= f (Es t-l ) s = 1,..., 5 and t = 1,..., T (6.2.5)

•
This relationship involves the flowrate in the pipe connected to each tank

evaluated at the previous time period.

The lower and upper bounds on the length of time pump P operates,

Dpt' within each time period are given as

• p =1,..., P and t =1,..., T (6.2.6)

•

••
•

where ~t min can be zero in order to simulate pump line closing and ~t max is

the length of one time period. This constraint limits the operating time of a

pump within a given time period t. Dpt is a nonnegative number which

cannot exceed the total length of a time period. The smaller the time period

used, the more closely continuous pump operation is approximated. Dpt

appears implicitly in (5).

The pressure head bounds on riodal heads are

j = 1,..., J and t = 1,..., T (6.2.7)

•

•

••
•

where Hjt and Hjt are the lower and upper bounds, respectively, on the

pressure head, Hjll at each node j at time t. No universally accepted values for

either bound exists. Normally, the minimum desired pressure at the demand

nodes fall in the range of 20 to 40 psi. This may be true during average

loading conditions but may be significantly lowered during emergency

situations such as when a fire breaks out. The upper bounds, on the other

hand, are fixed by structural limits on the pipes. They depend on the type of

material used as well as the age of the pipe. This constraint is extended to

~- 5
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•• handle bounds on storage capacities in tanks expressed in terms of water

surface elevations.

The bounds on the tank water surface elevations are

• E st ~ Est ~ Est s =1,..., 5 and t =1,..., T (6.2.8)

•

•

••
•

•

•

••
•

where E st and Est are the lower and upper bounds, respectively, on the water

surface elevation, Est, for each storage tank s during time t. These storage

bounds can be imposed for all time periods. Normally, these bounds

correspond to physical limits of the tank. During the last time period, a

tighter bound is usually placed on all tanks whereby all tank levels are

preferred to revert back to the level at the beginning of the first time period.

This is evident from a practical point of view since at the end of the night rate

period, which usually has the cheapest rate and is the start of the simulation,

storage tanks are preferred to be full. Cohen (1982) stated that optimizing the

operation of a network over a limited horizon, say 24 hours has no meaning

without the requirement of some periodicity in operation. A simple way to

do this is to constrain all final states or tank levels to be the same as the initial

states within some tolerance. In the methodology, it was decided that the

final water surface elevation in each tank be approximately the same as its

initial level and that its lower and upper bounds be expressed as functions of

the initial water surface elevation.

The above formulation results in a large scale nonlinear programming

problem where the (qi,j)t, Hjt, Est and Dpt are the decision variables. Chase

and Ormsbee (1989) also used similar decision variables in their nonlinear

formulation. Additional bound constraints on system characteristics, such as

pump/pipe flowrate at each time period and total energy consumption, can be

6-6
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imposed. Prespecified operating rules, such as limits on the number of times

a pump can be turned on and off during the entire planning horizon, can also

be considered. However, a mixed integer-nonlinear programming

formulation would result, one that requires an optimization technique

different from the one presented in this study. Thus, these constraints were

not implemented.

6- 7



•

•••

•

•

6.3 Problem Solution

6.3.1 Overview

The problem is formulated in an optimal control framework where an

optimal solution to the problem is arrived at by interfacing a hydraulic

simulation code with a nonlinear optimization code. The hydraulic

simulation model is used to implicitly solve the hydraulic constraints that

define the flow phenomena each time the optimizer needs to evaluate these

constraints. A general formulation of the problem is stated as follows:

a. Conservation of flow and energy constraints and pump operation

(6.2.2) - (6.2.5)

•

••
•

•

•

••
•

Minimize energy costs =f (H/Q/D)

subject to

G (H, Q, D,E) = 0

b. Bands on pump operation time (6.2.6)

c. Nodal pressure head bands (6.2.7)

H~H~H

d. Storage bands and final tank levels (6.2.8)

E~E~E

6-8
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6.3.2 The Reduced Problem

First, the decision variables are partitioned into two sets such that one

set can be expressed in terms of the other. Let Dpt be the set of "control" or

independent variables while Hjt and Est form the set of dependent or "state"

variables. The justification is based on the implicit function theorem

(Luenberger,1984), which states (dropping subscripts for brevity): if H(D*) and

E(D*) solve the hydraulic constraint equations for D = D* and the basis matrix

of the equations is nonsingular, then H(D) and E(D) exists in the

neighborhood of D*. Thus for the given set of D, there is always a solution of

H and E which satisfies the hydraulic equations implying that H and E can be

written in terms of D, or H(D) and E(D). Similarly, the objective function can

be written in terms of the control variables and is referred to as the reduced

objective function F.

By implicitly expressing the state variables in terms of the control variables, a

smaller nonlinear optimization problem can be solved explicitly by an NLP

code while delegating the burden of satisfying the hydraulic constraint

equations ( thus establishing the implicit functions H(D) and E(D) ) through a

hydraulic simulation code. The hydraulic simulation code KYPIPE by Wood

(1980) for water distribution networks not only solves the hydraulic

constraint equations but likewise satisfies the storage bound constraints from

period t = 1 to t = T-l. This added incentive is reflected in the discussion

that follows. The reduced problem takes the form

•

•

•

••
•

Min ZRP = Min F(Hjt (Dpt), Est (Dpt), Dpt)

(6.3.6)

(6.3.7)
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subject to upper and lower bounds on Dpt, EsT, and Hjt where EsT and Hjt are

written in terms of Dpt as EsT(Dpt) and Hjt(Dpt); and the reduced objective

function F is expressed as a function of Dpt. The hydraulic simulator

(KYPIPE) satisfies the set of hydraulic constraint equations, including the

final time period S storage bound constraints. It also calculates the implicit

functions EsT(Dpt) and Hjt(Dpt). Figure 6.3.1 shows the linkage between the

optimization and simulation codes. LIf) (P - tl ~~ ~ #,J6
r S~=b~~

In mathematical programming, the control and state variables may
k -

also be referred to as p.onbas~d basic~es, respectively. Improvements

in the objective function of the nonlinear programming problem is attained

by a systematic variation of the nonbasic variables. NLP codes restrict the step

size by which the nonbasic variables change so as not to violate their bounds.

In an optimal control formulation, the determination of step size of the

control (non-basic) variables does not take into consideration the values of

the (basic) state variables. H the bounds on these state variables are violated,

more iterations would be required to obtain a feasible solution.

As mentioned earlier, the procedure initially reduces the problem size

by expressing the pressure heads, Hjt, and tank levels, Est, as functions of

pump durations, Dpt. A penalty function method offers a further reduction

in problem size. In general, the method incorporates the upper and lower

state bounds into the objective function in the form of penalty terms.

Specifically the simple penalty function method approximates the optimal

solution to the problem from exterior points. However, it has ill

conditioning effects when the penalty weights become excessively large, Le.,

the problem terminates before finding the real local optimizer (Bazaraa, 1979).

b- 10
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A variant of the general penalty method, the augmented Lagrangian method

(Hsin, 1980), is used to formulate the optimal control problem. The

mathematical derivation of the equations using the augmented Lagrangian

method is given in Brion (1990).

Each state bound constraint is converted to the form of a penalty term

and is added to the original objective function. The head bound penalty

terms and final storage bound penalty terms are added to the original

objective function f to develop the augmented Lagrangian function, AL,

The index i is a one-dimensional index representation of the double index

(j,t) for head bound penalty terms and double index (s,t) for storage bound

penalty terms; and cri and Jli are penalty weights and Lagrange multipliers for

the i-th penalty term, respectively. Furthermore, bi is the bound constraint

violation term which is negative if a bound constraint violation indeed

occurs. Bound constraints, which are sets of upper and lower limit

constraints, are incorporated into the objective function as a single penalty

term. At any given time, only one of the two bounds may be violated. State

bound constraints are now considered in the determination of the step size

used in the search for the optimal solution.

•

••
•

•

•

(6.3.8)

••
•

Combining the two approaches presented so far, the original problem is

recast into the reduced problem with the augmented Lagrangian formulation,

given by
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•

/ .., ]}2 21 . IJ:t 1 ~t+ - L CJjt ml 0, bjt - _J_ - - L -
2 tj \ CJjt 2 tj CJjt

1~ 11~- -£..J-
2 s ~s

subject to

(6.3.9)

p = 1,..., P and t = 1,..., T (6.3.10)

•

••
Lagrange multipliers, J.1 jt, and penalty weights, CJ jt, are associated with the

head bound penalty terms while 11 s and ~ s are the Lagrange multipliers and

penalty weights, respectively, associated with the final storage bound penalty

terms. Head bound violations, bjt, and final storage bound violations, cs, are

defined as

•
Cs =min (£ s , cs) with £ s = E sT - E sT, Cs = E sT - E sT

(6.3.11)

(6.3.12)

•

•

••
•

Again, the penalty terms associated with the storage bound constraints for t =1

to T were not considered because they are implicitly satisfied by the hydraulic

simulation code (KYPIPE).

6.3.3 Solution of the Reduced Problem

The reduced problem, equations (6.3.9) - (6.3.10), is the final

formulation to be solved by the NLp optimizer, such as the generalized

reduced gradient code GRG2 by Lasdon and Waren (1986). The set of decision

b- 12
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variables is narrowed down to include only the control variables. The upper

and lower bounds imposed on the control variables are simply handled by the

NLP algorithm in order to approach or maintain feasibility during its search

of an optimal solution to the problem. The reduction steps of the solution

process are summarized in Figure 6.3.2. It should be noted that in this figure,

the variables are evaluated only ~~hin an inner level optimization as

explained next. \ 1-", tl'V' {~ .., t.\~
~"~ . f ~

Based on the above formulation, the propose~lutionmethodology

can be summarized as follows (also see Figure 6.3.3). The method is a two

level optimization where the final set of variables are partitioned into the

control variables, Dpt' and the augmented Lagrangian variables J.L, 'TI, cr, and ~,

and has the objective function

(6.3.13)

Initially, the penalty weights and Lagrange multipliers, are fixed and

the' optimizer is used to solve the inner level minimization for Dpt. Given

these optimal values of Dpt, the outer level minimization involving J.L, 'TI, cr

and ~ is then carried out. If a convergence criteria is not met or if an iteration

limit is yet to be reached the outer level variables are updated and passed

inside the inner level minimization and the procedure is repeated. The

inner level or loop is a nonlinear optimization subproblem which takes

different forms based on the current values of the penalty weights and

Lagrange multipliers. This loop is solved repeatedly by the generalized

reduced gradient code GRG2.

The outer level or loop is the master problem and is solved by a

heuristic based on Fletcher's (1975) algorithm. Using updating formulas

6-13
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(Brion, 1990), the values of the Lagrange multipliers and penalty weights are

revised. The types of updating formulas vary and the one that follows the

steepest descent criteria haS the form:

• II·m+l - lI·m - ~'c',....1 -,....1 vII,

= 0,

if Cj S; J.1i/ Oi

if Cj > J.1i/ Oi

(6.3.14)

•

•

where m is the outer loop iteration index. Convergence is checked at each

iteration by evaluating a convergence factor r and testing its value against a

preset convergence limit. At the very beginning, r is set to a large absolute

number and is then updated by the formula

H r is less than or equal to the preset convergence limit, then the augmented

Lagrangian method is said to have converged, otherwise the outer loop

undergoes another iteration.
••

r = max I min{oi, J.1i/ Oi} I. (6.3.15)

•

•

•

••
•

6.3.4 Computation of Reduced Gradients

The state of a water distribution system can be defined by a specification

of all pipe flow rates or all nodal heads at any given time of the day. This is

evident by the use of the Hazen-Williams equation which ensures that the

pipe flow rates determine nodal pressures and vice versa. Furthermore, the

solution of the system hydraulic equations would represent system response

to a steady-state simulation for independent loading conditions or demand

patterns. For an extended period simulation where a series of demand

patterns make up the daily cycle loads, tank continuity equations link the

submatrices representing the different sets of system equations for each

demand pattern, as shown in Figure 6.3.4. Thus, for a time sequence of

6-14



•

••
•

•

demands, the state space would comprise the entire set of nodal pressure

heads plus tank levels. The state is said to be defined at the junction nodes

and at the storage tanks. The gradient computations are performed using D as

the vector of control variables and H as the contiguous vector of state

variables. Water level at a fixed grade node is not part of the state space

because its value is constant whatever the demand pattern. No system

equation is required at this location in order to perform a pipe network

simulation.

•

••

• x
x x x x x

x x x x
x x x x

x x x x
x x x x x

x x x x
x x x x
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TANK CONTINUITY=...1 .....

•

• Figure 6.3.4 Matrix Structure for Time Sequence of Demands

•

••

The derivatives of the reduced objective function, Equation 4.9, with

respect to the control variables are called the reduced gradients. Functions

F(D) and H(D) are implicit functions and all the gradients cannot be directly

calculated. All are differentials. However, these functions cannot be

evaluated in closed form. The two-step procedure of Lasdon and Mantell

• 6- 15
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•• (1978) can be used to compute the reduced gradients. First, by applying the

chain rule:

aF/aD = at/aD + (af/aR)T . aR/aD (6.3.16)

Only the matrix aR/aD cannot be directly determined given the objective

function. In order to evaluate this, the hydraulic constraints, or the G

equations, are used. Taking the derivative of the flow constraint equations

with respect to D:

••
•

aG/aD = ag/aD + (ag/amT . aR/aD = 0

which can be written as:

aR/aD = - (ag/aR)-l . ag/aD

Substituting in (5.1),

aF/aD = at/aD - [(af/amT . (ag/aR)-l ag/aD]

and defining

xT= (at/amT . (ag/aR)-l

(6.3.17)

(6.3.18)

(6.3.19)

(6.3.20)

• from which x, the Lagrange multipliers, can be calculated by solving the

system of linear equations:

• (ag/amT x = af/aR (6.3.21)

••
•

In this procedure the derivatives of the network equations and

objective function are needed with respect to each variable, D and H. Using

these gradients, the Lagrange multipliers can be computed by (6.3.21). With

these multipliers and the remaining known gradients, the derivative of the
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reduced objective can be calculated from (6.3.19). The Lagrange multiplier 1t

has a useful physical meaning. At the optimum, it defines the change in the

objective function due to asmall change in the duration of pumping at the

corresponding pump locations.

Although the flow equations are solved by a hydraulic simulator in

order to obtain q and H, the head equations and tank continuity equations are

equally complete and accurate representations of the state of the system. The

loop equations are easier to solve at the expense of requiring analysis of the

geometry of the network. The node equations, on the other hand, are more

manageable for gradient computation since they basically represent the

system node connectivity matrix at each time step, with the tank continuity

equations as links between adjacent time steps. This is shown in Figure. To

calculate the reduced gradients of the objective function, four terms; ()f/()H,

()f/()D, ()g/()H, and ag/()D are to be computed. The first two terms are actually

the derivatives of the objective function, i.e., the cost function with respect to

the'state and control variables, respectively. The last two terms, taken

together, form the Jacobian matrix of the G system equations, i.e., the first

partial differential of the matrix g(H,D) with respect to the vector (H,D). In

compact form,

J(H,D) = [()g/()H, ()g/()D] = [B, C ] (6.3.22)

•

••
•

where the basis matrix B (= ag/()H) is assumed to be nonsingular at all points

and is comprised of diagonal block matrices; and the right partition C (=

()g / ()D) is defined only at the lower portions of each diagonal block

corresponding to the tank continuity equations. The elements of B are

nonlinear functions of H while the elements of C are linear in terms of D.

6- 17
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For a time sequence of demands, the submatrices of B, which represent

separate demand patterns, are symmetrical and are very sparse. This special

structure is lost when tar\k continuity equations link these submatrices to

form the whole time sequence of demands (Figure 6.3.4). The Lagrange

multipliers are computed for the entire sequence of demands which involves

the solution to a sparse matrix ag/aH. Sparse matrix solvers, such as the one

used in KYPIPE, are available but a more efficient way, based on optimal

control theory, considers each demand pattern individually rather than as a

whole.

The calculation of 7t starts at the final time step T by solving the system

of equations

(6.3.23)

Multipliers for time steps T-1 to 1 are solved backward in succession by

•
(6.3.24)

Finally the computation of the reduced gradients is done by appropriate

substitution of the Lagrange multipliers in

• for t = 1,..., T (6.3.25)

•

••
•

Appendix 7.B shows how to compute each entry in the Jacobian matrix

rag/dH, ag/aD], and the partial derivatives of the objective function with

respect to the state and control variables, aAL/aH and aAL/aD, respectively.

The derivatives of the augmented Lagrangian (penalty) terms in (6.3.9),
(6. ~.Ib)

aAL/aH, are with reference to (,&.o.l6'}, the augmented Lagrangian terms, AA

ine can be represented by
, -

( ,
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""'1 2"l1'

. 2
lJ.1i

-2CJj'

if C· S Jli
1 (Ji

otherwise
(6.3.26)

•

•

where H represents the whole vector of states, nodal heads plus tank levels,

and q is defined by (6.3.11) or (6.3.12). The derivatives of these terms with

respect to the state variables become

•

••
•

•

•

••
•

aAA =
aH

0,

Jli - (Jici ,

6-19
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6.4. Application

Brion (1990) developed a computer code, PMPOPR that interfaces GRG2

and KYPIPE for determining the optimal operation of pumping stations in

water distribution systems. A very extensive system of software was

developed in order to combine the augmented Lagrangian algorithm into a

single cohesive computer code. The program structure is presented in

Appendix 6.C. Brion (1990) and Brion and Mays (1991) presented application
(>.e fi9 wd'S,.

of the model to a pressure zone in Austin, Texas for a typical 24-hour day

This pressure zone consisted of 126 pipes, 98 nodes, 5 pressure watchpoints, 3

pumps, 1 storage tank, and 12 - 2 hour time periods.

Various computer runs of the model showed savings in pumping costs

ranging from 5.2 to 17.3 percent over the actual operating costs for the day.

In the future water distribution syste~may be operated using optimal

control systems consisting of the components shown in Figure 6.4.1. Such

systems will be able to provide operators with an optimal operating policy for ~

pump station in a water distribution system. The optimal ~ntroI system can

be directly integrated with a SCADA (Supervisory Control And Data'

Acquisition) system to provide the link between the optimal control software

and the system operator.

6- 20
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APPENDIX 6A

SIMULATION MODEL

6.A.l Simulator Equations

One approach in steady state analysis of pipe networks would be the

generation and solution of mass continuity and energy conservation

equations in terms of discharge in each pipe section. The resulting equations

are referred to as loop equations, as opposed to node equations wherein the

same set of equations are expressed in terms of total grades at junction nodes.

At any rate, the solution to both formulations should yield flowrate in each

pipe and pressure head at each node. It has been shown that the loop

equations have superior convergence characteristics. These equations are

used in the simulation model KYPIPE (Wood, 1980).

The mathematical relationship between number of pipes, primary

loops, junction nodes and fixed grade nodes for all pipe systems is
/

• M=N+LP+F -1max (6.A.l)

•

•

where M = number of pipe sections, N = number of junction nodes, LP =

number of primary loops, and Fmax = number of fixed grade nodes.

For each junction node a continuity relationship can be written wherein flow

into the junction equals flow out of the junction:

•-
• 6- 2 /

i =1,2, , , " N (6.A.2)



•

•• where qext, i represents the external inflow or demand at the junction node.

There are N of these junction equations. For each primary loop, the energy

equation can be written for the pipe sections in the loop as follows

• 1= 1,2, ..., LP (6.A.3)

•

•

where hL = energy loss in a pipe in the loop (minor losses included), and Ep =

energy put into the liquid by a pump in the loop. For the case wherein no

pumps exists within the loop, the sum of the energy losses within the loop

becomes zero. Fmax - 1 independent energy equations can be written for paths

between any two fixed grade nodes as follows

where ~E is the difference in total grade between the two fixed grade nodes.

Note that (6.A.3) can be considered as a special case of (6.AA) where the

difference in total grade, ~E, is zero for a path which forms a closed loop.

Jointly, there are LP + Fmax - 1 of these path equations. (6.A.l)-(6.A.3),

••
•

f =I, 2, ..., F - 1max (6.AA)

•

•

otherwise known as loop equations, constitute a set of p simultaneous

nonlinear algebraic equations which describe steady state flow analysis for the

solution of the flowrate in each pipe. Path equations can be further modified

so as to express them in terms of the flowrates.

The energy loss in a pipe, hL, is the sum of the line loss hLP and the

minor loss hLM. The line loss expressed in terms of the flowrate is given by

••
•

n
h =Kq

LP P
(6.A.5)



where Kp is a constant which is a function of line length (L), diameter (D),

and roughness (C), or friction factor (£), and n is an exponent. The values of

Kp and n depend on the energy loss expression used in the analysis. Using the

Hazen-Williams equation

•

••
• K = XL

P C1.852 D4.87 (6.A.6)

• and n = 1.852. In this equation, X = 4.73 for English units or X = 10.69 for 51

units. Using the Darcy-Weisbach equation

• (6.A.7)

••
and n = 2. The minor loss in a pipe section expressed in terms of flowrate is

given by

(6.A.8)

•

•

where KM is a constant which is the sum of the minor loss coefficients which,

in turn, are functions of the number and type of fittings used.

The energy put into the liquid by a pump can be described by operating

data. The within-range operation can be mathematically represented by a

polynomial as follows

• 2
E = A + Bq + C q

p (6.A.9)

••
•

where A, B, and C are coefficients describing the characteristics of the pumps.

Combining (6.A.5), (6.A.8), and (6.A.9), and making the appropriate

substitutions in (6.A.4), with (6.A.3) taken as a special case of (6.A.4), we have



•

••
•

•

•

••
•

A set of M simultaneous equations in terms of the unknown flowrates is

formed by the N continuity equations (6.A.2) and the LP+Fmax-l energy

equations (6.A.10). The solution of the above equations, jointly called loop

equations, involves the use of numerical or iterative methods since the

unknown flowrates could not be explicitly expressed in terms of the other

variables in the system of equations. Wood and Charles (1972) suggested that

the linearization scheme is the most reliable and efficient algorithm In

solving the loop equations. A discussion of the algorithm follows.

6.A.2 Algorithm for the Solution of the Loop Equations: The Linear Method

A simple gradient method that handles the nonlinear flowrate in

(6.A.10) is used in the proposed method. Consider a single pipe section within

a given path. A single term in (6.A.10) would then represent the grade

difference across a pipe section carrying a flowrate q such that

(6.A.ll)

•

•

Equation (6.A.ll) is linearized using a first-order Taylor series approximation

about the point q = qi , where subscript i refers to the previous iteration or an

initial guess. If we let ~E = f (q), where q ={ql, Q2, ..., qj, .. } =set of flowrates in

the pipes contained in path f then

••
•

(6.A.12)



•

••
•

•

where

f(q.) =~ K q~. + .~ K q ~ . -~ (A+BQ ..+Cq ~ .)
1 ~ PJ,1.~ MJ,1~ j,l j,l

J J J

and the gradient of the general form of (6.A.ll) is

(6.A.13)

(6.A.14)

•

••
•

•

•

••
•

(6.A.12) is employed to formulate LP+Fmax-l energy equations which when

combined with the already linear N continuity equations (6.A.2) form a set of

M simultaneous linear equations in terms of flowrate in each pipe.

A unit flow in all pipes is assumed initially and the system of

equations is solved using a modified sparse matrix solver developed by the

Harwell Industrial Research Group. The computed flowrates become the new

"assumed" flowrates and are used to evaluate the linearized equations and

obtain a second solution. This procedure or trial is repeated until no

significant change in the "assumed" and computed flowrates is observed or a

maximum number of trials is reached. The first criterion is met if the relative

accuracy, defined as the sum of the changes in flowrate between the last two

trials divided by the sum of the flowrates, becomes less than a specified value

(default value = .005). Given the final values of pipe flows, starting from a

fixed grade node, (6.A.5) and/or (6.A.8) can be written for each pipe to

compute pressure heads.

During the development of the code it was observed that the solution

tend to oscillate about the actual solution such that the average of the

6-2.5
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.- previous two iterations tend to be very close to the true solution. Thus, q i

was redefined as

•
(6.A.15)

'.
•

••
•

•

•

••
•

and this new value was used in (6.A.12). Because all flows are computed

simultaneously convergence occurs faster than other procedures (Wood,

1980). A high degree of accuracy is achieved using only 4-8 trials even for a

very large system.



•

•••

•

•

•

••
•

•

•

••
•

APPENDIX 6.B

COMPUTATION OF BASIS ELEMENTS

The following discussion deals with gradient computations. First, the

Jacobian [dg/dH, dg/dDl will be derived taking into consideration the pipe,

tank and pump components of the system. Second, the derivative of the

implicit derivatives of the reduced objective with respect to Hand D will be

shown.

The structure of the left partition of the Jacobian is called the basis

matrix B. The node system of equations and tank continuity equations are

solved for the unknown nodal total heads and tank water levels at all time

steps during an extended period simulation.

J

Figure 6.B.l Node Connected with Three Pipes

Water reaches a node by way of conveyance through pipes converging

at the node (Figure 6.B.l). The node equation for a node i with only pipe

connections for any time step is



is

agi/ahj = 0.54 (Kij Cij Di?·63)/(Ljj0.54) [Sign(Hi-Hj)] [ IHi-Hj 1]-0·46(_1)

= -0.54 (Kij Cij Dij2.63)/(Ljp.54) [sign(Hi-Hj)] [ IHi-Hj I ]0.54

= -0.54 abs(qij)/(Hi-Hj)' (6.B.2)

The order by which these subscripts are written determine flow direction.

Flow is positive if there is outflow from node i and negative otherwise.

External source Qext is positive for demand and negative for supply.

The derivative of (6.B.1) with respect to any Hj (including tank levels)

(6.B.l)G··l'

~
(!)

K··C·Ji:63 ~L CUj + Qext =L 1) 1) 1) [sign(Hi-Hj)] [lHi-Hi r·54 = 0
. . LO.54
) ) ij

where: Kij is a pipe parameter equal to (4.737·L)/(C1.852·D4.87) for English

units and (l0.675·L)/(C1.852.D4.87) for S.l.; Cii' the Hazen-Williams roughness

coefficient; Dii' the length of pipe ij; Lij length of piPe ij; Hi, total head at node

i; and Hj, total head at node j (or tank level if pipe ij connects node i to a

storage tank p. Double subscript ij denotes a pipe connecting nodes i and j.

•

••
•

•

••

,e

Ie
I

I

Similarly, the relation exists for aGi/aHi and can be shown to be

• (6.B.3)

•

•.-

A variation of (6.B.3) exists for a node i connected to a fixed grade node

f. Two cases will be discussed: a node connected to a fixed grade node without

a pump in between, and a node connected to a fixed grade node with a pump

in between. The no pump case merely requires the addition of the single-

•



•

••
•

term 0.54 abs(qif)/(Hi-Hf) in (6.B.3), where Hf is the water surface elevation at

the fixed grade node.

If pumps are online and if the KYPIPE pump representation is used,

the derivation is as follows. Pumps operating within its three-point

operating data has an exponential Q-H curve of the form

where: HI is the pump cut-off head, or the head above which the pump can

no longer sustain the system pressure requirement; and B and C are pump

curve parameters expressed as functions of the three-point (HI-QI, H2-Q2,

H3-Q3) pump data. They are computed by

•

•

••

Qp = -[(HI- Hp)/C ](1/B)

B = log [(HI-H3)/(HI-H2) ]/[ 10g(Q3)]

C = (HI- H2)/Q2B.

(6.B.4)

(6.B.5)

(6.B.6)

•

•

•

••
•

The pump head Hp is the energy imparted by the pump on the fluid and is a

linear function of the head at the downstream node i,

where: hUi is the head loss due to friction along pipe fi. Taking the

derivative of (6.B.4) with respect to Hi yields

aQp/aHi = -[I/(BC(l/B»] (HI-Hp)«(l/B)-l) a(HI-Hp)/aHi

= [l/(BC(l/B»] (HI-Hp)«l/B)-l) a(Hp)/aHi. (6.B.8)

From (D.5),



I

•

••• (6.B.9)

•
The first term in (6.B.9) is identity while the last term is zero. For suction

pipes, the second term is negligible but whose contribution can be derived as

follows. In English units, if we let Kp = (4.737·L)(C1.852.1)4.87), then

• ahUi/aHi = a (KpQp1.852)/aHi

= 1.852 KpQpO.852 aQp/aHi. (6.B.10)

•

..
•

Substituting (6.B.10) into (6.B.11) and then into (6.B.8), we obtain

aQp/aHi = (l/(BC(1/B») (Hl- Hp)«(1/B)-l) [1+1.852 KpQpO.852aQp/aHi].

(6.B.11)

If we let Xl =1.852 KpQpO.852 and X2 =[(HI - Hp)«(1/B)-l) ] I [ Be(1/B) ], we get

•

aQp/aHi = X2 [1 + Xl aQp/aHi]

= X2+X1·X2aQp/ aHi.

Finally, we have

(6.B.12)

•

aQpI aHi = X2/(l-X1·X2). (6.B.13)

If the pump operates above its third operating point (see section 1.3.3),

KYPIPE represents the pump head discharge relationship by a straight-line

formula,

••
•

Qp = - [(Hp - A) IS ]

where:

6- 30
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•
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•

•

•

•

••
•

•

5 = - B . C . (Q3)(B-l)

A = H3-S·Q3.

Proceeding as before,

dQp/aHi = (-liS) a(Hp - A)/aHi

= (-liS) aHp/aHi'

By substituting (6.B.10) into (6.B.9) and then into (6.8.17), we obtain

dQpI aHi = (-liS) [ 1 + Xl aQp/aHi]

= - [ liS + (Xl IS) dQp/aHi]'

Fin':llly,

dQp/aHi = -II[ SO + Xl/S)]

= -1/(5 + Xl).

(6.B.15)

(6.B.16)

(6.B.17)

(6.8.18)

(6.8.19)

(6.8.20)

•

••
•

Equations (6.B.13) or (6.8.20) are added to (6.8.3) in cases wherein a source

pump delivers flow into node i.

The analysis of tanks considers a sequence of demands with which tank

levels vary with- time. During each time step, the tank level is considered

fixed and flow distribution is computed. A storage tank may be considered as

a node with its water level as a state variable (Figure (6.8.2). Continuity at the



•

•••
storage tank is a mass balance equation from one time step to the next and can

be defined as

•
Es t = Es t-I - ~j t-I . Qi

As

where:

(6.B.21)

•

•

••
•

•

•

••
•

Est = water level in storage tank s at time step t,

Est-t = water level in storage tank s at time step t-1,

qsj-I = flow rate in pipe connecting storage tank s to the rest of the

system via node j and is considered positive if tank is

emptying,

Dt = duration of time between time step t and time step t-1, and

As = horizontal cross-sectional area of tank s.

Storage Tank s

0t----CD

Figure 6.B.2 Tank Representation
(adapted from Lansey, 1987)

Using Hazen-Williams equation and transposing all terms on one side of the

equality sign, we have
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•

. Ks Cs D2.63

Gst: - Es t + Es t-l - j j sj [sign(Es t-l-Hj t-l)] [IEs t-l-Hj t-l/ f·54 = o. (6.B.22)
~.54·

This equation links the time sequence of system equations corresponding to

the different demand patterns. The required derivatives used in computing

the Lagrange multipliers are

dgst!dEst = - 1 (6.B.23)

•

••
dgSt!dEst-l = 1 - 0.54 [sign(Est-l- Hjt-l)] Kp (Dt!As) [ IEst-l-Hjt-ll ]-0.46

= 1 - [(0.54 Iqsjt-tl)/(Est-t-Hjt-t) ] . [ Dt!As] (6.B.24)

dgSt!dHjt-l = - 0.54 [sign(Est-l- Hjt-l)] Kp (Dt!As) [ IEst-t-Hjt-ll ]-0.46 (-1)

= [(0.54 Iqsjt-ll )/(Est-l-Hjt-l)] . [Dt!As] (6.B..25)

• dgst!aDt = - [sign(Est-l- Hjt-l)] (Kp/As) [ IEst-l-Hjt-tl ]-0.54

= - qsjt-l / As (6.B.26)

•

•

••
•

where Kp is previously defined. The procedure applied to compute the

Lagrange multipliers for multiple time steps is discussed in section 6.4.4.

Essentially, computation of the element of the state space is done forward in

time while the multipliers are solved backward in time. Equations (6.B.24)

and (6.B.25) may be converted to apply from time steps T-1 to 1. The more

useful forms are



•

••
dgst+l/dHjt = [(0.54 I qsjt I) / (Est - Hjt) ] . [ Dt+l/As]·

(6.B.27)

(6.B.28)

•

•

The partial derivative of the original objective function with respect to

the control variable is the gradient of the pumping cost. It is always positive

since pumping cost increases as pumps are used at longer durations.

Mathematically, it is given by

•
df/dDpt = (l/EFFpt)· vet· (0.746 'YQpt Hpt) / 550. (6.B.29)

••
•

•

•

where all terms are defined previously.

The partial derivative of the original objective function with respect to

state variable H can be derived by examining the effect of pumps on the rest of

the network. First, the objective function is expressed in terms of the state

variable H. The pump may be considered as a special type of pipe with a

head-flow relationship mathematically defined by the pump characteristic

curve. H placed online, additional energy is brought into the flow. A pipe

with a pump will still experience energy loss by friction in the direction of

flow. Thus, the total head at the downstream end of a pipe with a pump is

equal to the total head at the upstream end minus the frictional head loss

plus the pump head or

••
(6.B.30)

• 06-34



•

•• The downstream end would be a node in the system while the upstream end

would be a fixed grade node. By using the previous notation, (6.B.30) is

transformed into

• (6.B.31)

•

•

••

Hi is a state variable and hLfi is a function of the pipe flow which is also the

pump discharge. Since pump discharge is a function of pump head, we can

deduce that it is also a function of the state of the system by way of (6.B.31). By

the same reasoning, pump efficiency is also a function of the state of the

system. For illustration purposes, the partial derivative of the cost function

with respect to the state variables will be derived for the type of pump head

discharge-efficiency relationship used in the first and second example

applications.

•

•

•

EXPONENTIAL
RELATIONSHlF

Hp

Ql

OPERATING
DA'iA POINTS

"" I,
I ,

I

I

••
•

Figure 6.B.3 Pump H - Q Curve Representation in KYPIPE
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•

•

KYPIPE fits an exponential curve to define the pump characteristics

(Figure 6.B.3). Based on a user specified set of three operating points, KYPIPE

determines the coefficients of the exponential function defined in (6.BA).

Above the third operating point, KYPIPE uses an alternate curve by extending

the characteristic beyond the third point using the linear form (6.B.14).

Assuming a maximum efficiency, EFFmax , at the second operating point that

linearly decreases to a minimum, EFFmin, at the other operating points; a

triangular efficiency "curve" is defined (Figure 6.BA) and has the form

EFF = EFFmax if Qp =Q2

• = a·Qp+b if QI <Qp < Q3

= EFFmin otherwise (6.B.32)

••
•

•

where a and b are the slope and intercept, respectively. The three regions

marked in Figures 6.B.3 and 6.BA require three different types of gradients for

the cost function. They are:

Case I:

af/aHi = K4· C4 { [k6· Hip2) + k4(Hlp-Hlpd)] I [k6 . Hlp + k4]2 } (6.B.33)

Casell:

af/aHi = K4· C4 { [kS· Hip2) + k2(Hlp-Hlpd)] I [1<5 . Hlp + k2]2 } (6.B.34)

Caselli:

•

••
•

afI aHi = K2. C4 { 2 Hp - A }

where:

Hlp = (HI - Hp)O/B)

Hlpd = (-lIB) (HI - Hp)«l/B)-l)

kl = (EFFmax-EFFmin)/(Q2-QI)

k2 = EFFmax - kl· Q2

6-36
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•

.e

•

•

•

k3 = (EFFmax-EFFmin)/(Q2-Q3)

k4 = EFFmax - k3. Q2

1<5 = kl / CO/B)

k6 = k3 I CO/B)

KI = VCt· (0.746 YDpt)/550

K2 = KI I (EFFmin . S)

K3 = KI I (EFFmin . CO /B»

K4 = KI/CO/B)

CI = 1.852 Kp QpO.S52

C2 = Hlpd I CO/B)

C3 = CI·C2

C4 = I + C3 I (l - C3).

·e CASE! CASEll CASElli
EFFp I I

EFFmax

•
EFF .mm

• Ql Q3 Qp

Figure 6.BA Triangular Pump Efficiency Curve

•

••
•

Other forms of functions relating Hp, Qp, EFFp and even the unit pumping

cost, VCp (if a per usage rate structure is used) require different forms of the

gradient of the cost function with respect to the state variable.
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use augmented Lagrangian method
to incorporate head bound and
storage bound constraints into the

,It objective function

•

••
•

•

•

..
•

•

Formulation

Minimize Cost = f (q t' H. / E t'D t)
subject to: m Jt s P

1. Conservation Laws
2. Tank Continuity
3. Pumping Duration Bounds
4. Storage Bounds
5. Head Bounds

use simulation model to
, solve implicit function

Minimize Cost = F (H. (D t)/ E T (D t)/ D t)
subject to: Jt p s p p

3. Pumping Duration Bounds
4. Final Storage Bounds
5. Head Bounds

Minimize Cost = L (D t)

b · psu Ject to:
3. Pumping Duration
Bounds

M = number of pipes; J=number of
junction nodes;
S = number of storage tanks; P =
number of pumps;
T =number of time periods

Problem Size

variables
(M + J+ S + P) . T

constraints
(M + 2S + P + J) . T

variables
(J + P) . T + S

constraints
(P + J) . T + S

P . T variables

P . T constraints

•
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•

FIG.j Transformation of Optimal Pump Operation Problem
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CHAPTER 7

OPTIMIZATION OF FRESHWATER

INFLOWS TO ESTUARIES

7.1 Problem Identification

In many areas of the country, particularly the Gulf Coast states,

California and elsewhere in the world, the freshwater discharge of rivers has

become a limited commodity, for which the need for freshwater inflow to

maintain the productivity of coastal estuaries must compete with the

demands of upstream users, viz. municipal and industrial uses, and agricul

ture. The desired approach to water-resources management is to optimize

flow into the estuary (by minimizing the total volume of flow, or by

maximizing the diversions and storage within limits of water rights and

capacity, or both) while preserving an acceptable habitat in specific regions of

the -estuary to accommodate the requirements of key organisms. Salinity has

been long established as an index to ecological habitat in an estuary because it

measures the relative proportion of fresh water to sea water. Even for those

organisms which are euryhaline, i.e. whose physiology can accommodate

wide excursions of salt concentration, salinity still provides a useful habitat

index because of other "information" contained in the freshwater ratio, such

as nutrient supply, sediment and detritus, or stenohaline components of the

food web.

A key element in this optimization problem is the mathematical

relation between salinity in the estuary and flow, S = F(Q). Usually the

relation is based upon statistical association, i.e., a regression form established
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from field data. The Texas Water Development Board (TWBD) has made

particularly extensive application of this approach in establishing freshwater

inflow requirements, as a part of its Bays and Estuaries Program. The work of

the TWDB probably represents the most extensive incorporation of water

requirement for estuaries within a larget water-resources management

context, and the Texas bays are an excellent model for similar problems

elsewhere.

The statistical regression S =F(Q) proves to be extremely noisy because

of the variability in salinity. In the case of the Texas bays, nearly the entire

possible range of salinity values can be found in the historical field data for

any given value of concurrent inflow. The reasons for this are twofold. First,

the value of salinity in a given region of the bay is dependent upon several

other factors in addition to freshwater inflow, notably the various hydro

dynamic circulation processes including tides, responses of the bay to

meteorological forcing, and the effect of density currents particularly oper

ating in conjunction with deep draft ship channels. Second, the time scale of

response of salinity is typically much longer than the variability of freshwater

inflow. The value of salinity is the integrated response to perhaps several

months of the freshwater inflow "signal."

It should also be noted that the optimization problem as summarized

above is in fact time varying, primarily because the salinity requirements of

key organisms in the estuary will vary with season through the year,

depending upon the life stage of the organism and its presence or absence

within the estuary. (Many of the important commercial species are

anadromous, migrating into or out of the estuary.) The salinity limits for a

specific organism are based upon the statistical association between the
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presence of that organism in the estuary (as reflected in catch data or harvest

data) and salinity, or upon the physiological dependence upon salinity as

revealed in laboratory studies. Thus far, the optimization problem has only

been treated on a steady-state basis. Accommodation of the seasonal variation

in salinity requirement was made by the TWDB by subdividing the year into

several seasons and solving the steady-state problem separately for each

season. The most general formulation of the problem, however, should

accommodate not only seasonal variation in salinity limits of the organisms,

but also seasonal variation in upstream water demands and the specific time

response of salinity to freshwater inflow.

The essential weakness in the above formulation is the mathematical

expression of salinity dependence upon freshwater inflow to the bay. This

chapter reformulates the problem, replacing the statistical regression S = F(Q)

with a mathematical model of hydrodynamic transport, relating salinity at a

given point in the estuary to a time-varying boundary condition of riverine

inflow. Such an approach has the following advantages:

(1) more accurate and self-consistent definition of salinity as a function of

flow, enabling greater precision in the optimization results;

(2) explicit incorporation of physical processes other than freshwater

inflow affecting salinity in the real system, including tides, meteor

ology, and internal circulations;

(3) the ability to accommodate time variation in the response of salinity

to freshwater inflow, so as to readily generalize to the full time

varying problem (although the optimization problem can also be

solved in a steady-state framework with steady inflows);
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(4) the ability to accommodate generalization to full time variation in

upstream water demands, including seasonality of irrigation and long

term demographic changes;

(5) the ability to consider either averaged inflow, prespecified scenarios of

inflow, or long-term simulations using real hydrological data.

In some estuaries, a direct measure of organism abundance is available

in the data on commercial fishery landings taken from the estuary. This

"harvest" data can be employed as an index of populations of key organisms

and analyzed statistically to establish its dependence on freshwater inflow,

Hk = f(Q)

While this might appear superior to the indirect salinity-index

approach, the causal connection between flow and harvest may be obscured by

unmeasureable parameters of the fishing process such as effort, selectivity

and skill, and may be corrupted by poor reporting or the difference between

locality of landing (i.e., port) and locality of catch, to say nothing of other

environmental variables unrelated to inflow. This regression therefore tends

to be noisy and statistically uncertain. On the other hand, it is directly

pertinent to the problem, and when the data are available, should be

accommodated within the optimization problem, either as an objective

function or as a constraint.
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7.2 Problem Formulation

7.2.1 Hydrodynamic Transport Simulator for Estuaries

The essence of this chapter is to develop a general methodology for the

estuarine freshwater resources management, so that for discussion purposes,

the hydrodynamic transport model needed for simulation of temporal and

spatial variation of salinity is not restricted to a particular model. The

selection of an appropriate model depends on a number of factors such as

efficiency, accuracy, complexity, and availability of the model. Even if a

desired hydrodynamic transport model has been chosen and applied in the

simulation, a better model can always be used to replace it in the future as

more efficient models are developed. The formulation of hydrodynamic and

transport governing equations varies slightly for each model depending on

the various assumption and approximation introduced. The model used for

discussion purposes the application in this research is a two-dimensional,

finite-difference model. Such a model is used as an example for the

formulation of governing equations and their finite-differencing

approximations.

The governing equations for the two-dimensional horizontal model

are the vertical-averaged equations of momentum, continuity and salinity

mass budget: the momentum equation in x-direction,

(7.2.1)

the momentum equation in y-direction,
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the continuity equation,

and the conservation (transport) equation,

as + a(us) + a(vs) _ ~E ~ _~E as
at ax dy - ax x ax dy Y dy

where

t is time;

x, and yare horizontal Cartesian coordinates;

(7.2.2)

(7.2.3)

(7.2.4)

•

•

•

••
•

qx and qy are depth-averaged flow components in x and y directions per

unit width;

n is the Coriolis parameter equal to 2 w sinf;

w is the angular rotation of the earth;

f is the latitude;

g is the gravitational acceleration;

h is the water surface elevation;

d is the water depth equal to h - z;

z is the bottom elevation;
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f is the bottom friction term from the Manning equation;

q is flow per unit width equal to Jq~ + q~.,

Xw is the wind stress per unit density of water in x-direction equal to

2
KVwcos8;

Yw is the wind stress per unit density of water in y-direction equal to

2
K Vw sin 8;

K is a wind stress coefficient;

Vw is the wind velocity at 10 meters above the water surface;

q is the wind direction with respect to the x-axis;

r is the rainfall intensity;

e is the evaporation rate;

U and V are the net velocities over a tidal cycle;

s is the vertical-averaged salinity; and

Ex, Ey are horizontal dispersion coefficients in the x and y directions.

In the momentum equations, the advective terms are neglected and

the water density is treated as a constant. The assumption of constant density

considerably simplifies the governing equations by decoupling salinity from,

the momentum equations, but at the expense of neglecting salinity-induced

accelerations. The remaining terms in the momentum equations are the
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inertia, the Coriolis acceleration, gravity, friction, and wind stress. The

precipitation and evaporation terms are also added in the continuity equation

for the mass conservation: The transport equation is a linear second order

PDE of convective-dispersion equation. The dispersion coefficients are

introduced to absorb the density-current fluxes.

Boundary conditions are imposed around the periphery of the estuary

including water-land boundaries, partial internal boundaries (e.g., submerged

reefs for hydrodynamic equations only), freshwater flows (e.g., river flows,

diversions, and return flows), and open saltwater ocean boundaries (tidal

excitation). For salinity, s = So is imposed at the ocean boundaries, a von

Neumann condition (zero flux) at land boundaries, and an open-boundary

condition at the inflow points. These boundary conditions can all be

functions of time.

The hydrodynamic equations are non-linear first order partial

differential equations to solve for three unknowns of flow flux in x and y

directions and water surface elevation (qx, qy and h). A fully explicit method

is used for solving the hydrodynamic equations is a time-centered difference

scheme involving time stepping of the "leap frog" type for computations of

flows and water surface elevations. Knowing the values at time t, the

unknowns qx, qy and h can be solved at time (t+1) (derived from equations

7.2.1-7.2.3):
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.- +C~-l[ X~(i,i)t1l +Qij~\i,j)t1l]
x

(7.2.5)

(7.2.6)

•

•

q~+l(i,i) = c;l[ q~\i,j) +gt1l{ d'(i,i) +:'(i,i+1)}{ h'(i,i) ~~'(i,j+l) }]

+ -=h[ Y~(i,j)l1t- nCi~-l(i,j)l1t]
Cy

•
ht+2(i,j) = ht(i,j) + I1t[ q~+\i-l,j) - q~+l(i,j) + q~+l(i,j_l) - q~-\i,j)]

I1x l1y

+11t[ rt+1(i,j) - et+1(i,j) ] (7.2.7)

• _ where

•

•

d(i,j) = h(i,j) - z(i,j)

/ CixCi,j) = qxCi,j) +qx(i,j+l) +qxCi-1,j+l) +qxCi-1,j)
4

_ (..) _ qy(i,j) +qy(i+l,j) +qy(i,j-l) +q (i+l,j-l)
q y 1,) - Y

4

•

•-
•

C =1 +x
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Sl(i,j>{ 1 - E~(i,P[ ::2]-E~(i,j-ll[ ::2]+ V'(i,j-ll[ ~~J-

vI(i,p[~~]+ l<L\1} + s'(i,j+1>{ -E~(i,j)[ ::2]-V'(i,p[~]}

Similarly, the implicit approximation can be written in y-direction at time

step (t+2). The resultant linear algebraic equations for the solution of st+1 (or

st+2) can be solved by inversion of a tridiagonal matrix.

7.2.2 Constraints

The mathematical programming model can have the objective of

minimizing the sum of freshwater inflows, Qtj, for month t and river j

••
•

•

Min 2, 2,Q.
j t tJ

subject to the following constraints:

(7.2.8)

(1) The nonlinear relationship of estuary salinity and freshwater inflow.

(2) Upper (5) and lower (li) bounds on the monthly average salinity at a

specified location in the estuary, for each river j.

•

••
•

G(Q,s) = 0

~ $ s $ 5
tj tj tj
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[ { qyt-l(i,j)}2 + {q t
x
-\i,j)}2]

gn2(i,j)
Cy = 1 + ----:;:...-~---1/-3 .1t [t t ]2

[
dt(i,j) + d\i,j+l)] d (i,i) + d (i,j+l)

2.21 2 2

The alternating direction implicit (AD!) method is used to solve the

transport equation. Thus, theoretically, it is unconditionally stable for any

size of time or spatial step (because of the implicit). The linear system

equations result in a tridiagonal matrix which is efficiently solved using the

Thomas algorithm. The AD! method is carried out in two steps. At time step

(t+l), the x-derivatives are written in implicit form and y-derivatives in

explicit form. At time step (t+2), the direction is switched that the y

derivatives are written implicit form and x-derivatives in explicit form. The

resultant two sets of simultaneous equations are solved directly without

iteration.

At time step (t+l) the conservation equation (7.2.4) can be

approximated in x-direction as,

HI {t+l [ L\t] HI [ L\t ]}s (i-l,j) -Ex (i-l,j) L\i -U (i-l /j) Ux +
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•• (3) Lower limits on the t-th monthly inflows for the j-th river, Q1tj, to

•

•

express seasonal biological requirements, e.g. of the estuarine marsh

inundation.

(7.2.11)

(4) The sum of monthly flows must be less than or equal to the upper

limit of the total annual inflow, QTj, from each river j.

(7.2.12)

• (5) Upper and lower limits on mean monthly flows in seasons for each

is the number of months in season m.

where QS. = _1_ L Q.; Mm is the set of months in season m and Nmpn - N rn te~ tj

••
•

river j,

~. :S;QS. :S;QS.
Jrn Jrn JIll (7.2.13)

•
(6) The nonlinear regression relationship between the harvest of

organism k and the seasonal inflow in river j.

•

••
•

(7) Lower limits on annual fish harvest, Hk, by species k.

7-/2.
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•• (8) Upper and lower limits on monthly inflows (Q .and Q .) from each
. ~ ~

•
river.

(7.2.16)

•

•

••
•

•

•

••
•

Monthly mean salinity bounds are specified for selected locations.

There are two types of upper and lower limits on monthly salinity selected to

provided a salinity range. The first type is based on the bounds for viable

metabolic and reproductive activity, and the second salinity upper bound

selected is the median monthly historical salinity level, or equal to the first

type salinity upper bound if it is lower than the median monthly historical

salinity level.

7.2.3 Alternative Management Model Strategies
/

Four alternative formulations of the optimization model can be

applied to achieve different management objectives, as summarized below.

Other management objectives are possible, and can be similarly formulated

within the general framework of (7.2.8) - (7.2.16).

Alternative I The basic formulation of the problem for estuarine

management is to minimize the total annual freshwater inflow subject to

salinity level control, which will accomplish the requirements of nutrient

transport, habitat maintenance, and marsh inundation requirement. The

corresponding mathematical model can be formulated as
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•

•

•

••

subject to constraints (7.2.9)-(7.2.11) and (7.2.15)-(7.2.16).

Alternative II Maintenance of the fishery harvest. The objective is to

minimize the total annual freshwater inflow while satisfying minimum

seasonal flow needs to maintain the annual commercial harvest of key

species at desired levels, and meeting viability limits for salinity. The

constraints for Alternative II are equations (7.2.9)-(7.2.11) and (7.2.13)-(7.2.16).

Alternative III Enhancement of the fishery harvests. It is to maximize

the total annual commercial harvest of a selected organism k while meeting

viability limits for salinity, satisfying minimum seasonal flow needs, and

limiting an annual combined inflow no greater than its historical mean

value. The objective is to

•
TI\

MaxQS p
HK

(7.2.18)

•

•

••
•

subject to Equations (7.2.9)-(7.2.11) and (7.2.15)-(7.2.16), where QST is the

1\

transpose of vector of the seasonal freshwater inflow, and P
HK

is the vector of

estimated coefficients of the harvest regression equation for species k.

The periodic inundation of deltaic marshes serves to maintain shallow

protected habitats for postlarval and juvenile stages of several important

estuarine species, provides a suitable fluid medium for nutrient exchange

processed, and acts as a transport mechanism to move detrital materials from

the deltaic marsh into the open estuary (TDWR, 1980; Valiela and Teal, 1974).
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In the problem formulation, these stochastic constraints are

transformed into probabilistic statements so that each chance-constraint states

the probability that the constraint will be satisfied with a specified reliability

level. The harvest constraint (7.2.4) can be rewritten in chance-constraint

form as

•
P {H ~ H } ~ pr k -k k (7.2.19)

•

••
•

where the harvest Hk is a random variable due to the uncertainty induced by

the regression equation (7.2.14); Pk is the desired or required reliability. The

chance-constraint (7.2.19) must be transformed into an equivalent

deterministic form in order to implement the optimization algorithm.

The harvest regression equations are either multiple linear models or

transformed linear models after logarithmic transformation of Hk and QSjm

depending upon the species of fish. The commercial fish harvest can be

written in a linear or nonlinear form depending upon the species (again,

using the regressions of the Texas Department of Water Resources, 1980), see

Table 7.2.1

•

•

T
H = (QS) • ~

k . H
J kj

or

(7.2.20)

(7.2.21)

••
•

The harvest chance-constraint (7.2.19) is determined using (7.2.20) and (7.2.21),

respectively,
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Table)A" Regression Equations of Fish Harvest and Freshwater Inflow Relations
(Texas Department of Water Resources, 1980)

Inflow used in

where Hk is the commerical harvest of species k in thousands of pounds,

QS is the mean monthly freshwater inflow during the season (acre/H):

QS1 =January - March QS4 =September - October
QS2 = April ~ June QS5 =November - December
QS3 = July - August

Index k for Fish Species

1 : All shelIfish
2: Spotted seatrout

3:Reddrum
4: All penaeid shrimp
5: Blue crab

Equations

H1 =3107.9 - 11.3QS1 + 7.7QS2 - 24.2QS3
In(H2) =6.8264 - 1.2473 In(QS1) + 1.1526 In(QS2)
- 0.40371 In(QS4) 0.2901
In(H3) =4.3204 + 0.6937 In(QS2) - 0.8718 In(QS3)
In(H4) =1735.8 - 3.7 QS1 + 2.7QS2 - 1.OQS5
In(H5) = 208.3 + 2.7QS3 + 0.4QS4 + 0.5QS5

482.8

b**

0.2900
412.0
259.5

regression equations

a'"

b
c.......

c

and O'k is the standard error.

,. using freshwater inflow at the Lavaca Delta
,.,. using freshwater inflow at the Colorado Delta
"""using combined freshwater inflows from all contributing rivers and coastal drainage basins
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.- (7.2.22)

•

•

or

(7.2.23)

The deterministic form of equations (7.2.22) and (7.2.23) are,

respectively,

•

.-
1\t .(j

n-v 1-p S, k

and

-1

(QSj )1(QSDj) T • (QSDj)] (QSj ) + 1

(7.2.24)

•
1\t .(j

n-v 1-p s., k tj

-1

[In(QSj) f{[In( QSDj )nIn( QSDj) ]} [In( QSj) ] + 1

• (7.2.25)

•

~

-
•

where t is the quantile of t - random variable with n-v degrees of free-
n-v 1-p, k

dom and the probability of l-pk' &H is the estimated standard error associated
k

with the harvest regression equations, QSDj is a matrix of the observed data

of seasonal freshwater inflow used for the harvest regression equations, and
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Alternative IV Minimum the total annual freshwater inflow subject

to the salinity restriction.. This is similar to Alternative I except the

minimum seasonal flow (marsh inundation) requirement, (constraint

(7.2.11» being removed.

7.2.4 Chance-Constraint Formulation for Harvest Equation

The regression equations in the optimization model for salinity and

harvest are subject to uncertainty due to the variance in the basic data. This

uncertainty arises because for the population of observations associated with

the sampling process, there is a probability distribution of salinity of

commercial harvest for each level of freshwater inflow. -FtgdIE 9.1 (b) 3ftef\JS

..aft example 6f this !a:ntl'lift~ distribtftie!t'ofor theas&liftity inflow- 'f'egtESSmh

Q'lW:"h~R'. The basic application of chance-constraints in stochastic

pro~ramming is to account for the uncertainty of the regression due to

random variation in the regression variables by formulating the

corresponding constraints into probabilistic form and then transforming

them into their deterministic equivalents. (Charnes and Cooper, 1959, 1962,

1963; Chames and Sterdy, 1966; Jagannathan, 1974; Miller and Wagner, 1965;

Sengupta, 1972). In environmental and water resources area, there are a

number of papers on water quality models and reservoir design and

operation models using chance constraints (Fujiwara et al., 1986; Houck, 1979;

Ellis, 1987, Ellis et al., 1985, 1986; Lohani and Thanh, 1978, 1979; Burn and

McBean, 1985; Loucks and Dorfman, 1975).
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••
•

•

•

••

In(QSDj) is a matrix in which each element is logarithmic transformed of the

corresponding one in QSD}

The chance-constrained model for various alternatives is obtained by

using the associated objective along with constraints (7.2.24) and (7.2.25),

replacing the respective regression relationships. Derivation of the

deterministic equivalent of chance-constraints based on regression equations

is shown in Appendix 7.B.

7.3 Problem Solution

7.3.1 Overview

The overall optimization model can be stated in the following general

nonlinear programming format using an objective to minimize freshwater

inflows or to maximize fishery harvest.

• Optimize f(Q, 5, H) (7.3.1)

•
subject to the following constraints:

(a) hydrodynamic transport equations that relate salinity, 5, (vector in

spatial and temporal domains) to the freshwater inflow, Q,

• G (Q, 5) = 0 (7.3.2)

••
•

where Q is a vector of the independent variable (control variable) as a func

tion of time and 5 is a vector of the dependent variable (state variable) as a

function of time and location;
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.- (b) regression equations that relate inflow to fishery harvest

h (Q, H) = 0 (7.3.3)

•

•

where H is a vector of the fishery harvest for different species;

(c) constraints that define limitations on freshwater inflows due to

upstream demands and water uses, and historical ranges

(7.3.4)

where Q and the limitations are defined as the general terms that they can be

interpreted as monthly, seasonal, and annual flows. The marsh inundation

requirements are also included in this expression, which are basically lower

bound of flows during certain time periods.

•

.-
•

(d) constraints that define limitations on salinity.

(7.3.5)

•

•-
•

The problem posed is a discrete time optimal control problem in which

the constraints that relate the state variables (salinities) to the control

variables (freshwater inflows) are grouped as a simulator, this is separated

from the original constraint set and are solved implicitly. For each iteration

in the process of optimization, the optimizer computes the new values of

control variables and passes that information to the simulator to update the

corresponding state variables. A reduced optimization problem is then

formed with a smaller number of decision variables and constraints. The

control variables are the freshwater inflows as a function of time. The state

variables are the salinities as a function of time and location in the bay and

?-'W
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estuary. During each iteration of the optimizer, a set of control or decision

variables, the freshwater inflows for each time period, are sent to the

simulator, as shown in· Figure 7.3.1. The purpose of the estuarine

hydrodynamic transport model is to simulate the flow circulation in the bay

system and to be able compute the salinity spatial distribution in the bay for

the time period of interest for given freshwater inflow and other boundary

conditions. The hydrodynamic transport model then solves for the salinities

for each location in the bay and estuary at each time period. Solution of the

simulator is performed to evaluate the embedded hydrodynamic transport in

the optimization problem. Basically, the state variables (salinities) and the

control variables (freshwater inflows) are related through the hydrodynamic

transport model. In essence, the simulator equations are used to express the

states in terms of the controls yielding a much smaller nonlinear

optimization problem.

One of the key elements of the above problem formulation is the

relation G(Q,s) whereby salinity levels in the estuary are defined in terms of a

particular sequence of inflows. The hydrodynamic model embedded within

this procedure should satisfy the following desired criteria:

(1) The model should be capable of representing an estuarine system

with complex circulation, to offer a fair level of complexity in the

salinity-inflow relation and therefore in the optimization

methodology;

(2) The model should be capable of exhibiting a significantly filtered

response to time variations in freshwater inflow, including time

'7-2.'
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lags and inertia, in order to differentiate the salinity-inflow

association from the simple regression forms used in past studies;

(3) The model should be representative of a real estuarine system, so

as to allow demonstration of the methodology in a case-study

format;

(4) The model should facilitate generalization to a more sophisticated

high-resolution estuarine model for detailed applications of the

optimization methodology.

In addition to the general requirements for an estuarine

hydrodynamic model, the following criteria are considered, in an order of

priority, when selecting a simulation model:

(1) The hydrodynamic transport model needs to be called by the

optimizer so frequently that the most restrictive requirement for a

suitable simulation model is the speed of execution of the code.

(2) The model should be capable of representing an estuarine

system with complex circulation, temporal, and spatial salinity

variability.

(3) The model should be capable of simulating long term salinity

values such as monthly averaged salinity in the bay system.

The above requirements can be met for most applications using a two

dimensional horizontal depth-averaged tidal hydrodynamic transport model,

implemented for one of the Texas bays. The computational model to be

employed is one of several models currently available. These include the

7-Z3
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finite-difference models developed in the Galveston Bay Project (Ward and

Espey, 1971), the finite-difference models developed by the Texas Water

Development Board for· the Texas bays (Texas Department of Water

Resources, 1980), the finite-difference model developed by RAND

(Leendertse, 1967; Ward and Espey, 1971), and the quasi-2D finite-difference

Dynamic Estuary Model (DEM) developed for Sabine Lake estuarine system

(Brandes et al., 1975). The available two-dimensional finite-element models

tested for selection are FESWMS-2DH (Froehich, 1989), GEVIS (developed by

the Notre Dame University in 1990), TXBLEND (Matsumoto, 1992a), and the

simplified finite-element model, FETEX, (Matsumoto, 1991).

7.3.2 Reduced Problem

For illustration purpose, the Alternative II, for minimizing the total

annual freshwater inflow, is selected to demonstrate the formulation of the

optimization problem and solution procedure. The independent (decision)

variables are the monthly averaged freshwater inflows from each river

connected to the bay system. Thus, even in the original general format

(Equation 7.3.1) the objective function is a function of flow vector, Q, only.

The problem formulated below, however, is still defined as the "reduced"

problem for the reasons that (1) it can be viewed as the coefficients associated

with s (salinity vector) terms in the objective function are set to zero; (2) the

size of the optimization problem is dramatically reduced because the G

constraints in Equation 7.3.2 are solved implicitly by a separate hydrodynamic

transport simulator; and (3) this notation make it more convenient for the

description of model formulation and structure hereafter. The reduced

problem consists of the "reduced" objective function,



•

.- Minimize f (Q, seQ»~ = Min F (Q)
(7.3.6)

•

subject to constraints of harvest (7.3.3), bounds of inflows (7.3.4) and salinity

limits (3.3.5).

7.3.3 Solution Procedure

where i is the index for each bound constraint; si and mi are the penalty

weights and Lagrangian multipliers for the i-th bound; and Ci is the violation

of the bounds either above or below the minimum defined as,

In order to force satisfaction of the salinity bound constraints in the

optimizer, these bounds on the state variables (salinities) are incorporated

into the objective function using the augmented Lagrangian algorithm. Such

an approach not only forces the state bounds to be satisfied, but also reduces

the number of constraints. Since only inequality bound-type salinity

constraints need to be incorporated, the objective function with the

augmented Lagrangian function is derived from Equation ( )

•

•

.-
•

•
Co =min [s0- s. 0' S . - So]

1 1 1 1 1 (7.3.8)

• The reduced optimization problem with augmented Lagrangian terms for

minimizing freshwater inflows solved by GRG2 is the objective Equation

(7.3.7)

•-
•

Minimize L(s(Q), Q, Jl, 0)

7 - z.-S

(7.3.9)



• subject to'

h(Q, s(Q), H) = 0

QSQSQ

(7.3.10)

(7.3.11)

which are, respectively, the constraints on harvest and the bounds on the

freshwater inflows. The solution to this reduced problem is a two-step

procedure. The overall problem is

min [ min L(s(Q), Q, Jl, aJ
cr, Jl Q E S

(7.3.12)

•
where S is the set of feasible fresh water inflows as given by Equation (7.3.11).

For given values of vectors a and Jl, the reduced problem, Equations (7.3.9),

(7.3.10) and (7.3.11), is then solved using a nonlinear optimizer, which is

based upon the reduced gradient method. The outer problem is iterated by

updating the values of a and Jl for the next solution run of the inner problem.

The overall optimization is attained when a and Jl both converge.

The updating formula used for Jl is:

•
I

(k+l)
Jl.

I

{

(k)
= Jl. - a.c.

I I I

o

Jl.
if c. <a

l

I .
I

otherwise

(7.3.13)

•

•

•
•

where k is the number of the current iteration. The value of s is normally

adjusted once during early iterations and then kept constant (Powell, 1978).

The overall solution procedure is further illustrated through the

flowchart in Figure 7.3.2. There are two loops in this procedure, with the

outer loop determining the Lagrangian multipliers (dual variables) and
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penalty weights. The inner loop solves the reduced augmented Lagrangian

problem using an NLP optimizer such as GRG2, whose dual variables and

penalty weights are fixed at the values determined by the outer loop. Once an

inner loop is finished, the convergence criterion is checked by looking at the

size of the salinity bound infeasibility. H it is small enough, the procedure

terminates; otherwise, the procedure returns to the outer loop and updates

the dual variables and penalty weights and then goes to the inner loop and

solves the new reduced augmented Lagrangian again with the updated a and

Jl from the outer loop. This process continues until an optimal solution of

the overall problem is found.

7.3.4 Computation of Reduced Gradients of AL Problem

The augmented Lagrangian (AL) function (Equation 7.3.7) is a function

of flow (Q), salinity (s(Q», and Lagrangian parameters Jl, and a, which is also

expressed as follows:

•
, Min L(s(Q), Q, IJ., a) = f(Q) + II. (c. {s. (Q)}, IJ.., a)

ill 1 1 1

where

(7.3.14)

•

•

II. (S, IJ., a)
. 1
1

1 2 Jl.
= I -Jl.C.(S) + -2 a.[c.(s)] , if c.(s) < a1

11 11 1 i

1 Jl. Jl.
___1 ifc(s»-1

2(j.' i-a.
1 1

(7.3.15)

••
•

and the salinity violation vector c, is a function of salinity s, and the salinity

bounds (7.3.8). From Equation (7.3.8), the salinity violation term ci(s) =ci(si>.

or q(s) =q( si(Q». The gradients of the augmented Lagrangian function can

be derived by applying the chain rule:

7-2.8
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where al/aq is a function of mi, and Si. Hence, (al/acj) is constant for the

inner optimization problem. From Equation (7.3.8), aq/asi is either 1 or -1.

Thus, the key component for the computation of the (reduced) gradients of

the augmented Lagrangian is the partial derivatives of the salinity with

respect to the monthly flow, as/aQ.

The spatial and temporal salinities in the bay system are computed by

solving the simulator. The freshwater inflows, Q, are part of the boundary

conditions (water - land boundaries) for the hydrodynamic model and the

salinity values in the river inlets are part of the boundary conditions for the

transport model (source concentration boundaries). In order to compute the

matrix as/aQ analytically, a new set of simulator equations need to be derived

and the analytical solution may be very difficult, if it is not impossible. In this

research, the computation of as/aQ is carried out by finite-difference methods

either the forward differencing or the central differencing. More specifically,

as/ aQ are computed by perturbation Q and running the hydrodynamic

transport simulator repeatedly.

7.3.5 CPU Concern

The computation of the reduced gradient is done by the forward

difference or the central difference method through calling of the

hydrodynamic transport model to simulate the temporal and spatial salinity

variability in the nonlinear optimizer. In order to update the objective
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function, 12 calls to the hydrodynamic transport simulator are required with

each simulating for a period of one month.

Theoretically, if the central difference is used, it requires 24 x 12 x 2 =

576 calls of hydrodynamic transport simulator in order to update the AL

reduced gradients, where 24 is the number of decision variables (monthly

river flows); 12 is the number of months to be simulated for each variable (Q)

to be perturbed to obtain aLIaQ, which is on an annual basis, Equation (7.3.16);

and 2 results from the fact that the central difference requires monthly flows

to be perturbed at both sides for computation of the AL reduced gradients.

Although the number estimated above for the simulation requirement can be

reduced by 50% by running the simulation only for the remaining months,

288 calls of the simulations are still extremely expensive in CPU time, for

only updating the AL gradients once.

In work done by Bao (1992) the simulation results using HYDSAL

(Appendix 7.A) indicate that the impact of a monthly flow perturbation in

month t on river j of the salinities in the bay system for the remaining

months (t = t+l, t+2, ... 12) is so small that might be mainly affected due to the

numerical computation errors (less than 1.0E-8). Therefore the effect of the

flow perturbation from previous months is considered as negligible. Hence,

the number of hydrodynamic transport simulation calls for updating the AL

reduced gradient matrix can be reduced from 576 to 48 for the central

difference method for not simulating the salinity in the bay for the remaining

months.

Other test run results by Bao (1992) indicate that the difference of the

computed AL reduced gradients between the forward and the central
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difference methods is insignificant. The forward difference method is

sufficient for the purposes of the AL reduced gradient computations. Thus

the number of simulation calls to the hydrodynamic transport model can be

further reduced to 24.

The test results indicate that over 95% of the CPU time for the model

run is required in the hydrodynamic transport model runs for flow and

salinity simulations. This is confirmed based on comparison of CPU time

requirements of LAV2106 and HYDSAL and estimation of the number of calls

of the hydrodynamic transport model. Although this dramatical reduction in

the number of hydrodynamic transport simulations (from 576 to 24) will save

the CPU time significantly, it is still an extremely intensive computation

effort for the whole model. The inner optimization model of GRG2 requires

7 to 60 iterations before the optimal solution is found for the given

augmented Lagrangian parameters (initial multiplier, initial penalty, and

penalty multiplier). Each iteration may require one or more updates of the

reduced gradient and many times for computing the objective functions. The

number of the simulation calls is then multiplied by the number of outerloop

iterations for updating the augmented Lagrangian parameters and rerun to

the inner optimizer.

7.3.6 Gradient Approximation Scheme

The frequent number of simulations require such high CPU time that

it is too expensive to run the model. Some innovative modification is

needed to reduce the CPU time in simulation. Many considerations and

attempts are made to approaches for solving this problem, which are briefly

7-3/
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described below as examples. (1) Increase the grid size from one to two

nautical miles to reduce the number of grids. The problem with this

approach is that the grid Will be too coarse to have reasonable resolution of

the simulation results. The water - land boundaries are also very difficult to

fit with this grid network not to mention the ship channel. (2) Reduce

modeling area from the whole estuary to part of the bay system such as the

upper Lavaca bay and part of the Matagorda bay. This is quite reasonable for

solving the problem for this application but does not solve the real problem

which would limit the model from application in the future. (3) Run the

simulations separately and build a data base to establish the relationship

between the freshwater inflow and salinities in the bay system. Intuitively,

this approach is pragmatic, however, the use of the actual salinity v.s. flow as

the entities for the data base might also cause as high an uncertainty as in the

cases of salinity regression equations.

The approximation scheme for computing the AL gradients, presented

here, is based on the premise that the change of the salinity derivatives with

respect to flow is relatively small compared with the flow changes within a

certain flow range. In another words, for a set of given flows, the higher

order of salinity derivatives (second partial derivatives) are negligible. This

assumption is not proven in theory, but the fact that the linearity in the

formed transport PDE (second order though) and and the fully explicit time

centered differencing for the nonlinear hydrodynamic PDE's might suggest

that the assumption be a close guess.

Figure 7.3.1 is a flowchart of the procedure for the approximation

scheme for computing the AL gradients and the objective functions. By the

finite difference method, the gradients of the AL objective function L(s(Q), Q,
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.- Il, cr) (Eq. 7.3.14), with respect to monthly inflows, Q (Q ={Q}, Q2, ..., Qn}) is

computed by the forward difference method,

•
aL
~=

(7.3.17)

•

•

.-

for variable element Qm (m = I, 2, ..., n). The simulator is called to compute

the AL terms in the objective, L I.<c,{s.(Q)}, Il., cr, (Eq. 7.3.14) by simulating
i I I I I

the salinities and computing the salinity violation terms. The resultant

Jacobian matrix of as/aQ, and the vectors of sand Q are stored as Ds/DQ, SO

and QO.

The approximation scheme can be described as follows. To compute

the new AL gradients for flows of Q, the changes of flow from previous

evaluation QO is simply the difference of the two as

•

•

•

DQ = QO _ Q

The associated salinities, s, are computed by

and the updated objective function is

L(s(Q), Q, Il, 0) = f(Q) + L 1.(C.{S.(Q)}'Il.l cr.)
j I I I I I

= L Qrn + L l.{ c.(s), Il., cr,}
rn jill II

(7.3.18)

(7.3.19)

(7.3.20)

••
•

The gradients of the AL objective with respect to the monthly flow are

approximated by
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where j denotes that the derivative of at/aQ (Eq. 7.3.16) is a function of the

Jacobian matrix of salinities Ds/DQ. Once the computation of aL/aQ is

completed, the SO and QO values are updated by sand Q in the current

iteration.

7.4 Application

Bao (1992) developed a compter code, OPTFLOW, that interfaces GRG2

amd HYD-SAL (Appendix 7.A) for determining the optimal freshwater

inflows to bays and estuaries. Appendix 7.C presents a description of the

program structure of OPTFLOW. Bao (1992) and Bao and Mays (1992)

presented application of the model to the Lavaca-Tres Palacios estuary in

Texas, Le. Matagorda Bay and its secondary (e.g. Lavaca Bay), and tertiary (e.g.

Cox/ Bay) systems, shown in Figure 7.4.1. The major freshwater inflow

sources are the Colorado River, which principally affects the eastern segment

of Matagorda Bay, and the Lavaca River, which principally influences Lavaca

Bay.

The regression equations for fishery harvest (see Table 7.2.1) and the

monthly mean salinity bounds are specified for selected locations. For the

Matagorda Bay system, these are two types of upper and lower limits on

monthly salinity which determine a salinity range. The first type is based on

the bounds for viable metabolic and reproductive activity. The second type

upper bound selected is the lesser of the historical median monthly salinity

level or the first type salinity upper bound, Le. viability limits (TDWR, 1980).
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Appendix 7.A

HYD-SAL Simulation Models

The finite difference model HYD-SAL consists of two separate but

linked models: a tidal hydrodynamic model (HYD) and a salinity transport

model (SAL). The input and output of the models and their linkage are

shown in Figure '7,/1,1 . Major efforts have been devoted to the development

of, and applications of these models (Masch and Associates, 1971; Masch and

Brandes, 1971; Texas Department of Water Resources, 1980). HYD and SAL

have been applied to four bay systems in Texas, including San Antonio,

Matagorda (Lavaca-Tres Palacio), Corpus Christi-Aransas-Copano, and

Galveston (Texas Department of Water Resources, 1979, 1980).

The hydrodynamic model (HYD) is developed for vertically well mixed

estuaries to solve the two-dimensional dynamic equations of motion and the

uns~eady continuity equation. These are non-linear partial differential

equations to solve for three unknowns of flow flux in x and y directions and

depth (or the tidal amplitude). The transport equation for SAL is a linear

second order partial differential equation. The fully explicit method is used to

solve the hydrodynamic equations. The explicit method used is a time

centered difference scheme involving time stepping of the "leap frog" type for

computations of flows and water levels. The alternating direction implicit

(ADI) method is used to solve the transport equation, therefore, it is

unconditionally stable for any size of time or spatial step. The linear system

equations result in a tridiagonal matrix which is efficiently solved using the

Thomas algorithm (Masch and Associates, 1971).
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The hydrodynamic model also incorporates the Coriolis acceleration

and wind stress. The four basic types of boundary conditions considered in

the hydrodynamic model are as follows:

(1) water - land boundaries,

(2) partial internal boundaries,

(3) artificial ocean boundaries, and

(4) fresh water inflow, diversion, and return flow magnitudes and

location.

The salinity model is simplified as the convective-dispersion equation

based on the principle of mass_conservation. The effect of evaporation and

precipitation on salinity is considered in SAL. Similarly, the boundary

conditions for the salinity model are listed as;

/ (1) water - land boundaries,

(2) impermeable internal boundaries, and

(3) source concentration boundaries.

The HYD and SAL models were modified and run as separate models, so that

the output of HYD is used as input to SAL, and as a combined model

(HYDSAL) to simulate long-term salinity pattern (monthly and annual). For

monthly simulation, the CPU time for execution is about 2.5 minutes on a

Sun4/390 workstation and 12 seconds on Cray Y-MP8/864.
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Appendix 7.B

Derivation of Detenninistic Equivalent of

Chance-Constraints

Based on Regression Equations

In order to transform the chance-constraint (7.2.19) into their

deterministic equivalent forms, first consider a general multiple linear

regression model,

(7.6.1)

where Y is the dependent variable; X is a v x 1 column vector of independent

variables, {I, Xl, X2, ..., xv_1}T; Ii is a v X 1 column vector of regression

parameters, {~O, ~l, ~2, ..., ~v_1}T; e is the model error with E(e) = 0, and

Var(e) = 0 2. Because e is a random variable, the true value of Y and the

coefficients of regression equation, Ii, are never known. Replacing the Y, Ii

and e by their estimators, the regression model becomes,

For a given set of independent variables, 2m, the corresponding dependent

variable YO can be estimated as,

•

•

••
•

/\ T/\ /\
y=x ~+e

/\ T/\
Y = X ~o 0-

with the associated mean

(
/\ ) T/\EYlx =X Ao -0 -01:

,-40

(7.B.2)

(7.B.3)
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and variance

where X is an n x v matrix of observed data used in developing the

regression equations. Replacing the unknown population variance by its

estimator, the predicted variance becomes

Consider a chance-constraint

(7.BA)

by standardizing,

which can be rearranged

•

••

~ 1- P
(7.B.5)
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Knowing the reliability p, the standard student distribution deviate can be

easily computed. Hence the deterministic equivalent of the chance constraint

is

or

• t a
n-v,l-p (7.B.6)

••
with n-v degree of freedom, and probability of I-p.

Consider the case that the constraint is bounded on both sides:

• then

•

•

••
•

F
T,n-v

F
T, n-v

- T"
Y - ~ ~

0-

- T"
Y - ~ ~

0-
~p

(7.B.7)
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However,' the explicit expression of the deterministic equivalent of this type

of chance-constraint can not be derived. The deterministic equivalents of the

commercial harvest constraints can be obtained by substitution of the

corresponding variables and parameters into equation (7.B.6). The salinity

constraints can be written in the form of equation (7.B.7). The fact that this

salinity constraint has only an implicit form must be considered when

selecting programming algorithm.
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CHAPTER 8

OPTIMAL CONTROL BY FEEDBACK CONTROL METHODS

8.1 Dynamic Programming

Dynamic programming (DP) transforms a sequential or multistage

decision problem that may contain many interrelated decision variables into

a series of single-stage problems, each containing only one or a few variables.

In other words, the dynamic programming technique decomposes an N-

decision problem into a sequence of N separate, but interrelated, single

decision subproblems. Decomposition is very useful in solving large,

complex problems by decomposing a problem into a series of smaller

subproblems and then combining the solutions of the smaller problems to

obtain the solution of the entire model composition. The reason for using

decomposition is to solve a problem more efficiently which can lead to

significant computational savings. As a rule of thumb, computations

increase exponentially with the number of variables, but only linearly with

the number of subproblems.

Dynamic programming can overcome the shortcomings of an

exhaustive enumeration procedure using the following concepts.

1. The problem is decomposed into subproblems and the optimal

alternative is selected for each subproblem so that it is never necessary to

enumerate all combinations of the problem in advance.

2. Because optimization is applied to each subproblem, nonoptimal

combinations are automatically eliminated.
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3. The subproblems should be linked together in a special way so

that it is never possible to optimize over infeasible combinations.

Referring to Fig. 8.1.1, the basic elements and terminologies in a

dynamic programming formulation are introduced as follows:

1. Stages (n) are the points of the problem where decisions are to

be made. In the funds allocation example, each projector represents a stage in

the dynamic programming model. If a decision making problem can be

decomposed into N subproblems, there will be N stages in the dynamic

programming formulation.

•

• 2. Decision Variables (dn ) are courses of action to be taken for each

••
•

•

•

••
•

stage. The decision in the project funding example is the alternative within

the project to be selected. The number of decision variables, dw in each stage

is not necessarily equal to one.

3. State Variables (Sn ) are variables describing the state of a system

at any stage n. A state variable can be discrete or continuous, finite or infinite.

Referring to Fig. 8.1.1, at any stage n, there are input states, Sn and output,
states, Sn +1. The state variables of the system in a dynamic programming

model have the function of linking succeeding stages so that, when each stage

is optimized separately, the resulting decision is automatically feasible for the

entire problem. Furthermore, it allows one to make optimal decisions for the

remaining stages without having to check the effect of future decisions for

decisions previously made.

4. State Return (rn ) is a scalar measure of the effectiveness of

decision making in each stage. It is a function of the input state, the output
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•

state, and the decision variables of a particular stage, that is r n =r (Sw Sn+ l' ,

dn ).

5. Stage Transformation or State Transition Un) is a single-valued

transformation which expresses the relationships between the input state, the

output state, and the decision. In general, through the stage transformation,

the output state at any stage n can be expressed as the function of the input

state and the decision as

(8.1.1)

•
The basic features that characterize all dynamic programming problems

are as follows:

••
1. The problem is divided into stages, with decision variables at

each stage.

2. Each stage has a number of states associated with it.

•

•

•

••
•

3.

4.

5

The effect of the decision at each stage is to produce return, based

on the stage return function, and to transform the current state

variable into the state variable for the next stage, through the

state transform function.

Given the current state, an optimal policy for the remaining

stages is independent of the policy adopted in previous stages.

This is called Bellman's principle of optimality, which serves as

the backbone of dynamic programming.

The solution begins by finding the optimal decision for each

possible state in the last stage (called the backward recursive) or
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•

6.

in the first stage '(called the forward recursive). A forward

algorithm computationally advances from the first to the last

stage whereas 'a backward algorithm advances from the last stage

to the first.

A recursive relationship that identifies the optimal policy for

each state at any stage n can be developed, given the optimal

policy for each state at the next stage, n + 1. This backward

recursive equation, referring to Fig. 8.1.1, can be written as

where 0 represents an algebraic operator which can be +, -, x, or whichever is

appropriate to the problem. The recursive equation for a forward algorithm

is stated as

•

••
•

(8.1.2)

(8.1.3)

•
The recursive equation for the backward dynamic programming technique

can be written as

•

opt [Tn (Sn' dn)} for n = N
d"

opt [Tn (Sn' dn)0f~dSn+l)] for n = 1 toN-l
d"

(8.1.4a), (8.4.1b)

••
•

Although dynamic programming possessess several advantages in solving

water resources problems, especially for those involving the analysis of

multistage processes, it has two disadvantages, that is, the computer memory
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and time requirements. These disadvantages could become especially severe

under two situations: (1) when the number of state variables is large; and (2)

when the dynamic programming is applied in a discrete fashion to a

continuous state space. The problem associated with the latter case is that

there exist difficulties in obtaining the true optimal solution without a

considerable increase in discretization of state space. With the advancement

in computer technology those disadvantages are becoming less and less

severe.

An increase in the number of discretizations and/or state variables

would geometrically increase the number of evaluations of the recursive

formula and core-memory requirement per stage. This problem of rapid

growth of computer time and core-memory requirement associated with

multiple-state variable dynamic programming problems is referred to as curse

of dimensionality. From the problem-solving viewpoint, the problem of

increased computer time is of much less concern than that of the increased

computer storage requirement. Therefore, the rapid growth in memory

requirements associated with multiple-state variable problems can make the

difference between solvable and unsolvable problems.

• 8.2 Feedback Method of Optimal Control for Linear Systems

The general optimal control problem for hydrosystems is stated as

follows

• Optimize f(x,u ,t) (8.2.1)t t

subject to the state equation

•• x = g (x xu) t=l,. ..T (8.2.2)t t t' t-l' t

•



•

••

•

Many hydrosystems optimal control problems can be formulated to minimize

the sum of the squared deviations of a state variable from a specified target of

the state variable, subject to the state equation. These problems constitute a

linear detenninistic control problem which consist of minimizing a quadratic

loss function measuring the preference subject to the state equation that

defines the dynamics of the system given as

•

•

T T
Minimize Z = MinI.(x -I) P (x -I )

Ut t=1 t t t t t

subject to the state equation

x =Ax +Cu +b
t t t-I t t t

(8.2.3)

(8.2.4)

••
•

•

•

••
•

in which xt is the n-dimensional state variable vector, where Xo is the vector

of initial (known) state variables; It is an n-dimensional vector of target

values for the state variable at time t; Pt is an n x n positive semi-definite

penalty matrix for deviating from target It at time t; At is an n x n matrix of

known elements; Ct is an n x n matrix of known elements; m is the number

of control variables; b t is an n x 1 vector of known constants; u t is an m-

dimensional vector of control variables. The above problem defined by

equations (8.2.3) and (8.2.4) is a linear-quadratic optimal control problem.

The optimal solution to the above optimal control problem is the time

sequence of the control variables, u t' t=1,. ...T, which is the decision variable.

The feedback method to solve these optimal control problems is a dynamic

programming approach consisting of a stage-by-stage optimization of the

objective function subject to the system state equation. The control solves the

above optimal control problem by deriving a set of feedback rules from a set

of recursive equations (Chow 1981). Dynamic programming requires that the
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objective function be separable in order to perform the stage-by-stage

optimization. The quadratic objective function satisfies the requirement of

separability.

The loss for period T, conditioned upon information up to T-l, which

is a function of uT'

•

• where

T
'V = (x - r ) P (x -r )

T T T T T T

= (xT H x-2xT h + c)
T T T T T T

(8.2.5a)

(8.2.5b)

in which HT is an nxn matrix at time T and h T is an n-dimensional vector at

time T. Substituting AT rT-1 + eT uT + bT for xT in (8.2.5) and minimizing

with respect to uT by differentiation results in

••
•

•

•

••
•

P = H
T T

P r = h
T T T

c = rT P r
T T T T

/\
U =V X +w

T T T-1 T

where

-1

V= _(cTHe) (eTHA)
T TTT TTT

-1

w = _(eTHe) eT(H b -h )
T TTT T TT T

~-'l

(8.2.6)

(8.2.7)

(8.2.8)

(8.2.9)

(8.2.10)

(8.2.11)



•

••
•

The minimum expected loss for the last period is obtained by

substiuting for uT in "'T

. T
~ = xT

(A + C V ) H (A + C V )xT T-I T T T T T T T T-I

T
+2x

T
(A +C V) (H b -h )T-I T T T T T T

To obtain the optimal for the last two periods, consider that ~ has
T

1\

been computed that would yield the minimum "'T and that by the principle of

optimality of dynamic programing uT_I is needed to minimize

•

•

••
•

•

•

••
•

[
T 1\ ]'II: = x -r P x -r +'"T-I (T-I T-I) T-I (T-I T-I) T

= [x H x
T

- 2 x
T

h + c ]
T-I T-I T-I T-I T-I T-I

where the expression (8.2.12) for ~ has been defined and
T

T
H = P + (A + C V ). H (A + C V )

T-I T-I T T T T T T T

T
h = P r - (A + C V) (H b - h )

T-I T-I T-I T T T T T T

T T
c = r P r + (b + C w) H (b + C w)
T-I T-I T-I T-I T T T T T T T

T
- 2 (b + C W ) h + c

T T T T T

(8.2.12)

(8.2.13a)

(8.2.13b)

(8.2.14)

(8.2.15)

(8.2.16)
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•

Because equation (8.2.13b) is identical to (8.2.5b) with T replaced by T-1, the

solution for {IT_l is identical with (8.2.9) with T replaced by T-1 where VT_1

and w T_1 are defined by (8.2.10) and (8.2.11) respectively with a similar change

in time subscripts. Accordingly, ~ is given by (8.2.12) with the subscripts T
T-l

replaced by T-1. When solving the problem for the last three periods,

{l and {l have been found that would yield the minimum expected loss
T T-l

1\

'VT-1 for the last two periods.

By the principle of optimality we only need to minimize

[
T 1\ ]'I': = x -r P x -r +'V

T-2 (T-2 T-2) T-2 (T-2 T-2) T-l (8.2.17)

••
•

•

•

with respect to u T_2 and so forth. At the end of this process {l, is determined

from {l = V x + w , as the optimal policy for the first period and the
110 1

1\

associated minimum loss 'V1 for all periods (or from period 1 forward).

Computationally solve (8.2.10) and (8.2.14) with t replacing T for V
t

and H t

backward in time, for t = T, T-1, ... , 1. Then solve (8.2.11) and (8.2.15) with t

replacing T and w t and h t backward in time, for t = T, T-I, . . . , 1. Finally

solution of (8.2.16) with t replacing T backward in time yields c, which is used
1\

to evaluate 'l'1 given by (8.2.12) with 1 replacing T.

1\

The expression 'V
T

given by (8.2.12) can be used to obtain the values

(shadow prices or dual variables) of the initial resources xt-1. The vector of

dual variables (shadow prices) is the derivation of - -o/t (negative loss or

benefits) with respect to xt-1' namely,

••
•

do/ T
a t = -2(A C V) [H (A + C v)x + H b - h ]

X t t t t t t t t-l t t t
t-l

(8.2.18)



•
The algorithm is summarized below.

1. Initialization of the recursive equations are

•
H =P

t t

x =Pr
t t t

(8.2.19)

(8.2.20)

•
where H t is an n x n matrix at time t and xt is an n-dimensional vector

at time t.

The following recursive equations are solved backwards in time from

the terminal period t=T,...,l to derive the feedback coefficients Vt and

•

••
•

2

I
/

T -1
V = - (C H C) (C H A )

t ttt ttt

T -1 T
w = - (C H C) C (H b - x )

t t tt tt t

T
H = P + (A + C V ) H (A + C V )

t-1 t-1 t t t t t t t

T
x = P r - (A + C V) (H b - x )

t t-1 t-1 t t t t t t

(8.2.21)

(8.2.22)

(8.2.23)

(8.2.24)

•

•
3.

where V t is an m x n feedback coefficient matrix at time t and w t is an

m-dimensional feedback vector at time t.

After the feedback coefficients, V t and W t have been computed, the

optimal control variable, u t can be computed using the following

feedback rule

••
•

U =Vx +w
t t t-1 t

and the state equation

~-l 0

(8.2.25)
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•• x =Ax +Cw +b
t t t t t t

8.3 Groundwater Management Problems

(8.2.26)

•

•

Makinde-Odusola and Marino(l989) employed the feedback method of

optimal control (discussed in section 8.2) to model groundwater hydraulic

management problems. The generalized mathematical formulation of the

two-dimensional groundwater hydraulic management problem defines the

state variable vector xt as the piezometric head vector ht' the control vector,

uti as the vector of pumping rates qt so that the problem is

•

••

Minimize(or maximize)

subject to

f(h ,q ,t)
t t

t =l,...,T

(8.3.1)

(8.3.2)

•

The feedback method of control described in section (8.2) applied to the

gro~ndwater management problem would constitute a linear deterministic

control problem of the form

•

•

T T
Min Z = L(h - I) P (h - I )
~ t=1 t t t t t

subject to

(8.3.3)

(8.3.4)

••
•

where It is an n-dimensional vector of targets for the state variable; P
t

is an

nxn positive semi-definite penalty matrix for deviating from target It at time

t; At and C t matrices with known elements; m is the number of control

variables; and n is the number of state variables.

cg'-ll
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The feedback rule is initialized as follows

H ~P
t t

h =Pr
t t t

(8.3.5)

(8.3.6)

•

•

Feedback coefficients Vt and w t are derived by solving the recursive

equations ( ? ) backwards in time for h t = Xt. On~ the feedback rul:.

coefficients have been computed for all time periods, the 0 timal umEi!!g_
-- -

!trategy, qt' is determined using the following feedback rule and the ini~l

piezometric head vector, ho-
•

q =Gh +g
t t t-1 t

(8.3.7)

••
•

•

Many groundwater management problems can be formulated as

equations ( ? ) and ( ? ), so that the feedback method of control can be used for

the solution procedure. The state variable is the vector of piezometric heads- -~----

~ at all simulation nodes; the control variable is the vector of pumping (or

rec~arge rates) qt; and the target state vector, rt' is the optimized piezometric

head. If the hydraulic management problem is to estimate the rate of

recharge to the aquifer, the target state vector, r t, should be set equal to the

historical (or estimated) piezometric head (Makinde-Odusola and Marino,

1989)'.Jazdanian and Peralta(1986) discussed other methods for obtaining the

vector of target piezometric heads, re

••

•

•

/ Makinde-Odusola and Marino (1989) solved the groundwate,r flow

equation (state equation) numerically using SUTRA (Voss, 1984), which is a

model for simulating two-dimensional saturated-unsaturated fluid density

dependent groundwater flow. This model also solves the energy or reactive

adsorptive single-species solute transport. A two dimensional finite element
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•

•

scheme for the spatial discretization of the governing groundwater flow

equation and a finite difference scheme is used for the temporal discretization

of the groundwater flow equation.

Some advantages of the feedback control method include (Makinde

Odusola and Marino, 1989): (1) the ease in specification and interpretation of

the objective function parameters; (2) stochasticity in either the parameters or

in the state variable can be handled; (3) the objective function form exploits

the duality between control and parameter estimation; (4) the objective

function can be used to impose physical hydraulic constraints; and (5) the

incorporation of operational experience in specification of the vector of target

piezometric heads.

Consider an optimal control problem with a quadratic objective

function of the form
••
•

8.4 Feedback Method of Optimal Control for Nonlinear Systems

T

Minimize Z =Min It (xt -rtYPt (xt -r)
t=l

(8.4.1)

•
subject to the U t nonlinear state equation of the form

(8.4.2)

•

••
•

where xt is the vector of state variables; rt is a vector of specified target values;

11t is the vector of parameters that are not subject to control; and £t is a vector

of random disturbances with mean zero, variance (j and is distributed

independently through time. For purposes of the following discussion the

elements of 11t are given leaving £t as the only random variable.
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The quadratic objective function can be expressed as

(8.4.3)

The problem is to minimize the expectation of Z so that using DP the optimal

control problem for the last period T is to minimize

• (8.4.4)

•
with respect to xp where

(8.4.5)

••
(8.4.6)

(8.4.7)

•

•

•

The following steps are required to solve the optimal control problem

for period T:

Step 1

Start with a nominal policy (control) Ur and set CT equal to zero; then

o. • -linearize (8.4.2) about xT_1 =xT_1 (given); xT =x1" and uT =UTI so that the

solution of the system is

(8.4.8)

••
•

•where 1Lr is solved by an iterative method such as Gauss - Siedel. The

linearized version of (8.4.2) is
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•• (8.4.9)

•

•

The j-th column of BIT consists of the partial derivatives of the vector
•

function g with respect to the j-th element of xT evaluated at the given values

x~ x~_l' iirand 11,.. Similar is true for the j-th column of B2T, and B3T"

Step 2

Equation (8.4.9) can be rearranged (solved) to obtain the linearized

approximation

where
•

••

(8.4.10)

(8.4.11a)

(8.4.11b)

•

•

•

••
•

and YT is a random vector that is serially independent and identically

distributed.

The matrix I-BIT is

(8.4.12)

in which the order of B*IT is the number of simultaneous state equations

excluding the identities.

Step 3

~-lS
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•
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Equation (8.4.10) is minimized with respect to uT subject to equation

(8.4.10) by differentiating (8.4.10) with respect to u T and interchanging the

order of taking expectation and differentiation

(8.4.13)

axT
T

where (8.4.10) has been substituted for x and used to compute au
T T

Equation (8.4.13) is solved fOI: uT

(8.4.14)

where

•
(8.4.15)

(8.4.16)

•

•

•-
•

In the linear approximation (8.4.10) Ar, CT' and bT are not functions of ET and

as a result are not random. The expectations signs in (8.4.15) and (8.4.16) can

be dropped.

Step 4

The solution from (8.4.14), liT replaces the initial guess uT in step 1; then

repeat steps 1 through 4 until there is convergence in uT. Even when

convergence occurs the solution is not truly optimal because the approximate

form (8.4.10) is used with constant coefficients AT' CT, and br

?-Ib
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•

Step 5

Using (8.4.10) for xT and (8.4.14) for u T' the minimum objective for

period T is from (8.4.4),

• (8.4.17)

••
Applying the principle of optimality in dynamic programming,

minimizing with respect to uT_1.

• (8.4.18)

•
'"

Substituting (8.4.17) for'l'r

•

••
•

(8.4.19)
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•

•

•

••
•

•

•

••
•

The second line of (8.4.18) has the same forms as (8.4.4); therefore the steps in

the solution for uT with T-l replacing T, yield an optimal solution uT_1 in the

form (8.4.14) and the corresponding minimum two-period loss, '1IT- 1 from

(8.4.14) the process continues backward in time until, u1 and '111 are obtained.

~ -La
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9.1

9.1.1

CHAPTER 9 DIFFERENTIAL DYNAMIC PROGRAMMING

Differential Dynamic Programming Algorithm

•

•

••
•

•

•

••
•

This section is concerned with the differential dynamic programming

method for discrete - time optimal control problems. The term differential, ;

dynamic programming (DDP) used by Jacobson and Mayne (1970) broadly refer

to sta ewise nonlinear programming procedures. Earlier works that basically

developed DDP procedures for unconstrained discrete-time control problems

include Bellman and Dreyfus (1962), Mayne (1966), Gershwin and Jacobson

(1970), Dyer and Mc Reynolds (1970), Jacobson and Mayne (1970), Yakowitz and

Rutherford (1984), and Yakowitz (1989), Ohno (1978) and Murray and Yakowitz

(1981) are contributed to DDP techniques for constrained optimal control

problem.

Yakowitz and Rutherford (1984) summarized the following;

"Our opinion is that a little - known technique called 'differential

dynamic programming' offers the potential of enormously

expanding the scale of discrete - time optimal control problems

which are subject to numerical solution. Among the attractive

features of this method are that no discretization of control or state

space is used; the memory requirements grow as m2 and the

computational requirements as m3, with m being the dimension of

the control variable; the successive approximation converges

globally under lenient smoothness assumption and the convergence

is quadratic if certain convexity assumption hold"



•

••
•

•

•

The objective of DDP is to minimize a quadratic approximation instead of
'-

solving the actual control problem. Yakowitz and Rutherford (1984) pointed out

the following properties of DDP for unconstrained problems:

(a) DDP overcomes the curse of dimensionality (computational burden

and memory requirements grow exponentially with state and control

dimensions) in that the computational requirements grow as m 3N

and memo re uirements as mnN, where nand m are, respectively,

the state and control variable dimensions, and N is the number of- -
decision tim~;

(b) Under lenient condition, DDP is globally convergant;

(c) no discretization of state or control spaces is required;

(d) the convergant rule of the DDP algorithm is uadratic for control

Rroble s in which the Hessian matrix of the objective function is

convex in a neighborhood of the solution.

••
•

•

The basic optimal control problem considered here is stated as follows

T (s;Pc~-h~

Min Z = L'J (x ,u ,t)
u t=l t t t

subject to

(9.1.1)

•
x = g (x ,u ,t)

t+l t t t

9.1.2 Algorithm Definition

t = I, ... , T (9.1.2)

••
•

Define the current or known control policy-current or known state trajectory or x
t

for t =I, ... , t+1. The initial state is Xl. For



•

.-
/

any function W(x, u) defined by the control and state variables, let QP(W(x, u»

denote the linear and quadratic path~ the Taylor's series expansion of W( )

about (u, x). The quadratic for time T where the DDP backward recursion begins

•
is

L(x, u, T) = QP(f (x, u, T»

(9.1.3)

(9.1.4)

1 ia2f) (af) af=-ou - ou+ - Ou+-ox
2 au2 au ax

where ox = (x - i.r) and au = (u - u
T

) are, state_and in ut erturbations and the

gradie~ an essian of f(x, u, T) are evaluated at xTand uT' Equation (8.3.3) _ ?
••t~ ()JU ft 113 ;. ,'D ~ t

can be presented in a more compact form as .,.. Se...e- ~ .... q.":7

/"
L(x, u, T) = axTA~X + axTB~U + auTC~u + Diou + Eiox

•

•

••
• The idea of DDP is to minimize the quadratic approximation instead of the

----------

•

actual control roblem value function, thereby obtaining a computer amenable

function which is at the expense of involving truncation error. A necessary

condition that a control u'" minimize L(x, u, T) is

vuL(X, u, T)T =2c;.ou +B~x + DT (9.1.5)

• Using the quadratic approximation then the optimal control u'" can be found

from Eq. (8.3.5). Under the assumption the CT is non singular

•.'
au(x, T) = (u'" - u~ (9.1.6a)

•



•

••
•

•

•

••
•

•

•

The optimal value function is

F(x, T) = min Z =min f (XT, UT, T)
u

which is approximated by the quadratic as

vex; T) = L(x, U (x, T), T)

vex; T) is quadratic because

vex; T) = oxTp.f5x + Q.f5x

where

as long as CT is nonsingular

(9.1.6b)

(9.1.6c)

(9.1.7)

(9.1.8)

(9.1.9)

(9.1.10)

(9.1.11)

••
•

DDP backward recursion procedure is performed for t = T, T - 1, ... , 1

using the quadratic

9-4



where vex, t + 1) is the quadratic approximate optimal return function defined as

•

••
•

L(x, u, t) = QP [ f (x, u, t) + V(g(x, u, t»; t + 1] (9.1.12)

(9.1.13)

•

Similar to Equation ( ) the quadratic can be expressed as

(9.1.14)

Using calculus it can be shown that, the coefficients At' B;, Ct' D; and E; can be

written as

•
T ( 2 J1 a 2f ag ag 1 nag

A t =2(ax2 ) +(ax) pt+lax ) +2 ·~l(Qt+l)i ax? (9.1.15)

j t t t 1- 1

() T ( 2 )e j
4

T if ag ag 1 nag• B, = axdu ,+ 2( a,J, P, + ICX), +2i~1 (Q, + I) axiauj (9.1.16)

1

)~
T ( 2 J1 a 2f ag ag 1 nag

• ] c,=lau2 ), +(ax),pt+lax), +, i:I(Q'+I)j aUf (9.1.17)

DT _ (~) + (a
g

) (9.1.18)

I t - au Qt+ 1 ax
t t

•
ET _ (~) + Q (a

g
) (9.1.19)t - ax t+ 1 ax

t t

•

••
•

The first order derivatives of f(x, u, t) in the above equations are
< -

components of the _ radient of f(x, u, t); the econd order derivatives are the

c.9mponents of the Hessian of f(x, u, t); the first order derivatives of (x, u, t) are

c~ponents of the Jacobian of ix, u, t); and the second order derivatives of

9-5



•

•• g(x, u, t)i for 1 $ i $ n are the blocks of the Hessian matrices of the coordinates of-
g(x, u, D. All derivatives are evaluated about the current states and controls.--

The first - order necessary condition for optimality is

• V uL(x, u, t) = 0

so that the minimizing strategy for the quadratic L(x, u, t) is

(9.1.20)

•

•

••

dU(X; t) = at + Pt(x -x t) (9.1.21)

1 -1 1
(9.1.22)where a t = - Iet Dt

1 -1
(9.1.23)and Pt =-"2C t B t

The approximating polynomial for the optimal return function is

vex; t) = Ux, u (x, t), t)

•

•

where

(9.1.24)

(9.1.25)

(9.1.26)

•

••
•

These are equations necessary for the DDP backward recursion. at and Pt

for(l $ t $ N he forward sweep. The forward sweep

determines the successor DDP policy by successively selecting controls according

to the rule u (x", t) and then calculating the successor state at each time so that

u i =u (x 1; 1) and xi=g( xi, u lt

1, 1) . Then the following is for t =2, ... , T

9- b



For the next DDP iteration the DDP sucessor control is the current control

•

••
•

and

x~+ 1= g(X~, U;, t)

(9.1.27)

(9.1.28)

•

•

••
•

•

•

••
•

sequence u.

9.1.3 Algorithm Description

Input for the DDP procedure consist of T, the.!n~u~m~bgerrQofUl.eo£1.(ULtm:l.e

the dimension of the control variable; n, the dimension of the state variable; u, a

nominal policy; components of the gradients, g~ and :~ ; components of the

. a2f a2f a2f . ag ag
HessIan, (]x2' du2' and dXau; the JacobIan of g, ax and au ; and the blocks of

a2g a2g a2g
the Hessian matrices of the coordinates of g, - -- and -.. -.. .

aXT ' aUT OXjOU j

The program parameters are At, Bt, Ct, Dt, Et for(.1 S;t g~which are the

coeffecients of L(x, u, t); Pt, Qt for 2 S; t S; T+1; at, ~t for 1 S; t s;N which are the

coeffecients of the linear strategy function u(x, t); and at for 1 S; t S; N + 1, which

are the parameters for the acceptance tests. The steps of the algorithm are

outlined below.

Step 0: Select an initial (nominal) policy.

U t' t =1,...,N



•

.-
•

Step 1: Initialize parameters and compute loss and trajectory for the given

policy.

Set P

-r L
Step 2: Backward sweep (Perform the following (a) - (d) for t = ,)

N
Z(u) =~ f (x ,u , t)t:1 t t t

(a.) Compute At' Bt' and Ct

•

•

.-
• A _l(ilf) + (ag)Tp (a

g
) +l ~(Q ) (a

2g
)

t - 2 ax2 t ax t t+I ax t 2 j~ t+I j ax~ (9.1.29)

• T ( 2) (a)T (a) n (a
2

)B = a f + 2 ~ P ~ + ~(Q) g
t axau t ax t t+I ax t j~ t+I j aXjaU

j
(9.1.30)

•

•-
•



I

•

•• T T
(b.) .Compute D and E

t t

T (af) (ag )D t = au + Qt+1 au (9.1.32)
t t

•
ET _ ( M) + ( ag ) (9.1.33)t - ax Qt+l ax

t t

•
(c.) Compute Pt and Qt

1 T-l (9.1.34)• P=A--B C B
t t 4 t t t

1 T-l (9.1.35)Q =- - D C B + E
t 2 t t t••

(d.) Compute at and ~t

• 1 -1
(9.1.36)a =-- C D

t 2 t t

1 -1
(9.1.37)~ =-- C B

t 2 t t•
(e.) Compute St

• 1 T -1
(9.1.38)S =--D C D + S

t 2 t t t t+l

••
•

In the above steps (a.) - (e.) store Pt' Qr St and replacing Pt+I' Qt+I'

St+I' respectively. Also store at and ~r



•

••
•

•

Step 3: Forward sweep.

.-------
/H 81 < qmin then is the optimal policy. Otherwise compute the updated--, . .-'

control policy.

(a.) set £ = 1.0 ---

(b.) compute ut(£) recursively for t =I, ... , Tusing

•

••

U (£) =£<X + ~ (x -X ) + u
t t t t t t

X =g(x,u (£),t)
t+I t t

(c.) compute (u(£»

C(lLtll) n

)=Lf(x,u(£),t)
t=I t t t

(9.1.39)

(9.1.40)

(9.1.41)

•

•
9.3

2(v.(Q) (8 )
(d.) If ) - Z(U) ~ £ T 'set u t = u t(£) for t=I,...,T and go to step 1

Otherwise perform a line search; set E = ~ and go to step 3 (b.)

Multi-Reservoir Operation

•

••
•

Murray and Yakowitz (1979) applied constrained DDP to muti-reservoir

control problems. Consider the four reservoir systems shown in Figure 9.3.1. Let

ri,t denot the release of the t-th reservoir during decision time t, Si,t denotes the

begining storage, and q. t denotes the inflow to the i-th reservoir. The basic
1,

reservoir mass balance equation is

q-IO



•

••
•

•

~.

•

•

Y, T,
P2 t,

•

•
,.•..
•
~.'

7'.3, I

Fig. ~ Four-reservoir configuration.
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where xt =(x1,t' ... , X4,t) T I 5t = (sl,t' ... , S4,t) T, f t =(r1,t' ... , r4,t) T, and M is a

fourth-order matrix with -1'5 on the diagonal and +1'5 in the position (k, j) is

reservoir k releases into reservoir j and zero elsewhere. The mass balance

equation for the four-reservoir problem is

•
-••

•

5 t+1 = 5 t + q t + M r t (9.3.1)

•
51, t+l

S2,t+l

53, t+l

54, t+l

=

51, t

52,t

53, t

54, t o

-1 0 0 0

o -1 0 0

o 1 -1 0

1 0 1 -1

(9.3.2)

•

••
Reservoir storage bound constraints are defined as

0$51 t$10,

o$s2,t$10

0$53 t$10,
0$54 t$10,

(9.3.3)

The initial state is 51 =(5,5,5, 5)T and the terminal state is 5
13

=(5,5,5, 7)T for 12

time period5. Inflows are 51, t = 2 and 52, t = 3 for t = I, ... , 12. Release

constraints are

•

•

•

••
•

o
o r2,t

$ $
o
o

3

3
4

7

9-1'Z-

(9.3.4)



•
I.
•

•

•

The loss function to be minimized is

12

F(r) = L f(Sf rf t)
t=1

where

4

~St' rtf t) = L crt, rj.t
j= 1

The loss coefficients are given in Table 9.3.1.

(9.3.5)

(9.3.6)

•

••
•

•

•

The terminal constraint

S13 = (5,5,5, 7)T

can be enforced by translating this condition into constraints on the preceding

state and control, e.g. for sl, 13 = 5 the mass balance is]

r1,12 =5 - sl, 12 - ql, 12 =3 - sl, 12

The release rl 12 is bounded by 0 <rl 12 < 3 so that for the terminal state to be, ,

readable then

this in turn requires bounds on the control r1, 11 and this sets allowable ranges for

sl, 11' One could then construct sequences { 111, t} and { SI, t} so that for any t,

111, t < sl, t < ~, r In general form this can be written as

••
•

(9.3.7)



•

•• Equation (9.3.7) also is assumed to satisfy the state constraints (9.3.3)

which may be rewritten in the form

• These linear constraints can be rewritten as

C < < J:C
l1t-l - rt-l - ':It-I

(9.3.8)

(9.3.9)

•

•

••

where 11~1 and ~~1 are constructed from ll t, ~, and M-1 (St-l + qt-l)' The problem

would then be to require that (9.3.4) and (9.3.9) be satisfied simultaneously.

9.4 Approach for Non-LOP Groundwater Management Problem

This section presents a differential dynamic programming algorithm

(DDP) for solving large-scale, nonlinear groundwater management models. The

groundwater management model for the optimal control of operational costs of

an unconfined aquifer can be posed as follows (Jones, et al., 1987):

•

•

•

T ,

MinZ= Lqt(L-ht+1)
q t=1

subject to

t =1,..., T

t = 1,..., T

t =1,..., T

(9.4.1)

(9.4.2)

(9.4.3)

(9.4.4)

••
•

where l' is a row vector of 1IS, L is an m vector of the distance from the ground

surface to the lower datum of the aquifer; h
t
is an m vector of hydraulic heads; ht



•

••
•

is an n vector of hydraulic heads; and m $ n. Operational costs are assumed to be

the product of the pumpage rate, qt', and the left (L -h
t
+l ) Equation (9.4.3)

requires that the sum of pumping in each planning period satisfy the demand d t,

Equation (9.4.4) is the capacity constraints.

The above problem (9.4.1) - (9.4.4) is a nonlinear discrete-time, optimal

control problem, in which the state equation defines the groundwater hydraulics

unconfined flow. These partial differential equations can be expressed in finite• for two-dimensional flow defined by equation ( ) for confined and / or

•

••
•

•

•

••
•

difference form for unconfined conditions as

where the node numbers refer to Figure (9.4.1), <xo <Xl <X2 <X3 <X4 ~o and 'Yo are
., , I , I I

known functions of the aquifer parameters.

The DDP approach begins with an estimate of the solution for each stage

(ql' q2' ..., qn) referred to as nominal controls, which is used to solve the

simulation (state equation) for the nominal states (hI' h2, ..., hn+1). The nominal

solution (h*, q*) results in a nominal objective Z*. Next is to determine a

quadratic approximation to the above optimal control problem (9.4.1) - (9.4.4).

Figure 9.4.1 Finite Differences

ct -I S



•

••
•

~ ttl' \
Fig. X' Finite difference approximation at node O.

~t

2

a.--- ~X---j

•
h41 t + 1

•• 4

h3, t + 1

• 3

•

•

•

••
•
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••
•

I

I

I.

In order to develop the quadratic approximation, a first-order Taylor

series approximation (linearization) of the groundwater simulation equations

about the nominal solution (h*, q*) is developed,

where the deviations are evaluated at (~*, qt). The Taylor series approximation

for the vector of heads is

(9.4.6)

•

••
•

•

•

which is a multivariate first-order Taylor series approximation of ht+1 as a

function of h t where R1 and R2 are Jacobian matrices. The i-th row, j-th column

of R1 is Citi,. t+l / Citp and the i-th row, j-th column of R2 is ahi, t+l / ~} I both

evaluated at (ht*,qt*).

Determination of the Jacobian matrices are found by implicit

differentiation of the simulation equation, e.g. differentiation of (9.4.5) with

respect to hi,t results in

~,t+l ~,t+l ~,t+l
2al~,t+l Cit, + 2a2~t+l dh. + 2a3~,t+l dh.

p p p

••
•

Ch Cit ;},
A 0, t+l _ A ~ _"'1o_,t

+ .... 0 Cit. - .... 0 Cit. + Yo Cit.
I,t I,t I,t

(9.4.7)



•

••
•

•

•

••
•

Differentiating each simulation equation with respect to hi, t yields a

simultaneous system of n equations for the j-th columns of the Jacobian matrix

R1, The Jacobian matrix is evaluated at (h*t, q\), h*t+l is used instead of h t+1

resulting in a system of n simultaneous linear equations for the j-th column of the

Jacobian matrix R1 evaIuated at (h\, q\). A system of n simultaneous linear

equation is found for each hj,t and ql,t by the same procedure. The left-hand

side coefficient matrix of the n simultaneous linear equation for the j-th column is

the same, so that for n nodes and m wells the Jacobian matrices for 00.2.6) are

found from the solution of n simultaneous linear equations with n+m right-hand

sides.

The Taylor series approximation is made for each finite difference time

step, dividing the time between stages into a number of finite differences time

steps. The linear approximation for each finite difference time step allows simple

substitution and matrix algebra to relate ht+1 to ht and qt to qt+l' Through the

use of the first-order approximation to the nonlinear simulation equation, ht+1

can·be expressed as

(9.4.8)

• where At is an nxn matrix, Ct is an nxn matrix, and Zt is an n vector.

The original problem (9.4.1) - (9.4.4) can now be expressed as

•

••

(9.4.9)

• 9-18



•

•• subject to

(9.4.10)

• (9.4.11)

•
where the matrices in (9.4.9) are Ut = 0, Vt = - At, Wt = -1/2 (13 + 131), Xt = L - Zt,

and Yt=O.

The values of ht+1 in (9.4.1) for nodes with wells are determined from

• (9.4.12)

••
•

•

•

••
•

The optimization problem (9.4.9) - (9.4.11) can be referred to as the

nominal control problem, which is an approximation to the original control

problem (9.4.1) - (9.4.4) about the nominal solution. This problem would be an

LQP problem if the two inequalities were not present. They can be placed in the

objective through the use of penalty terms. Jones, et al. (1987) suggest

incorporating (9.4.11) into the objective of the nominal control problem and

solving it as an LQP problem using dynamic programming as described by

Murray and Yakowitz (1979). The resulting recursive equation is

ft(h) = Min{hpt h t + q; fJtht + qtW8t
qt

(9.4.13)

where A. is a Lagrange multiplier estimate and ft+1(ht+1) is the optimal value that

gives the optimal return for stages t+1 to T, which is a scalar for this problem.

Using the nominal stage, h\ in place of h t in (9.4.13), results in a QP problem

9-/9



•

•• which is a subproblem in the background sweep. Pig 6 @ '1 P2 2S

9.5 Groundwater Reclamation Models

• The groundwater reclamation problem can be stated using the general

form of the optimal contral problem as

where the vector of state variables, Xt, is the vector of hydraulic heads, ht, and

•

•

••

T

Min =L ft (xl' ut, t)
u ~1

subject to

t =1,. .., T

t =l,. ..,T

(9.5.1)

(9.5.2)

(9.5.3)

concentrations, Ct,

•
(9.5.4)

•

•

••
•

The vector of contral variables are the pumping rates at a set of m possible and or

existing well locations. The state equation (9.5.2) defines the groundwater flow

and contaminant transport for the aquifer. Constraint equation (9.5.3) includes

constraints on both the state and contral. As an example, constraints on the state

variable can include water quality requirements on the concentration levels and

purnpage limitations on the contral variable.

Culver and Shoemaker (1992) present a groundwater remediation model

based upon a DDP approach that they refer to as a successive approximation



•

.-
•

linear quadratic regulator (SALQR). Their definition of SALQR is that it "differs

from DDP only in that the nonlinear simulation equations are linearized in the

optimization step." SALQR and DDP are identical if the simulation equations are

linear. The optimal contra! problem solved by Culver and Shoemaker (1992)

with flexible management periods is defined as

where k refers to the management period; K is the total number of management

periods defined as K =T/ d; T is the total number of simulation steps; and d is the

number of simulation periods per management period. The above problem

•

•

.-

k

Min Z =It Fk (xk' uk' k)
k=l

subject to

k = 1,..., K

k = 1,..., k

(9.5.5)

(9.5.6)

(9.5.7)

•

•

(9.5.5) - (9.5.7) is directly analogous to (9.5.1) - (9.5.4). The state equation (9.5.6)

describes the change in x over a management period instead of over a simulation

step. The algorithm defined by Culver and Shoemaker (1992) to solve this

problem is presented in Figure (9.5.1).

The cost function used by Culver and Shoemaker (1992) defines the total

operating costs of pumping and treatment during each time period given as

fk (xk' uk' k) = Ita1iuki + It a2i uki <h -h k+1)

i=l i=l

• m m

(9.5.8)

•-
•

in which the first term defines water treatment costs on a linear function of the

amount of water pumped (extracted) and the second term defines the pumping
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Backward Sweep (Step 2)
• approximate objective function by second-order

Taylor series about the current policy
• approximate transition eqtiation by first-order

Taylor series about the current policy
• evaluate necessary derivatives .
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updated control policy
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•

costs related to the product of the extraction rate and the left (h-hk+1)· h is the

vector of distances from the ground surface to the lower boundary of the aquifer.

The constraint equation (9.5.7) on the contral and state variables are

incorporated into the objective function (10.3.8) utilizing a penalty function so

that

In In

fk (xk' uk' k) =L aliuki + L a2i uki (h - hk+1)

i=1 i=l

where Yki ( ) is the penalty (cost) associated with the violation, ~ of constraint j

in period k. Culver and Shoemaker (1992) used the following penalty function

•

••
•

J
+ L Yki (rki)

j=1

Eki > 1

(9.5.9)

(9.5.10)

(9.5.11)

•

•

••

gives the following hyperbolic penalty function by Lin (1990)

(9.5.12)

where (lki is the weighting coefficient of the j-th constraint; ~ki is a shape

parameter of the hyperbolic function Eki; and a, b, and c are constant coefficients.

u. . "'h.tt..~'e·· 1\-U-- f~--J__ l •

Culver and Shoemaker (1992) point out that with the inclusion of
;...

equations (9.5.10) and (9.5.11) the obJ'ective function (9.5.9) is not quadratic.
J ~

During the backward sweep (refer to Figure 9.5.1), the objective (9.5.9) is

approximated as a quadratic by a second order Taylor series expansion about the.. -
current policy as suggested by Yakowitz and Rutherford (1984). The first

•



derivatives of the state equation over a simulation period.

•

•• derivatives of the state equation over a management period requires the first. 1/

~
~n X',

,\ \1

. G~

where p = *k-1) d + 1. These derivatives for (~.l and (~l above are based

upon the product rule of differentiation.

The derivatives can be determined analytically over a simulation period as

shown by Chang (1990) who computa'the derivatives from the equations of the

finite element model, ISOQUAD by Pinder (1979). The algorithm used by Culver

and Shoemaker (1992) is basically the same as the one described in Section ( ? )

with the exception of equations ( ? ) - ( ? ) in which

•

•

•

••
•

•

•

••
•

(~\ -()g) + ()g) ()g) + ()g) ()g) ()g)
au)k - au p+d-l ax p+d-l au p+d-2 ax p+d-l ax p+d-2 au p+d-3

p+d-l [dg] (~ )
+...+ n ax au

t=p+1 t , P

(9.5.12)

(9.5.13)

(9.5.14)

(9.5.15)

(9.5.16)
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